UNIVERZITET U BEOGRADU

Mihailo P. Lazarević

Mašinski fakultet Beograd, 2006

ZBIRKA ZADATAKA IZ MEHANIKE ROBOTA

Zahvalnost

Autor duguje veliku zahvalnost na pomoći, razumevanju i zauzimanju da izdanje ove zbirke bude kreirano do kraja i nađe put do čitalaca, gospodi:

Marku Nikoliću, dipl.ing.maš. Dr Josifu Vukoviću, dipl.meh. red.prof. Mašinskog fakulteta u Beogradu Peri Obradoviću, direktoru "PGO Company", Beograd Dr. Mihailo P. Lazarević

ZBIRKA ZADATAKA IZ MEHANIKE ROBOTA

MAŠINSKI FAKULTET, BEOGRAD 2006

Prof. dr Mihailo P. Lazarević,

ZBIRKA ZADATAKA IZ MEHANIKE ROBOTA

I izdanje

Recenzenti:

Prof. dr Josif Vuković, Mašinski fakultet Beograd Prof. dr Aleksandar Obradović, Mašinski fakultet Beograd

Izdavač: MAŠINSKI FAKULTET Univerziteta u Beogradu, Ul. Kraljice Marije 16, Beograd tel. (011) 3370 760 fax.(011) 3370 364

Za izdavača: Prof. dr Miloš Nedeljković, dekan

Glavni i odgovorni urednik: Prof. dr Aleksandar Obradović

Odobreno za štampu odlukom Dekana Mašinskog fakulteta u Beogradu br. 46 /06 od 29.06.2006. godine

Tiraž: 200 primeraka

Štampa: PLANETA - print Ruzveltova 10, Beograd tel/fax: (011) 3088 129

Zabranjeno preštampavanje i fotokopiranje. Sva prava zadržava izdavač i autor.

Svojim dragim A L ML J.J

PREDGOVOR

Već više od sedamdeset godina robotski sistemi privlače izuzetnu pažnju naučne i stručne javnosti širom sveta. Njihovo prisustvo u svim granama tehnike i u nekim drugim naučnim disciplinama više je nego evidentno, a početak njihove praktične primene datira još od tridesetih godina prošlog veka kada je ostvarena značajna modernizacija proizvodnje. Na robotske sisteme danas se gleda kao na sisteme koji omogućavaju dalju i fleksibilniju automatizaciju odnosno koji zamenjuju čoveka prvenstveno na opasnim i teškim poslovima.Međutim, najnoviji trendovi u oblasti primene robotskih sistema ukazuju na sve veću njihovu zastupljenost u kosmičkim istraživanjima,u tzv. service i personal robota u čovekovom svakodnevnom životu na «home-friendly» način kao i sve veću upotrebu u rehabilitaciji i u pojedinim granama medicine.Sa stanovišta mehanike robotski sistemi predstavljaju sisteme krutih /elastičnih tela i kao takvi se dalje mogu egzaktno proučavati. U matematičkom smislu dinamički modeli takvih sistema opisani su nelinearnim diferencijalnim jednačinama.

Ova zbirka zadataka je namenjena prvenstveno studentima kojima će pomoći u rešavanju zadataka i savlađivanju materije iz predmeta Mehanika robota koji se sluša na Mašinskom fakultetu u Beogradu. Takođe zbirka je namenjena i drugim studentima završnih godina studija mašinstva i elektrotehnike kao i doktorantima na drugim fakultetima.

Imajući u vidu činjenicu da se predmet Mehanika robota predaje preko deset godina na Mašinskom fakultetu i uzimajući u obzir složenost i specifičnost materije koja je obuhvaćena ovim predmetom, ova zbirka zadataka je dobrodošla da popuni «prazninu» odnosno da omogući korisnicima da efikasnije usvoje, utvrde i provere svoje znanje koje se odnosi na ovu oblast mehanike.Ona je nastala kao plod višegodišnjeg intezivnog bavljenja autora ovom problematikom pri čemu su u njoj uobličeni i odabrani rezultati koji se odnose na ovu problematiku kolega sa katedre za Mehaniku, prvenstveno prof.dr Vukmana Čovića i kolege dr Saše Markovića kao i prof. dr Aleksandra Obradovića i doc. dr Milanke Glišić.

Zbirka zadataka sadrži pažljivo odabrane primere koji su korišćeni tokom niza godina pri izvodjenju laboratorijskih ili računskih vežbanja iz ovog predmeta, gde su za karakteristične primere napisani odgovarajući programi u MATLAB okruženju. Takođe, potrebno je na ovom mestu istaći da se ova zbirka u velikoj meri oslanja i prati predavanja iz ovog predmeta koja su takođe uobličena i spremljena za štampanje u obliku knjige -Mehanike robota.

Autor je zahvalan mladom kolegi Milošu Živanoviću, na korisnim primedbama pri završnom formiranju ove zbirke.Sa ne manjim zadovoljstvom, autor izražava zahvalnost i kolegi Đorđu Lazoviću na tehničkoj pomoći, stalnoj podršci i interesovanju da ova zbirka dobije završnu formu.

Dr Josifu Vukoviću i Dr Aleksandru Obradoviću profesorima Mašinskog fakulteta u Beogradu autor je duboko zahvalan na korisnim sugestijama, savetima i trudu oko rezencije.

I pored velike pažnje pri konačnom oblikovanju ove zbirke autor je svestan da se mogu pojaviti greške, pa se unapred zahvaljujem svim korisnicima koji će ukazati na njih kao i na ostale uočene nedostatke.

Autor

Beograd, avgust, 2006 godine

11 tosapele

Sadržaj

1.	U	vod1
1.1	0	dredjivanje broja stepena slobode kretanja za slučaj kretanja krutih tela1
1.2	Oc si	dređivanje broja stepena slobode kretanja za slučaj kretanja robotskog stema
2.	0	rtogonalne transformacije koordinata5
2.1	El	ementarne matrice transformacije
2.2	M	latrice transformacije-karakteristični slučajevi7
	2.2.1	Slaganje rotacija oko: nepokretnih osa, pokretnih osa- Rezalovi uglovi 7
	2.2.2	Matrica tranformacije koordinata za slučaj sfernog kretanja krutog tela čiji položaj određuju Ojlerovi uglovi12
	2.2.3	Matrica tranformacije koordinata za slučaj sfernog kretanja krutog tela čiji položaj određuju Ojler-Krilovljevi uglovi15
	2.2.4	Izračunavanje ortogonalne matrice transformacije na osnovu tri poznata elementa
2.3	D	ualni objekti-osobine
	2.3.1	Vektorski proizvod i dualni objekat
	2.3.2	Dualni objekti i promena koordinatnog sistema
2.4	0	dređivanje kinematskih karakteristika krutog tela primenom
	05	sobina matrice transformacije i dualnog objekta
	2.4.1	Ugaona brzina u slučaju sfernog kretanja krutog tela-Rezalovi uglovi27
	2.4.2	Brzina tačke krutog tela u slučaju sfernog kretanja-Rezalovi uglovi30
	2.4.3	Ugaona brzina u slučaju sfernog kretanja krutog tela-Ojlerovi uglovi31
	2.4.4	Ugaono ubrzanje u slučaju sfernog kretanja krutog tela-Rezalovi
		uglovi
	2.4.5	Ugaono ubrzanje u slučaju sternog kretanja krutog tela-Ojlerovi uglovi 36
	2.4.6	Ugaona brzina i ugaono ubrzanie krutog tela-slučaj
		Cardano-Hooke-ovog zgloba
3	Т	eorija konačnih rotacija46
3.1	R	odrigov pristup
	3.1.1	Rodrigov obrazac
	3.1.2	Rodrigova matrica transformacije
	3.1.3	Matrica transformacije primenom Rodrigove matrice za slučaj sfernog kretanja krutog tela čiji položaj određuju Ojlerovi uglovi

3.2	"Vektor" (verzor) konačne rotacije-osobine i primena	57
3.	2.1 Vektor konačne rotacije (verzor) i Rodrigova matrica	57
3.	2.2 Sabiranje konačnih rotacija	61
3.	2.3 Određivanje vektora ugaone brzine i vektora ugaonog ubrzanja po	omoću
	vektora konačne rotacije	63
3.	2.4 Slaganje konačnih rotacija pri sfernom kretanju krutog tela	65
3.3	Hamilton-Rodrigovi parametri	69
4.	Kinematika robota	74
4.1	Modeliranje mehaničkog kretanja robotskog sistema	74
4.	1.1 Primer dekompozicije veze date u obliku kinematičkog para	
	četvrte klase: Cardano-Hooke-ov zglob	74
4.	1.2 Primer dekompozicije veze date u obliku kinematičkog para treće	klase
	-tri Ojlerova ugla	75
4.2	Kinematske karakteristike <i>i</i> – tog segmenta robotskog sistema	77
4	.2.1 Ugaona brzina <i>i</i> -tog segmenta robotskog sistema	77
4	.2.2 Brzina centra inercije <i>i</i> -tog segmenta robotskog sistema	79
4	.2.3 Brzina vrha hvataljke H robotskog sistema	81
4.	2.4 Ubrzanje centra inercije <i>i</i> -tog segmenta robotskog sistema	81
4.	2.5 Ugaono ubrzanje <i>i</i> -tog segmenta robotskog sistema	83
4.3	Direktan zadatak kinematike	92
4.4	Jakobijan transformacije	99
4.5	Inverzni zadatak kinematike	105
5.	Dinamika robota	115
5.1	Osnovni poimovi geometrije masa robotskog segmenta	115
5	1 1 Tenzor inercije $i - tog segmenta robotskog segmenta$	115
5	1.2 Tenzor inercije i njegove transformacije	116
5.	1.3 Planarni tenzor inercije Π_C <i>i</i> – segmenta	
52	Kinetički moment robotskog segmenta i njegove transformacije	120
53	Kinetička energija robotskog sistema sa tri stepena slobode	122
5.4	Metrički tenzor robotskog sistema sa tri stepena slobode	132
5.5	Kristofelovi simboli I vrste:osobine, određivanje za robotski sistem	sa tri
	stepena slobode	138
5.6	Odredivanje generalisanih sila robotskog sistema	145
5.	6.1 Generalisana sila od sila teže robotskog sistema	146
5.	6.2 Generalisana sila od sile u opruzi robotskog sistema	149

5.6.3 Generalisana sila od sile viskoznog trenja robotskog sistema	154
5.6.4 Generalisana sila od sila pogona robotskog sistema	157
5.7 Kovarijantni oblik diferencijalnih jednačina kretanja robotskog sistema	ı158
5.8 Određivanje osnovnih veličina za robotski sistem sa pet stepeni slobod	e
dat u vidu otvorenog lanca sa grananjem	164
5.9 Mehanički model robotskog sistema sa zatvorenim kinematičkim	
lancima	172
5.9.1 Metoda uklanjanja izabranog zgloba	172
5.9.2 Metod fiktivnog tela	175
5.10 Redundantni robotski sistem	178
5.10.1 Rešenje redundanse primenom optimizacije kriterijuma po	
generalisanim koordinatama	178
5.10.2 Rešenje redundanse primenom optimizacije kriterijuma po	
generalisanim brzinama	181
5.10.3 Rešenje redundanse primenom optimizacije kriterijuma po	
ubrzanjima	183
6. Primeri i rešeni ispitni zadaci	189
7. Dodaci	247
7.1 Lameovi koeficijenti	247
7.2 Osnovne teoreme sferne trigonometrije	. 252
7.3 Jakobijan matrica- analitička i geometrijska	255
7.4 Pseudoinverzija matrice	256
7.5 Homogena matrica transformacije-(<i>Denavit-Hartenbergov pristup</i>)	259
7.6 Prateći programi u MATLABU.	263
8. Literatura	272

zgloba) i na kraju jedan IV klase, (Kardanov zglob).Kinematičkom paru V klase odgovara jedan stepen slobode dok kinematičkom paru IV klase odgovara dva stepena slobode.Prema tome, uočeni robot ima *šest* stepeni slobode.

Slika 1.2

klasa kinem.	broj stepeni slobode		
para			
V	1		7d
IV	2	e d	$\theta_2 = \frac{\theta_1}{\theta_2}$
III	3	θ_1 θ_2 θ_2 θ_3	u v

Tabela 1. Primeri jednostavnijih kinematičkih parova

2. ORTOGONALNE TRANSFORMACIJE KOORDINATA

2.1 Elementarne matrice transformacije

Primer 1. Odrediti matricu transformacije koordinata iz pokretnog koordinatnog sistema $O\xi\eta\zeta$ u nepomični koordinatni sistem Oxyz [A] u slučaju da se pokretni sistem obrće oko osa Ox, Oy, Oz pri čemu su uglovi rotacije definisani $\alpha = 30^{\circ}, \beta = 45^{\circ}, \gamma = 60^{\circ}$ respektivno. Smatrati da se odgovarajuće ose pokretnog i nepokretnog koordinatnog sistema u referentnoj konfiguraciji ($\alpha = 0, \beta = 0, \gamma = 0$) pojedinačno, poklapaju (sl. 2.1).

Odredimo matricu transformacije koordinata iz pokretnog koordinatnog sistema $O\xi\eta\zeta$ u nepomični koordinatni sistem Oxyz u slučaju da se pokretni sistem obrće oko ose Ox pri čemu je ugao rotacije definisan uglom α . Takođe, uvodi se pretpostavka da se odgovarajuće ose pokretnog i nepokretnog koordinatnog sistema u referentnoj konfiguraciji ($\alpha = 0$) poklapaju (sl. 2.1 a).

Slika 2.1a Slika 2.1b Slika 2.1c Matrica transformacije je odredjena sledećim izrazom ,[1]:

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \vec{\lambda} \cdot \vec{i} & \vec{\mu} \cdot \vec{i} & \vec{v} \cdot \vec{i} \\ \vec{\lambda} \cdot \vec{j} & \vec{\mu} \cdot \vec{j} & \vec{v} \cdot \vec{j} \\ \vec{\lambda} \cdot \vec{k} & \vec{\mu} \cdot \vec{k} & \vec{v} \cdot \vec{k} \end{bmatrix}$$
(2.1)

Kako su u pitanju jedinični vektori sledi:

$$[A] = \begin{bmatrix} \cos \angle (\vec{\lambda}, \vec{i}) & \cos \angle (\vec{\mu}, \vec{i}) & \cos \angle (\vec{\nu}, \vec{i}) \\ \cos \angle (\vec{\lambda}, \vec{j}) & \cos \angle (\vec{\mu}, \vec{j}) & \cos \angle (\vec{\nu}, \vec{j}) \\ \cos \angle (\vec{\lambda}, \vec{k}) & \cos \angle (\vec{\mu}, \vec{k}) & \cos \angle (\vec{\nu}, \vec{k}) \end{bmatrix},$$
(2.2)

odnosno, za $\alpha = 30^{\circ} = \frac{\pi}{6} [rad]$:

$$\begin{bmatrix} A_{x,\alpha=30^{\circ}} \end{bmatrix} = \begin{bmatrix} \cos 0 & \cos (\pi/2) & \cos (\pi/2) \\ \cos (\pi/2) & \cos \alpha & \cos (\pi/2+\alpha) \\ \cos (\pi/2) & \cos (\pi/2-\alpha) & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}_{\alpha=\pi/6} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,8660 & -0,5 \\ 0 & 0,5 & 0,8660 \end{bmatrix}$$

Ukoliko pokretni koordinatni sistem $O\xi\eta\zeta$ rotira oko ose Oy pri čemu je ugao obrtanja definisan uglom $\beta = 45^{\circ} = \pi/4$, pod pretpostavkom da za referentnu konfiguraciju ($\beta = 0$) važe prethodno opisani uslovi (sl. 2.1b), na osnovu relacije,(2.2) dobija se:

$$\begin{bmatrix} A_{y,\beta=45^{\circ}} \end{bmatrix} = \begin{bmatrix} \cos\beta & \cos(\pi/2) & \cos(\pi/2-\beta) \\ \cos(\pi/2) & \cos0 & \cos(\pi/2) \\ \cos(\pi/2+\beta) & \cos(\pi/2) & \cos\beta \end{bmatrix} = \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix}_{|\beta=\pi/4} = \begin{bmatrix} 0,7071 & 0 & 0,7071 \\ 0 & 1 & 0 \\ -0,7071 & 0 & 0,7071 \end{bmatrix}.$$
(2.4)

I na kraju, ukoliko pokretni koordinatni sistem $O\xi\eta\zeta$ rotira oko ose Oz pri čemu je ugao obrtanja definisan uglom $\gamma = 60^{\circ}$, pod pretpostavkom da za referentnu konfiguraciju ($\gamma = 0$) važe prethodno opisani uslovi (sl. 2.1c), na osnovu relacije, dobija se:

$$\begin{bmatrix} A_{z,\gamma=60^{\circ}} \end{bmatrix} = \begin{bmatrix} \cos \gamma & \cos (\pi/2+\gamma) & \cos (\pi/2) \\ \cos (\pi/2-\gamma) & \cos \gamma & \cos (\pi/2) \\ \cos (\pi/2) & \cos (\pi/2) & \cos 0 \end{bmatrix} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0,5 & -0,8860 & 0 \\ 0,8860 & 0,5 & 0 \\ 0 & 0 & 1 \end{bmatrix}'$$
(2.5)

Matrice transformacije (2.3), (2.4) i (2.5) definišu način promene koordinata tačke krutog tela koje se obrće oko izabrane koordinatne ose nepomičnog koordinatnog sistema, pod pretpostavkom da se u referentnom položaju (ugao obrtanja jednak nuli), lokalni sistem vezan za telo i nepomični koordinatni sistem poklapaju.

(2.3)

2.2 Matrice transformacije-karakteristični slučajevi

2.2.1 a) Slaganje rotacija oko nepomičnih osa

Primer 2. Izračunati matricu transformacije [A] za slučaj da se telo [V], obrće oko odgovarajućih osa nepomičnog koordinatnog sistema Oxyz, sukcesivno. Neka se prva rotacija vrši oko ose Ox za ugao $\alpha = 30^{\circ}$, druga oko ose Oy za ugao $\beta = 45^{\circ}$ a treća oko ose Oz za ugao $\gamma = 60^{\circ}$. Uvodi se pretpostavka da se koordinatni sistemi Oxyz i O $\xi\eta\zeta$ u početnom položaju poklapaju.

Slika 2.2

Uočava se tačka *M* krutog tela [*V*] čije su koordinate u lokalnom koordinatnom sistemu $O\xi\eta\zeta$ vezanom za kruto telo $M(\xi,\eta,\zeta)$ (sl.2.2). Nakon obrtanja krutog tela [*V*] oko ose *Ox* za ugao $\alpha = 30^{\circ}$, koordinate tačke *M* u nepomičnom koordinatnom sistemu *Oxyz* biće: (2.6)

$\int x_1$		ξ	[]	0	0] [ζ		[1	0	0	[[5]	
$\begin{cases} y_1 \end{cases}$	$= A_{x,\alpha=30^{\circ}}$	η	> = () $\cos \alpha$	$-\sin \alpha$	$ $ $\{\eta$	}=	0	0,8660	-0, 5	$\left\{\eta\right\}$,
z_1		ζ	[) $\sin \alpha$	$\cos \alpha$	$ _{\alpha=30^{\circ}}$ (ζ	·J	0	0, 5	0,8660	(5)	

Nakon rotacije krutog tela oko ose Oy za ugao $\beta = 45^{\circ}$ koordinate tačke M u nepomičnom koordinatnom sistemu biće:

$$\begin{cases} x_2 \\ y_2 \\ z_2 \end{cases} = \begin{bmatrix} A_{y,\beta=45^\circ} \end{bmatrix} \begin{cases} x_1 \\ y_1 \\ z_1 \end{cases} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}_{\beta=45^\circ} \begin{cases} x_1 \\ y_1 \\ z_1 \end{cases} =$$

$$= \begin{bmatrix} 0,7071 & 0 & 0,7071 \\ 0 & 1 & 0 \\ -0,7071 & 0 & 0,7071 \end{bmatrix} \begin{cases} x_1 \\ y_1 \\ z_1 \end{cases}$$

$$(2.7)$$

())

odnosno imajući u vidu prethodna dva izraza sledi:

()

$$\begin{cases} x_2 \\ y_2 \\ z_2 \end{cases} = \begin{bmatrix} A_{y,\beta=45^\circ} \end{bmatrix} \begin{cases} x_1 \\ y_1 \\ z_1 \end{cases} = \begin{bmatrix} A_{y,\beta=45^\circ} \end{bmatrix} \begin{bmatrix} A_{x,\alpha=30^\circ} \end{bmatrix} \begin{cases} \xi \\ \eta \\ \zeta \end{bmatrix} =$$

$$= \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}_{\beta=45^\circ} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}_{\alpha=30^\circ} \begin{cases} \xi \\ \eta \\ \zeta \end{bmatrix} =$$

$$= \begin{bmatrix} 0,7071 & 0 & 0,7071 \\ 0 & 1 & 0 \\ -0,7071 & 0 & 0,7071 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,8660 & -0,5 \\ 0 & 0,5 & 0,8660 \end{bmatrix} \begin{cases} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} 0,7071 & 0,3535 & 0,6124 \\ 0 & 0,8666 & -0,5 \\ -0,7071 & 0,3535 & 0,6124 \end{bmatrix} \begin{cases} \xi \\ \eta \\ \zeta \end{bmatrix}$$

Poslednja rotacija vrši se oko ose Oz za ugao γ tako da se koordinate tačke M u nepomičnom koordinatnom sistemu mogu izračunati iz izraza:

$$\begin{cases} x \\ y \\ z \end{cases} = \begin{bmatrix} A_{z,\gamma=60^{\circ}} \end{bmatrix} \begin{cases} x_2 \\ y_2 \\ z_2 \end{cases} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}_{\gamma=60^{\circ}} \begin{cases} x_2 \\ y_2 \\ z_2 \end{cases} = \begin{bmatrix} 0,5 & -0,8660 & 0 \\ 0,8660 & 0,5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{cases} x_2 \\ y_2 \\ z_2 \end{cases}$$

$$(2.9)$$

Kombinovanjem jednačina (2.6), (2.8) i (2.10) dobija se: (...) (e)

$$\begin{cases} x \\ y \\ z \end{cases} = [A_{z,\gamma}][A_{y,\beta}][A_{x,\alpha}] \begin{cases} \zeta \\ \eta \\ \zeta \end{cases}.$$
(2.10)

Na osnovu relacije (2.21), može se odrediti matrica transformacije:

$$[A] = [A_{z,\gamma}][A_{\gamma,\beta}][A_{x,\alpha}].$$
(2.11)

Zamenom odgovarajućih matrica transformacija (2.16), (2.18) i (2.20) u (2.12) dobija se:

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix},$$
(2.12)

Izraz za matricu transformacije je moguće prikazati i u kondezovanom obliku:

$$[A] = \begin{bmatrix} c\beta c\gamma & -c\beta s\gamma & s\beta \\ s\alpha s\beta c\gamma + c\alpha s\gamma & c\alpha c\gamma - s\alpha s\beta s\gamma & -s\alpha c\beta \\ -c\alpha s\beta c\gamma + s\alpha s\gamma & s\alpha c\gamma + c\alpha s\beta s\gamma & c\alpha c\beta \end{bmatrix},$$
(2.24)

pri čemu su, radi kraćeg zapisa, sinusna i kosinusna funkcija označene slovima c i s. Poređenjem izraza (2.23) i (2.13) može se uočiti da se matrica transformacije u slučaju slaganja rotacija oko nepomičnih osa dobija množenjem istih matrica kao i matrica transformacije za slučaj slaganja rotacija oko odgovarajućih pokretnih osa, ali obrnutim redosledom. S obzirom da je matrično množenje nekomutativno, i matrice transformacije (2.24) i (2.14) se razlikuju.

2.2.2 Matrica transformacije koordinata za slučaj sfernog kretanja krutog tela čiji položaj određuju Ojlerovi uglovi

Primer 4. Izračunati matricu transformacije [A] za slučaj da se telo [V], obrće oko odgovarajućih osa pokretnog koordinatnog sistema $O\xi\eta\zeta$, sukcesivno. Neka se prva rotacija vrši oko ose Oz za ugao $\psi = 30^\circ$, druga oko čvorne ose On za ugao $\theta = 45^\circ$ a treća oko ose O ζ za ugao $\varphi = 60^\circ$. Uvodi se pretpostavka da se koordinatni sistemi Oxyz i $O\xi\eta\zeta$ u početnom položaju poklapaju.

Slika 2.4

Neka kruto telo [V] vrši sferno kretanje u odnosu na tačku O koja predstavlja koordinatni početak Dekartovog koordinatnog sistema $O\xi\eta\zeta$ vezanog za kruto telo. U referentnoj konfiguraciji naznačenoj indeksom (0) opisani koordinatni sistem poklapa sa nepokretnim koordinatnim sistemom Oxyz (sl. 2.4). Uzimajući da je proizvoljna konfiguracija razmatranog krutog tela određena Ojlerovim uglovima (ψ, θ, φ), odrediće se zakon transformacije Dekartovih koordinata proizvoljne tačke M krutog tela za svaku od konačnih rotacija [V] koje odgovaraju Ojlerovim uglovima. Očigledno je da nakon rotacije za ugao precesije ψ koordinatni sistem $O\xi\eta\zeta$ iz referentnog položaja $O\xi_{(0)}\eta_{(0)}\zeta_{(0)}$ prelazi u položaj $O\xi''\eta''\zeta''$ (sl. 2.4). Imajući u vidu da je:

$$O\xi_{(0)}\eta_{(0)}\zeta_{(0)} \equiv Oxyz$$
 (2.25)

dolazi se do sledećeg zakona ortogonalne transformacije koordinata:

$$\begin{cases} x \\ y \\ z \end{cases} = [A_{\psi}] \begin{cases} \xi'' \\ \eta'' \\ \zeta'' \end{cases},$$
(2.26)

gde su: x,y,z - Dekartove koordinate tačke M u odnosu na koordinatni sistem Oxyz; ζ'', η'', ζ'' - Dekartove koordinate tačke u odnosu na koordinatni sistem $O\zeta'' \eta'' \zeta''$; Matrica transformacije $[A_{\mu\nu}]$ je na osnovu (2.5) odredjena:

$$\begin{bmatrix} A_{\psi} \end{bmatrix} = \begin{bmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{bmatrix}_{\psi=30^{\circ}} = \begin{bmatrix} 0,8660 & -0,5 & 0\\ 0,5 & 0,8660 & 0\\ 0 & 0 & 1 \end{bmatrix},$$
 (2.27)

Nakon rotacije za ugao nutacije θ koordinatni sistem prelazi iz položaja $O\xi'' \eta' \zeta''$ u položaj $O\xi' \eta' \zeta'$. Ova konačna rotacija za referentnu konfiguraciju očigledno ima koordinatni sistem $O\xi'' \eta'' \zeta''$. Slično,matrica transformacije $[A_{\theta}]$ je na osnovu izaraza (2.3) odredjena :

$$\begin{bmatrix} A_{\theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}_{|\theta=45^{\circ}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,7071 & -0,7071 \\ 0 & 0,7071 & 0,7071 \end{bmatrix}.$$
 (2.28)

Pri tome su koordinate tačke *M* krutog tela u koordinatnim sistemima $O\xi''\eta''\zeta''$ i $O\xi'\eta'\zeta'$ vezane relacijom:

$$\begin{cases} \boldsymbol{\xi}''\\ \boldsymbol{\eta}''\\ \boldsymbol{\zeta}'' \end{cases} = [\boldsymbol{A}_{\theta}] \begin{cases} \boldsymbol{\xi}'\\ \boldsymbol{\eta}'\\ \boldsymbol{\zeta}' \end{cases}.$$
(2.29)

2.4 Odredjivanje kinematskih karakteristika krutog tela primenom osobina matrice transformacije i dualnog objekta

2.4.1 Ugaona brzina u slučaju sfernog kretanja krutog tela-Rezalovi uglovi

Primer 13. Izračunati ugaonu brzinu $\vec{\omega}$ tela u trenutku $t = 1 \sec u$ slučaju da se telo [V], obrće oko nepokretne tačke O. Konačne jednačine kretanja tela su poznate $\alpha(t) = \pi t/2$, $\beta(t) = \pi t^2/4$, $\gamma(t) = \pi t^3/3$. U početnom položaju telo je bilo u referetnoj konfiguraciji.

Neka je sa $\left[\omega^{d}\right]$ označen dualni objekat vektora ugaone brzine čije koordinate $\omega_{x}\omega_{y},\omega_{z}$ predstavljaju projekcije vektora $\vec{\omega}$ na ose nepokretnog koordinatnog sistema *Oxyz*:

$$\begin{bmatrix} \omega^d \end{bmatrix} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}.$$
 (2.92)

Na osnovu Ojlerovog obrasca brzina uočene tačke krutog tela $\vec{v} = \vec{\omega} \times \vec{r}$,[3] gde je sa $\vec{\omega}$ označena trenutna ugaona brzina, a sa \vec{r} vektor položaja uočene tačke M, može se na osnovu osobina dualnog objekta izraz za brzinu prikazati kao:

$$\{\vec{v}\} = \left[\omega^d\right]\{\vec{r}\},\qquad(2.93)$$

odnosno:

$$\begin{cases} v_x \\ v_y \\ v_z \end{cases} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$
 (2.94)

Kako je:

$$\begin{cases} x \\ y \\ z \end{cases} = \begin{bmatrix} A \end{bmatrix} \begin{cases} \xi \\ \eta \\ \zeta \end{bmatrix},$$
 (2.95)

zamenom u prethodni izraz:

$$\begin{cases} v_x \\ v_y \\ v_z \end{cases} = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{cases} \xi \\ \eta \\ \zeta \end{bmatrix}.$$
 (2.96)

S druge strane ako izraz (2.95) diferenciramo po vremenu proizilazi:

$$\omega = \sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2} = \sqrt{(1,2071\pi)^2 + (-0,707\pi)^2 + (0,5\pi)^2} = 4,6650 \quad s^{-1}.(2.112)$$

Projekcije vektora ugaone brzine krutog tela na ose lokalnog koordinatnog sistema $O\xi\eta\zeta$ mogu se odrediti bilo korišćenjem relacije (2.107), množenjem transponovane matrice transformacije (2.24) i matrice (2.108), bilo primenom relacije (2.106). Na oba načina dobija se istovetan rezultat:

$$\begin{split} \omega_{\xi} &= \dot{\alpha}\cos\beta\cos\gamma + \dot{\beta}\sin\gamma, \\ \omega_{\eta} &= -\dot{\alpha}\cos\beta\sin\gamma + \dot{\beta}\cos\gamma, \\ \omega_{\zeta} &= \dot{\gamma} + \dot{\alpha}\sin\beta. \end{split}$$
(2.113)

tj.

$$\omega_{\xi}(1) = (\pi/2)\cos(\pi/4)\cos(\pi/3) + (\pi/2)\sin(\pi/3) = 0,60984\pi,$$

$$\omega_{\eta}(1) = -(\pi/2)\cos(\pi/4)\sin(\pi/3) + (\pi/2)\cos(\pi/3) = -0,0562\pi,$$

$$\omega_{\zeta}(1) = \pi + (\pi/2)\sin(\pi/4) = 1,3536\pi.$$
(2.114)

Slično kao i u prethodnom slučaju, dobija se da je intezitet vektora ugaone brzine krutog tela: (2.115)

$$\omega = \sqrt{\omega_{\xi}^{2} + \omega_{\eta}^{2} + \omega_{\zeta}^{2}} = \sqrt{\left(0,6098\pi\right)^{2} + \left(-0,0562\pi\right)^{2} + \left(1,3536\pi\right)^{2}} = 4,6650 \quad s^{-1}$$

2.4.2 Brzina uočene tačke krutog tela u slučaju sfernog kretanja -Rezalovi uglovi

Primer 14. Izračunati brzinu \vec{v} u odnosu na Oxyz tačke $M_{Oxyz}(1,0,2)$ krutog tela [V]u trenutku $t = 1 \sec$. Telo se obrće oko nepokretne tačke O gde su konačne jednačine kretanja poznate $\alpha(t) = \pi t/2$, $\beta(t) = \pi t^2/4$, $\gamma(t) = \pi t^3/3$. Smatrati da se koordinatni sistemi Oxyz i $O\xi\eta\zeta$ u početnom položaju poklapaju.

Ojlerov obrasac za brzinu uočene tačke M krutog tela, glasi:

$$\left\{\vec{v}\right\} = \left[\omega^d \left\{\vec{r}\right\}, \tag{2.116}\right]$$

Slično, i ovde je sa $\left[\omega^{d}\right]$ označen dualni objekat vektora ugaone brzine čije koordinate $\omega_{x}\omega_{y}, \omega_{z}$ predstavljaju projekcije vektora $\vec{\omega}$ na ose nepokretnog koordinatnog sistema *Oxyz*.Prema tome:

```
[\sin(1.5708*t)*\sin(.78540*t^2)*(6.2832*t*\sin(1.5708*t)*\sin(.78540*t^2)+4.934)
9*t^3*\cos(.78540*t^2)*\sin(1.5708*t)+4.9349*t^2*\sin(.78540*t^2)*\cos(1.5708*t)+1.5708*\cos(1.5708*t)-2.4674*t*\sin(1.5708*t))-
1.*\cos(1.5708*t)*\sin(.78540*t^2)*(-6.2832*t*\cos(1.5708*t)*\sin(.78540*t^2)-4.9349*t^3*\cos(.78540*t^2)*\cos(1.5708*t)+4.9349*t^2*\sin(.78540*t^2))-
4.9349*t^3*\cos(.78540*t^2)*\cos(1.5708*t)+4.9349*t^2*\sin(.78540*t^2))-
6.2832*t*\cos(.78540*t^2)-4.9349*t^3*\sin(.78540*t^2))]
epsilonxyz = 5.4650 \quad 5.0603 \quad 0.9534
epsilonksiec = -0.2326 \quad -5.9774 \quad 4.5385
epsilonksiec = 7.5088
```

2.4.6 Ugaona brzina i ugaono ubrzanje krutog tela - slučaj Cardano-Hookeovog zgloba

Neka je proizvoljna konfiguracija razmatranog krutog tela određena uglovima (α, β) ,(sl. 2.7). Pri tome potrebno je odrediti se zakon transformacije Dekartovih koordinata proizvoljne tačke *M* krutog tela za svaku od konačnih rotacija koje odgovaraju datim uglovima. Nakon rotacije za ugao α koordinatni sistem $O\xi\eta\zeta$ iz referentnog položaja $O\xi_{(0)}\eta_{(0)}\zeta_{(0)} \equiv Oxyz$ prelazi u položaj $O\xi'\eta'\zeta'$, (sl. 2.7). Nakon rotacije za ugao β koordinatni sistem prelazi iz položaja $O\xi'\eta'\zeta'$ u položaj $O\xi\eta\zeta$. Pri tome su ortogonalne transformacije koordinata u ovom slučaju date:

$$\begin{cases} x \\ y \\ z \end{cases} = \begin{bmatrix} A_z \end{bmatrix} \begin{cases} \xi' \\ \eta' \\ \varsigma' \end{cases}, \quad \begin{cases} \xi' \\ \eta' \\ \varsigma' \end{cases} = \begin{bmatrix} A_{\xi'} \end{bmatrix} \begin{cases} \xi \\ \eta \\ \varsigma \end{cases}, \quad \rightarrow \begin{cases} x \\ y \\ z \end{cases} = \begin{bmatrix} A_z \end{bmatrix} \begin{bmatrix} A_{\xi'} \end{bmatrix} \begin{cases} \xi \\ \eta \\ \varsigma \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{cases} \xi \\ \eta \\ \varsigma \end{bmatrix}.$$
(2.166)

gde su odgovarajuće matrice transformacije:

$$\begin{bmatrix} A_{\xi'} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\beta & -\sin\beta \\ 0 & \sin\beta & \cos\beta \end{bmatrix}, \qquad \begin{bmatrix} A_z \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 (2.167)

odnosno:

$$[A] = \begin{bmatrix} \cos \alpha & -\cos \beta \sin \alpha & \sin \alpha \sin \beta \\ \sin \alpha & \cos \beta & -\cos \alpha \sin \beta \\ 0 & \sin \beta & \cos \beta \end{bmatrix},$$
(2.168)

Pri tome je:

(2.169)

$$\frac{d[A]}{dt} = \begin{bmatrix} \dot{a}_{11} & \dot{a}_{12} & \dot{a}_{13} \\ \dot{a}_{21} & \dot{a}_{22} & \dot{a}_{23} \\ \dot{a}_{31} & \dot{a}_{32} & \dot{a}_{33} \end{bmatrix} = \\ = \begin{bmatrix} -\dot{\alpha}\sin\alpha & -\dot{\alpha}\cos\beta\cos\alpha + \dot{\beta}\sin\alpha\sin\beta & \dot{\alpha}\sin\beta\cos\alpha + \dot{\beta}\sin\alpha\cos\beta \\ \dot{\alpha}\cos\alpha & -\dot{\alpha}\cos\beta\sin\alpha + \dot{\beta}\cos\alpha\sin\beta & \dot{\alpha}\sin\beta\sin\alpha - \dot{\beta}\cos\alpha\cos\beta \\ 0 & \dot{\beta}\cos\beta & -\dot{\beta}\sin\beta \end{bmatrix}$$

Sada je moguće na osnovu izraza da se odrede projekcije vektora ugaone brzine na ose pokretnog sistema:

$$\begin{split} \omega_{\xi} &= a_{13}\dot{a}_{12} + a_{23}\dot{a}_{22} + a_{33}\dot{a}_{32} = \beta, \\ \omega_{\eta} &= a_{11}\dot{a}_{13} + a_{21}\dot{a}_{23} + a_{31}a_{33} = \dot{\alpha}\sin\beta, \\ \omega_{\zeta} &= a_{12}\dot{a}_{11} + a_{22}\dot{a}_{21} + a_{32}\dot{a}_{31} = \dot{\alpha}\cos\beta. \end{split}$$
(2.170)

i na ose nepokretnog sistema:

$$\begin{cases} \omega_x \\ \omega_y \\ \omega_z \end{cases} = \begin{bmatrix} A \end{bmatrix} \begin{cases} \omega_z \\ \omega_\eta \\ \omega_\zeta \end{cases} = \begin{cases} \dot{\beta} \cos \alpha \\ \dot{\beta} \sin \alpha \\ \dot{\alpha} \end{cases}, \qquad (2.171)$$

Imajući u vidu sliku vektor ugaone brzine je:

$$\vec{v} = \dot{\alpha}\vec{k} + \dot{\beta}\vec{\lambda}, \tag{2.172}$$

Projekcije ugaonog ubrzanja krutog tela na ose koordinatnih sistema Oxyz i $O\xi\eta\zeta$ mogu se odrediti direktnim diferenciranjem projekcija (2.110) i (2.113). Na taj

način dobija se:

Slika 2.7

Primer 18. Određivanje kinematičkih karakteristika konusne drobilice*

Konusne drobilice su projektovane za mlevenje srednjih i velikih tvrdih stena različite krupnoće.Kretanje pokretnog konusa jeste složeno kretanje koje sačinjavaju prenosno kretanje tj. rotacija pokretnog konusa oko ose drobilice i relativnog kretanja koje predstavlja rotaciju pokretnog konusa oko sopstvene ose simetrije (vidi sl.2.8). Ugao između ovih osa je konstantan $\gamma = const$. Kinematička analiza pokretnog konusa je opšteg karaktera zato što kretanje pokretnog konusa ne zavisi od tipa i konstruktivnog rešenja konusne drobilice.Kretanje pokretnog konusa razmatraće se kao sferno kretanje krutog tela oko nepomične tačke. Nepomična tačka se dobija kao tačka preseka ose simetrije Oz i njegove prave ose rotacije $O\zeta$. Položaj pokretnog konusa je određen položajem pokretnog koordinatnog sistema $O\xi\eta\zeta$ koji je vezan za pokretni konus, i njegov položaj u odnosu na nepokretni koordinatni sistem je određen Ojlerovim uglovima ψ, θ, φ . Ovde je ugao između ravni Oxy i $O\xi\eta$ konstantan $\gamma = const$. Takođe, ako se zanemari uticaj mrtvog hoda može se uzeti u obzir da je ugao nutacije $\theta = \gamma = const$.

Ugaona brzina pokretnog konusa određena je sledećim izrazom:

$$\vec{\omega} = \dot{\psi}\vec{k} + \dot{\theta}\vec{n} - \dot{\phi}\vec{v} \qquad (2.174)$$

Znak minus je posledica činjenice da je treća rotacija ostvarena u negativnom matematičkom smeru za ugao sopstvene rotacije φ (sl.2.8). Ovde $\dot{\psi} = \omega_1 = const$ predstavlja predloženu ugaonu brzinu konusne drobilice ostvarenu koničnim zupčanicima (stacionarni radni režim), i gde je $\dot{\theta} = 0$, $\dot{\phi} = \omega_2$ odgovarajuća ugaona brzina konusa oko ose simetrije.

Slika 2.8

^{*} u cilju ilustracije mogućnosti primene matrica transformacije a koja izlazi van okvira date zbirke predstavljen je ovaj primer, vidi (Bošnjak,Glišić 2002),[5]

Slika2.9

Na osnovu izraza (2.130) sledi:

$$\begin{cases} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{cases} = \begin{bmatrix} A \end{bmatrix}_{\omega o j l} \begin{cases} \dot{\psi} \\ \dot{\theta} \\ -\dot{\phi} \end{cases} = \begin{bmatrix} 0 & \cos \psi & \sin \theta \sin \psi \\ 0 & \sin \psi & -\sin \theta \cos \psi \\ 1 & 0 & \cos \theta \end{bmatrix} \begin{cases} \dot{\psi} \\ 0 \\ -\dot{\phi} \end{cases}$$
(2.175)

odnosno:

$$\begin{cases} \omega_x \\ \omega_y \\ \omega_z \end{cases} = \begin{bmatrix} 0 & \cos\psi & \sin\gamma\sin\psi \\ 0 & \sin\psi & -\sin\gamma\cos\psi \\ 1 & 0 & \cos\gamma \end{bmatrix} \begin{bmatrix} \omega_1 \\ 0 \\ -\omega_2 \end{bmatrix}$$
(2.176)

U odnosu na pokretni koordinatni sistem, na osnovu izraza (2.133) dobija se

$$\begin{cases} \omega_{\xi} \\ \omega_{\eta} \\ \omega_{\zeta} \end{cases} = \begin{bmatrix} B \end{bmatrix}_{\omega o j l} \begin{cases} \dot{\psi} \\ \dot{\theta} \\ -\dot{\phi} \end{cases} = \begin{bmatrix} -\sin\theta\sin\varphi & \cos\varphi & 0 \\ \sin\theta\cos\varphi & \sin\varphi & 0 \\ \cos\theta & 0 & 1 \end{bmatrix} \begin{cases} \dot{\psi} \\ 0 \\ -\dot{\phi} \end{cases}$$
(2.177)

tj.

$$\begin{cases} \omega_{\xi} \\ \omega_{\eta} \\ \omega_{\zeta} \end{cases} = \begin{bmatrix} -\sin\gamma\sin\varphi & \cos\varphi & 0 \\ \sin\gamma\cos\varphi & \sin\varphi & 0 \\ \cos\gamma & 0 & 1 \end{bmatrix} \begin{cases} \omega_{1} \\ 0 \\ \omega_{2} \end{cases}$$
 (2.178)

Prema tome, kruto telo [V] obrće se oko nepomične tačke O tako što vrši jednu konačnu rotaciju oko ose $O\tau$ orijentisane jediničnim vektorom \vec{e} za ugao φ . Pri tome proizvoljna tačka M krutog tela prelazi iz početnog položaja M_0 u krajnji položaj M_1 (sl. 3.1). Vektori položaja početnog i krajnjeg položaja tačke M su:

$$\vec{r}_0 = O\vec{M}_0, \ \vec{r}_1 = O\vec{M}_1.$$
 (3.1)

Očigledno je da će se početni i krajnji položaj tačke M nalaziti na krugu [l] koji leži u ravni upravnoj na osu konačne rotacije $O\tau$. Poluprečnik ovog kruga h određen je rastojanjem tačke M u početnom položaju M_0 od ose $O\tau$. Uvode se tri međusobno ortogonalna jedinična vektora $\vec{s}, \vec{p}, \vec{e}$ na sledeći način:

$$\vec{p} = \frac{\vec{e} \times \vec{r}_0}{\left|\vec{e} \times \vec{r}_0\right|}, \quad \vec{s} = \vec{p} \times \vec{e} = -\frac{\vec{e} \times (\vec{e} \times \vec{r}_0)}{\left|\vec{e} \times \vec{r}_0\right|}.$$
(3.2)

Pošto je:

$$\vec{r}_1 = \vec{r}_0 + \overline{M_0 M_1}, \quad \overline{M_0 M_1} = (\overline{CM_1} \cos \varphi - \overline{CM_0})\vec{s} + (\overline{CM_1} \sin \varphi)\vec{p}$$
(3.3)

kako je:

$$\overline{CM_0} = \overline{CM_1} = \left| \vec{e} \times \vec{r}_0 \right|, \tag{3.4}$$

sledi da je:

$$\vec{r}_{1} = \vec{r}_{0} - |\vec{e} \times \vec{r}_{0}| (1 - \cos \varphi) \vec{s} + |\vec{e} \times \vec{r}_{0}| (\sin \varphi) \vec{p} , \qquad (3.5)$$

odnosno, s obzirom na (3.2):

$$\vec{r}_1 = \vec{r}_0 + (1 - \cos\varphi)\vec{e} \times (\vec{e} \times \vec{r}_0) + (\sin\varphi)\vec{e} \times \vec{r}_0.$$
(3.6)

Prethodno izvedeni izraz predstavlja *Rodrigov obrazac* koji uspostavlja vezu između vektora položaja tačke M u početnom i krajnjem položaju.

Primer 2. Poznat je vektor $\vec{p} = (1 \ 0 \ 2)^T$. Odrediti vektor \vec{p}_1 koji se dobija rotacijom vektora \vec{p} oko ose koja je određena jediničnim vektorom $\vec{e} = (1/\sqrt{3} \ -1/\sqrt{3} \ 1/\sqrt{3})^T$, za ugao $\varphi = 60^\circ$.

Slika 3.2 Na osnovu Rodrigovog obrasca ima se:

$$\vec{p}_1 = \vec{p} + (1 - \cos\varphi)\vec{e} \times (\vec{e} \times \vec{p}) + (\sin\varphi)\vec{e} \times \vec{p}$$
(3.7)

gde su:

$$\vec{e} \times \vec{p} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \\ 1 & 0 & 2 \end{vmatrix} = \frac{1}{\sqrt{3}} \left(-2\vec{i} - \vec{j} + \vec{k} \right),$$
(3.8)

$$\vec{e} \times (\vec{e} \times \vec{p}) = \begin{vmatrix} i & j & k \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \\ -2/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{vmatrix} = -\vec{j} - \vec{k}$$
(3.9)

$$\vec{p}_1 = \vec{i} + 2\vec{k} + (1 - \cos(\pi/3))(-\vec{j} - \vec{k}) + \sin(\pi/3)\left(\frac{1}{\sqrt{3}}(-2\vec{i} - \vec{j} + \vec{k})\right) = -\vec{j} + 2\vec{k} = (0 - 1 2)^T$$
(3.10)

korišćenjem programa M.6 ,dodatak D.6 ,dobija se:

>> rodrigobrazacvektor
unesi vrednost ugla fi=pi/3
unesi vrednosti za vektor e=[1/1.73,-1/1.73,1/1.73]
unesi vrednosti za vektor r=[1,0,2]
rnovo = 0 -1 2

3.1.2. Rodrigova matrica transformacije

Primer 3. Izvesti izraz za Rodrigov obrazac u matričnom obliku.

Neka su Dekartove koordinate tačke M u njenom početnom i krajnjem položaju:

$$\left\{\vec{r}_{0}\right\} = \begin{cases} x_{0} \\ y_{0} \\ z_{0} \end{cases}, \quad \left\{\vec{r}_{1}\right\} = \begin{cases} x \\ y \\ z \end{cases}.$$
(3.11)

Relacija (3.11) može se napisati u obliku:

$$\{\vec{r}_1\} = [A_r]\{\vec{r}_0\},$$
 (3.12)

Na osnovu osobina dualnog objekta vektorski proizvodi su odredjeni sa:

$$\{\vec{e} \times \vec{r}_0\} = \left[e^d\right]\!\!\{\vec{r}_0\}, \quad \vec{e} \times (\vec{e} \times \vec{r}) = \left[e^d\right]^2 \{\vec{r}_0\}$$
(3.13)

gde posle zamene u Rodrigov obrazac (3.6) dobija:

$$[A_r] = [I] + (1 - \cos \varphi) [e^d]^2 + (\sin \varphi) [e^d], \qquad (3.14)$$

odnosno konačno tzv. Rodrigova matrica.

Primer 4. Poznat je vektor $\vec{p} = \begin{pmatrix} 1 & 0 & 2 \end{pmatrix}^T$. Odrediti vektor \vec{p}_1 koji se dobija rotacijom vektora \vec{p} oko ose koja je određena jediničnim vektorom $\vec{e} = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}^T$, za ugao $\varphi = 60^\circ$ primenom Rodrigovog obrasca u matričnom obliku.

Vektor \vec{p}_1 se može odrediti na osnovu izraza :

$$\{\vec{p}_1\} = [A_r]\{\vec{p}_0\} = ([I] + (1 - \cos \varphi)[e^d]^2 + (\sin \varphi)[e^d])\{\vec{p}_0\},$$
(3.15)

Pri tome je:

$$\begin{bmatrix} e^{d} \end{bmatrix} = \begin{bmatrix} 0 & -e_{z} & e_{y} \\ e_{z} & 0 & -e_{x} \\ -e_{y} & e_{x} & 0 \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix},$$
(3.16)

$$\left[e^{d}\right]^{2} = \left[e^{d}\right]e^{d} = \frac{1}{3}\begin{bmatrix}-2 & -1 & 1\\ -1 & -2 & -1\\ 1 & -1 & -2\end{bmatrix},$$
(3.17)

Zamenom u izraz (3.15) dobija se:

4. KINEMATIKA ROBOTA

4.1 Modeliranje mehaničkog kretanja robotskog sistema

U jednostavnijim slučajevima mehaničko kretanje robotskog sistema može se modelirati kao kretanje otvorenog kinematičkog lanca bez grananja pri čemu su veze između segmenata kinematičkog lanca date u vidu kinematičkih parova pete klase. Ako se u robotskom sistemu koji je dat u obliku kinematičkog lanca pojave kinematički parovi (druge, treće ili četvrte klase), onda je moguće izvršiti dekompoziciju takvih parova na niz parova pete klase. To je ostvareno uvođenjem tzv. *fiktivnih tela* – tela proizvoljne dimenzije, sa masama jednakih nuli i proizvoljno izabranim fiktivnim centrima inercije ([1],[2],[7]).

4.1.1 Primer dekompozicije veze date u obliku kinematičkog para četvrte klase: Cardano-Hooke-ov zglob

Kod nekih robotskih sistema veze između susednih segmenata su data u vidu kinematičkih parova četvrte ili treće klase koje omogućavaju dva ili tri nezavisna pomeranja u tom zglobu respektivno. Takav primer je i Cardano-Hook-ov zglob koji se koristi za prenošenje obrtanja oko osa koje se seku (slika 4.1). On se sastoji od dva rotaciona zgloba čije se ose seku pod pravim uglom, gde svaki zglob može pojedinačno da se pomera u jednoj ravni. Lako je uočiti da je to kinematički par četvrte klase. Dekompoziciju takvog para moguće je realizovati uvođenjem jednog fiktivnog tela (m = 0) koji zamenjuje sada Kardanov krst (slika 4.2) čime se realizuje dekompozicija Kardan-Hukovog zgloba na dva rotaciona zgloba kojima su segmenti $[V_{i+1}]$ i $[V_{i+1}]$ povezani i to tako da se ose zglobova seku pod pravim uglom kao i $\overline{O_{if}O_{i+1f}} = \vec{0}$.

Slika 4.1

4.1.2 Primer dekompozicije veze date u obliku kinematičkog para treće klase -tri Ojlerova ugla

Relativno kretanje segmenta $[V_i]$ mase m_i u odnosu na robotski segment $[V_{i-1}]$ a za koji je istovremeno i vezan pomoću kinematičkog para treće klase moguće je predstaviti kretanjem otvorenog kinematičkog lanca bez grananja koji se sastoji od četiri segmenta. Segmenti i_{f1} , i_{f2} predstavljaju *fiktivna tela* $m_2 = 0$, $m_3 = 0$ dok je masa prvog segmenta jednaka masi realnog tela $[V_{i-1}]$, $m_1 = m_{i-1}$ odnosno masa četvrtog segmenta jednaka je masi realnog tela $[V_i]$, $m_4 = m_i$. Pri tome, su veze između susednih segmenata dati u vidu cinlindričnih zglobova. Ako se uzme da je prvi segment - nepokretno postolje tj. posmatraće se osnovni slučaj [7]:

Položaj tela $[V_1]$ određuju Ojlerovi uglovi tako da su nezavisne koordinate izabrane na sledeći način, sl.4.3a: $q^1 = \varphi$, $q^2 = \psi$, $q^3 = \theta$,

Izbor karakterističnih tačaka je realizovan na sledeći način, sl. 4.3. b: $O \equiv O_{i(i=1,2,3)} \equiv C_2 \equiv C_3$. Mase tela, karakteristični vektori i tenzori inercije tela* za ovaj slučaj predstavljeni su tabelarno:

Telo i	ξ_i	$\overline{\xi}_i$	\vec{e}_i	$\vec{ ho}_{ii}$	$\vec{ ho}_i$	m _i	$\begin{bmatrix} J_{Ci} \end{bmatrix}$
[1]	0	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^T$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^T$	0	[0]
[2]	0	1	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^T$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^T$	0	[0]
[3]	0	1	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T$	$\{\vec{ ho}_{33}\}$	$\{\vec{\rho}_3\}$	т	$\begin{bmatrix} J_{C3} \end{bmatrix}$

Tabela 4.1

^{*} videti poglavlje o tenzoru inercije tela

4.3 Direktan zadatak kinematike

Primer 7. Robotski sistem je dat u obliku otvorenog lanca bez grananja sa kinematičkim parovima V klase i ima n stepeni slobode gde vrh robotskog sistema (hvataljka) ima m stepeni slobode. Postavljeni zadatak ima m_z stepeni slobode. Odrediti kinematičku redundantnost sistema u sledećim slučajevima:

a) n = 7, m = 5

- b) n = 6, m = 4
- c) n = 5, m = 5, jedan singularan položaj robota
- d) $n = 6, m = 6, m_z = 3$
- e) $n = 5, m = 5, m_z = 5$

Generalisane koordinate koje jednoznačno definišu položaj datog robotskog sistema $(q^1, q^2, ..., q^n)$ nazivaju se i *unutrašnje koordinate*. Koordinate koje jednoznačno definišu poziciju i orijentaciju hvataljke u prostoru u odnosu na nepokretni koordinatni system *Oxyz* jesu *spoljašnje koordinate*. Za opšti položaj hvataljke u prostoru potrebno je definisati najviše *šest* nezavisnih parametara i to: *tri* za poziciju (x_H, y_H, z_H) i *tri* za orijentaciju –Ojlerovi uglovi (θ, φ, ψ) . Prema tome, ako je n > 6 bez obzira na m, ili n > m robotski sistem je redundantan,[8]. Takođe, čak i ako je robotski sistem "neredundantan" n = m a $m > m_z$ onda je dati sistem redundantan u odnosu na postavljeni zadatak. Tako je,[9]:

- a) U prvom slučaju n = 7 > 6 > m = 5 sistem je *redundantan*
- b) U drugom slučaju n = 6 > m = 4 sistem je *redundantan*
- c) U trećem slučaju u singularnom položaju hvataljka "gubi" jedan stepen slobode pa je n = 5 > m = 4 sistem je *redundantan*
- d) U četvrtom slučaju $n = m = 6 > m_z = 3$ sistem je *redundantan* u odnosu na postavljeni zadatak
- e) U petom slučaju $n = m = m_z = 5$, sistem je *neredundantan*.

Primer 8. Formulisati direktan kinematički zadatak u mehanici neredundantnih robota.

Neka je moguće postaviti relaciju koja daje vezu između unutrašnjih i spoljašnjnih koordinata (n = m) kao:

$$\overline{q}^{\alpha} = \overline{q}^{\alpha} \left(q^1, q^2, \dots, q^n \right), \ \alpha = 1, 2, \dots m = n$$

$$(4.89)$$

Postavljeni zadatak predstavlja *direktni kinematički zadatak* koji je moguće uvek rešiti. Razlikuje se bazni i opšti slučaj u slučaju spoljašnjih koordinata.

Opšti slučaj: položaj završnog segmenta određen je polom H koji je proizvoljan a orijentacija sa tri nezavisna ugla.

$$\begin{vmatrix} \overline{q}^{1} \\ \overline{q}^{2} \\ \overline{q}^{3} \end{vmatrix} = \begin{cases} x_{H} \\ y_{H} \\ z_{H} \end{vmatrix} = \begin{cases} -0, 3 \\ 1, 44 \\ 1, 42 \end{cases} .$$
(4.155)

Pri rešavanju direktnog kinematičkog problema smo dobili da je, izraz (4.118):

$$\begin{cases} x_H \\ y_H \\ z_H \end{cases} = \begin{cases} -(1+q^3)\sin q^1\cos q^2 \\ (1+q^3)\cos q^1\cos q^2 \\ 0.8+(1+q^3)\sin q^2 \end{cases} .$$
(4.156)

Dati robot je veoma jednostavne strukture i kod njega se inverzni kinematički problem može rešiti čak i analitički, ali to ne važi u opštem slučaju, pa je potrebno postavljeni zadatak rešiti numerički. Jedna od metoda koja se ovde primenjuje jeste i Njutn-Raphsonova metoda- (metoda tangente) koji ima kvadratnu konvergenciju. Ako se konstruiše u tački x_i, y_i tangenta krive y = f(x), jednačina ove tangente je:

$$y - y_i = f'(x_i)(x - x_i).$$
(4.157)

Ako sa y° označimo željenu vrednost y, onda vrednost apscise preseka ove tangente sa pravom $y = y^{\circ}$ se može označiti sa x_{i+1} . Tada je

$$x_{i+1} = x_i - [f'(x_i)]^{-1} (y_i - y^\circ).$$
(4.158)

Izračunavanje se sprovodi dok se ne ostvari sledeća nejednakost, tj. greška

$$|x_{i+1} - x_i| \le \varepsilon . \tag{4.159}$$

gde je ε unapred zadata dozvoljena vrednost greške.

(1)

U slučaju robota izraz (4.158) poprima sledeći oblik:

$$\{q_{i+1}\} = \{q_i\} - [J]_i^{-1} \left(\left\{\overline{q}^i\right\} - \left\{\overline{q}^{\bullet}\right\}\right).$$

$$(4.160)$$

Izračunavanje se sprovodi dok se ne postigne zadata tačnost:

$$\left\{q_{i+1}\right\} - \left\{q_i\right\} \le \varepsilon . \tag{4.161}$$

Tako je željena vrednost spoljašnjih koordinata poznata i iznosi

$$\left\{\overline{q}^{\star}\right\} = \left\{\begin{array}{c} -0, 3\\ 1, 44\\ 1, 42\end{array}\right\}$$
(4.162)

dok su za vrednosti unutrašnjih koordinata usvojene sledeće vrednosti:

$$\{q_0\} = \begin{cases} 0\\0\\0 \end{cases} \tag{4.163}$$

Jakobijan matrica $[J_I]$ je jednaka matrici [D] i koja se može odrediti uz primenu istog postupka (iz primera 11) kao:

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} \left\{ \tau_{n(1)}^{(0)} \right\} : \left\{ \tau_{n(2)}^{(0)} \right\} : \left\{ \tau_{n(3)}^{(0)} \right\} \end{bmatrix} = \begin{bmatrix} -\left(1+q^3\right)\cos q^1\cos q^2 & -\left(1+q^3\right)\sin q^1\sin q^2 & -\sin q^1\cos q^2 \\ -\left(1+q^3\right)\sin q^1\cos q^2 & \left(1+q^3\right)\cos q^1\sin q^2 & \cos q^1\cos q^2 \\ 0 & -\left(1+q^3\right)\cos q^2 & \sin q^2 \end{bmatrix}$$
(4.164)

Vrednosti $\{q\}$ tokom iterativnog izračunavanja su sledeće:

$$\{q_0\} = \begin{cases} 0\\0\\0 \end{cases}, \rightarrow \{q_1\} = \begin{cases} 0,3\\0,62\\0,44 \end{cases}, \rightarrow \{q_2\} = \begin{cases} 0,18144\\0,37956\\0,55204 \end{cases}, \rightarrow$$

$$\{q_3\} = \begin{cases} 0,20588\\0,39956\\0,59556 \end{cases}, \rightarrow \{q_4\} = \begin{cases} 0,2054\\0,39891\\0,59625 \end{cases} \approx \begin{cases} 0,2\\0,4 \\0,6 \end{cases} \approx \begin{cases} 0,2\\nd\\m \\m \end{cases}$$

$$(4.165)$$

gde se posle četvrte iteracije dobijaju vrednosti za unutrašnje koordinate q koje su bile date u primeru 10 u rešavanju direktnog kinematičkog zadatke kinematike.

program M.14

>> *invkinrobot* unesi početnu vrednost q1=0 unesi početnu vrednost q2=0 unesi početnu vrednost q3=0 i = 1eps = 0.30.62 0.44q = 0.3 0.62 0.44 i = 2eps =-0.24044 -0.11856 0.11204 0.18144 0.37956 0.55204 q =i = 3 eps =0.024439 0.019994 0.043518 0.39956 0.59556 q =0.20588 4 eps = -0.0004856 -0.000650720.00069006 i = 0.59625 0.2054 0.39891 q =

Primer 13. Formulisati inverzni zadatak kinematike u domenu brzina za robotski sistem od šest krutih tela dat u obliku prostog kinematskog lanca sa šest stepeni slobode i dati postupak rešavanja istog.

Za dati robotski sistem koji ima šest krutih tela koji ima šest stepeni slobode može se odrediti brzina vrha hvataljke \vec{v}_H prema izrazu (4.26)

$$\vec{v}_H = \frac{d\vec{r}_H}{dt} = \sum_{\beta=1}^n \frac{\partial \vec{r}_H}{\partial q^\beta} \dot{q}^\beta = \sum_{\beta=1}^n \vec{\tau}_{\beta(n)} \dot{q}^\beta , \qquad (4.166)$$

Takođe, ugaona brzina hvataljke se određuje sabiranjem relativnih ugaonih brzina svih rotacionih kinematskih parova u datom kinematskom lancu robotskog sistema, izraz (4.8):

$$\vec{\omega}_H = \sum_{\alpha=1}^{\circ} \vec{\xi}_{\alpha} \vec{e}_{\alpha} \dot{q}^{\alpha}$$
(4.167)

Inverzni zadatak kinematike u domenu brzina sastoji se u određivanju generalisanih brzina \dot{q}^{α} ($\alpha = 1, 2, ..., 6$) na osnovu poznatih projekcija vektora $\vec{v}_H, \vec{\omega}_H, \left\{v_H^{(0)}\right\}, \left\{\omega_H^{(0)}\right\}$. Na osnovu prethodnih izraza (4.166) i (4.167) uočava se da je inverzni zadatak kinematike ,očigledno, linearan i koji se u skalarnom obliku mogu predstaviti na sledeći način,[2]:

$$\sum_{\alpha=1}^{6} a_{\beta\alpha} \dot{q}^{\alpha} = b_{\beta}, \ \beta = 1, 2, ..., 6$$
(4.168)

gde su:

$$\begin{cases} a_{1\alpha} \\ a_{2\alpha} \\ a_{3\alpha} \end{cases} = \left\{ T_{\alpha}^{(0)} \right\}, \quad \begin{cases} a_{4\alpha} \\ a_{5\alpha} \\ a_{6\alpha} \end{cases} = \left\{ \overline{\xi}_{\alpha} e_{\alpha}^{(0)} \right\}, \quad \begin{cases} b_1 \\ b_2 \\ b_3 \end{cases} = \left\{ v_H^{(0)} \right\}, \quad \begin{cases} b_4 \\ b_5 \\ b_6 \end{cases} = \left\{ \omega_H^{(0)} \right\}, \quad (4.169)$$

Dati koeficijenti $a_{\beta\alpha}, b_{\beta}$ su pri tome funkcija samo generalisanih koordinata:

$$a_{\beta\alpha} = a_{\beta\alpha} \left(q^1, ..., q^6 \right), \ b_{\beta} = b_{\beta} \left(q^1, ..., q^6 \right).$$
 (4.170)

Oni se mogu lako izračunati ako su poznate vrednosti generalisanih koordinata tako da se generalisane brzine \dot{q}^{α} ($\alpha = 1, 2, ..., 6$) određuju rešavanjem sistema od šest linearnih jednačina datih u (4.168).

Primer 14. *Rešiti inverzni zadatak kinematike u domenu brzina za robotski sistem sa tri stepena slobode koji je prikazan na slici tako da se vrh hvataljke kreće po unapred određenoj putanji sa željenim profilom brzine.Putanja je zadata u vidu:*

$$f_1(x_H, y_H, z_H) = 0 \Leftrightarrow x_H - 3y_H + z_H + 1 = 0$$

$$f_2(x_H, y_H, z_H) = 0 \Leftrightarrow x_H + 2y_H - 2z_H + 2 = 0$$

dok je profil brzina dat: v(t) = at, a = const, $l_1 = 2m$, $l_3 = 1m$

slika 4.9

Primenom postupka prikazanog u *primeru6* dobija se Rodrigova matrica transformacije za prvi segment:

$$\begin{bmatrix} A_{0,1} \end{bmatrix} = \begin{bmatrix} \cos q^1 & 0 & \sin q^1 \\ 0 & 1 & 0 \\ -\sin q^1 & 0 & \cos q^1 \end{bmatrix}$$
(4.171)

5. DINAMIKA ROBOTA

5.1 Osnovni pojmovi geometrije masa robotskog segmenta

5.1.1 Tenzor inercije i-tog segmenta robotskog segmenta

Primer 1. Odrediti tenzor inercije J_{C3} segmenta $[V_3]$ datog robotskog sistema, koji je oblika prizmatičnog štapa, mase $m_3 = 3$ kg i dužine $l_3 = 2$ m.

Neka je konfiguracija tela [V] u odnosu na Oxyz određena konfiguracijom pravouglog Dekartovog koordinatnog sistema $C\xi\eta\zeta$, $C \in [V]$. Tenzor inercije tela [V], dat u odnosu na $C\xi\eta\zeta$, definisan je sledećom relacijom,[10]:

Slika 5.1

$$\begin{bmatrix}J_C\end{bmatrix}^{def} = -\int\limits_{(V)} \left[\rho^d\right]^2 dm,$$
(5.1)

gde je sa $\left[\rho^d\right]$ označen dualni objekat vektora $\{\vec{\rho}\}^T = (\xi, \eta, \zeta)$ koji određuje položaj tačke $M \in [V]$ u odnosu na $C\xi\eta\zeta$, i određen je izrazom:

$$\left[\rho^{d}\right] = \begin{bmatrix} 0 & -\zeta & \eta \\ \zeta & 0 & -\xi \\ -\eta & \xi & 0 \end{bmatrix}.$$
(5.2)

Zamenom u definicioni izraz dobija se koordinatna forma:

$$\begin{bmatrix} J_C \end{bmatrix} = \begin{bmatrix} \int_{(v)}^{(\gamma^2 + \zeta^2)} dm & -\int_{(v)}^{(\zeta\eta)} dm & -\int_{(v)}^{(\zeta\zeta)} (\xi\zeta) dm \\ -\int_{(v)}^{(\gamma\xi)} (\eta\xi) dm & \int_{(v)}^{(\zeta^2 + \xi^2)} dm & -\int_{(v)}^{(\gamma)} (\eta\zeta) dm \\ -\int_{(v)}^{(\zeta\zeta)} (\zeta\xi) dm & -\int_{(v)}^{(\zeta\eta)} (\zeta\eta) dm & \int_{(v)}^{(\gamma^2 + \xi^2)} dm \end{bmatrix},$$
(5.3)

$$\left\{ L_{c3}^{(0)} \right\} = \left[A_{03} \right] \left\{ L_{c3}^{(3)} \right\} = \left[\begin{array}{c} \cos q^{1} & -\sin q^{1} \cos q^{2} & \sin q^{1} \sin q^{2} \\ \sin q^{1} & \cos q^{1} \cos q^{2} & -\cos q^{1} \sin q^{2} \\ 0 & \sin q^{2} & \cos q^{2} \end{array} \right] \left\{ \begin{array}{c} 10\dot{q}^{2} \\ \dot{q}^{1} \sin q^{2} \\ 10\dot{q}^{1} \cos q^{2} \end{array} \right\} = \\ = \left\{ \begin{array}{c} 10\dot{q}^{2} \cos q^{1} + 9\dot{q}^{1} \sin q^{1} \sin q^{2} \cos q^{2} \\ 10\dot{q}^{2} \sin q^{1} - 9\dot{q}^{1} \sin q^{2} \cos q^{2} \\ \dot{q}^{1} (1 + 9 \cos^{2} q^{2}) \end{array} \right\}, \quad kgm^{2} / s$$

5.3 Kinetička energija robotskog sistema

Primer 5. Za robot sa tri stepena slobode (primer 2) odrediti kinetičku energiju robotskog sistema u proizvoljnom položaju, gde su tenzori inercije odgovarajućih segmenata dati sa:

$$\begin{bmatrix} J_{c(1)}^{(1)} \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} J_{c(2)}^{(2)} \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix}, \quad \begin{bmatrix} J_{c(3)}^{(3)} \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \quad kgm^2$$

sa pripadajućim masama $m_i = 5$ kg, i = 1, 2, 3.

Slika 5.3

Kinetička energija robotskog sistema odredjena je sledećim izrazom:

$$E_k = \sum_{i=1}^{3} E_{ki} = E_{k1} + E_{k2} + E_{k3}$$
(5.32)

Određivanje kinetičke energije trećeg segmenta robota

Izraz za kinetičku energiju trećeg segmenta je dat sledećim izrazom:

$$E_{k3} = E_{k3}^{tr} + E_{k3}^{rot} = \frac{1}{2} m_3 V_{c3}^2 + \frac{1}{2} \left(\omega_3^3 \left[J_{c3}^{(3)} \right] \left[\omega_3^{(3)} \right] \right]$$
(5.33)

pri čemu se ugaona brzina trećeg segmenta odredjuje na sledeći način:

$$\vec{\omega}_3 = \sum_{i=1}^{n=3} \vec{\xi}_i \vec{e}_i \dot{q}^i = \dot{q}^1 \vec{e}_1 + \dot{q}^2 \vec{e}_2 + \dot{q}^3 \vec{e}_3$$
(5.34)

U odnosu na treći lokalni koordinatni sistem $C_3\xi_3\eta_3\zeta_3$ $\vec{\omega}_3$ je:

$$\begin{aligned} &\left\{\omega_{3}^{(3)}\right\} = 1 \cdot \dot{q}^{1}\left\{e_{1}^{(3)}\right\} + 1 \cdot \dot{q}^{2}\left\{e_{2}^{(3)}\right\} + 0 \cdot \dot{q}^{3}\left\{e_{3}^{(3)}\right\} = \\ &= \dot{q}^{1}\left[A_{3,1}\right] \cdot \left\{e_{1}^{(1)}\right\} + \dot{q}^{2}\left[A_{3,2}\right] \cdot \left\{e_{2}^{(2)}\right\} = \dot{q}^{1}\left[A_{1,3}\right]^{T} \cdot \left\{e_{1}^{(1)}\right\} + \dot{q}^{2}\left[A_{2,3}\right]^{T} \cdot \left\{e_{2}^{(2)}\right\} = \\ &= \dot{q}^{1}\left[A_{2,3}\right]^{T}\left[A_{1,2}\right]^{T} \cdot \left\{e_{1}^{(1)}\right\} + \dot{q}^{2}\left[I\right]^{T}\left\{e_{2}^{(2)}\right\} = \dot{q}^{1}\left[A_{1,2}\right]^{T} \cdot \left\{e_{1}^{(1)}\right\} + \dot{q}^{2}\left\{e_{2}^{(2)}\right\} = \\ &= \dot{q}^{1}\left[\begin{array}{cc}1 & 0 & 0 \\ 0 & \cos q^{2} & \sin q^{2} \\ 0 & -\sin q^{2} & \cos q^{2}\end{array}\right]^{T} \cdot \left\{\begin{array}{c}0 \\ 0 \\ 1\end{array}\right\} + \dot{q}^{2}\left\{\begin{array}{c}1 \\ 0 \\ 0\end{array}\right\} = \left\{\begin{array}{c}\dot{q}^{2} \\ \dot{q}^{1}\sin q^{2} \\ \dot{q}^{1}\cos q^{2}\end{array}\right\} \end{aligned}$$
(5.35)

Prema tome, konačno se dobija da je:

$$E_{k3}^{rot} = \frac{1}{2} \left(\omega_3^3 \right) \left[J_{c3}^{(3)} \right] \left\{ \omega_3^{(3)} \right\} = \frac{1}{2} \left(\dot{q}^2 \quad \dot{q}^1 \sin q^2 \quad \dot{q}^1 \cos q^2 \right) \begin{bmatrix} 10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{cases} \dot{q}^2 \\ \dot{q}^1 \sin q^2 \\ \dot{q}^1 \cos q^2 \end{cases} = 5 \left(\dot{q}^2 \right)^2 + 0.5 \left(\dot{q}^1 \right)^2 + 4.5 \left(\dot{q}^1 \right)^2 \cos^2 q^2$$

Slično kinetička energija trećeg segmenta koji odgovara translaciji je:

$$E_{k3}^{tr} = \frac{1}{2} m_3 \left(v_{c3} \right) \left\{ v_{c3} \right\}$$
(5.37)

gde je \vec{v}_{C3} brzina središta masa trećeg segmenta odredjena sa:

$$\vec{v}_{c3} = \sum_{\alpha=1}^{3} \vec{T}_{\alpha(3)} \dot{q}^{\alpha} = \vec{T}_{1(3)} \dot{q}^{1} + \vec{T}_{2(3)} \dot{q}^{2} + \vec{T}_{3(3)} \dot{q}^{3}$$
(5.38)

Kvazibazni vektor $\vec{T}_{\alpha(i)}$ je dat sledećim izrazom:

$$\vec{T}_{\alpha(i)} = \vec{\xi}_{\alpha} \vec{e}_{\alpha} \times \vec{R}_{\alpha(i)} + \xi_{\alpha} \vec{e}_{\alpha}$$
(5.39)

gde je $\vec{R}_{\alpha(i)}$ određeno sa:

$$\vec{R}_{\alpha(i)} = \sum_{k=\alpha}^{i} \left(\vec{\rho}_{kk} + \xi_k q^k \vec{e}_k \right) + \vec{\rho}_i , \qquad (5.40)$$

Prema tome, prvi kvazibazni vektor je sada:

$$\vec{T}_{l(3)} = \vec{\xi}_{l} \vec{e}_{l} \times \vec{R}_{l(3)} + \xi_{l} \vec{e}_{l} = \vec{e}_{l} \times \vec{R}_{l(3)}, \qquad (5.41)$$

(5.36)

5.6 Određivanje generalisanih sila robotskog sistema

Primer 9 Izvesti izraz za generalisanu silu od sila teže robotskog sistema sa tri stepena slobode.

Prvi način: Dati robotski sistem u obliku otvorenog kinematičkog lanca bez grananja sa tri stepena slobode kreće se u polju zemljine teže.Sila teže segmenta $[V_i]$ iznosi \vec{G}_i , i = 1,2,3, sa napadnom tačkom u centru inercije C_i segmenta. Pri tome je glavni vektor sistema kontinualno podeljenih sila zemljine teže $\vec{g} = -g\vec{k}$, očigledno:

$$\vec{F}_{R(i)} = \vec{G}_i = m_i \vec{g}, \ i = 1, 2, 3$$
 (5.188)

a glavni moment za redukcionu tačku C_i , i = 1,2,3 je:

$$\dot{M}_{CiR(i)} = 0, \ i = 1,2,3$$
 (5.189)

Izraz za generalisanu silu je dat sledećim izrazom:

$$Q_{\alpha}^{a} = \sum_{i=1}^{n} \left(\vec{F}_{R(i)} \vec{T}_{\alpha(i)} + \vec{M}_{CiR(i)} \vec{\Omega}_{\alpha(i)} \right), \quad \alpha = 1, 2, ..., n$$
(5.190)

Poslednja tri izraza dovode do izraza za generalisane sile od sila zemljine teže u obliku:

$$Q_{\alpha(g)} = \sum_{i=1}^{n=3} m_i \vec{g} \vec{T}_{\alpha(i)} = -\sum_{i=1}^{n=3} m_i g \vec{k} \vec{T}_{\alpha(i)}.$$
(5.191)

Slika 5.5

Drugi način: Uzimajući u obzir činjenicu da je sila teže potencijalna izraz može da se izvede na osnovu sledećih razmatranja. Postavimo horizontalnu ravan tako da sadrži koordinatni početak O inercijalnog koordinatnog sistema Oxyz (vidi sl.5.5).

Potencijalna energija sile zemljine teže $\vec{G} = m_i \vec{g}$ segementa $[V_i]$ iznosi (ravan uzeta je za nivo nultoga potencijala):

$$E_{p(i)}^{G} = m_{i}gz_{i} = m_{i}g\vec{r}_{Ci}\cdot\vec{k}, \qquad (5.192)$$

gde je \vec{k} vektor normale ravni usmeren vertikalno naviše. Ukupna potencijalna energija razmatranog robotskog sistema koja se odnosi na silu zemljine teže iznosi:

$$E_p^G = \sum_{i=1}^n m_i g \vec{r}_{Ci} \cdot \vec{k} = -\sum_{i=1}^n m_i \vec{g} \vec{r}_{Ci} , \qquad (5.193)$$

Generalisane sile određene su primenom poznatog izraza:

$$Q_{\alpha(g)} = -\frac{\partial E_p^G}{\partial q^{\alpha}}, \quad \alpha = 1, 2, ..., n , \qquad (5.194)$$

Uzimajući u obzir prethodna dva izraza sledi:

$$Q_{\alpha(g)} = \sum_{i=1}^{n=3} m_i \vec{g} \cdot \frac{\partial \vec{r}_{Ci}}{\partial q^{\alpha}}, \qquad \frac{\partial \vec{r}_{Ci}}{\partial q^{\alpha}} = \begin{cases} 0, \ \alpha > i \\ \vec{T}_{\alpha(i)}, \ \alpha \le i \end{cases},$$
(5.195)

tj.,
$$Q_{\alpha(g)} = \sum_{i=\alpha}^{n=3} m_i \vec{g} \cdot \vec{T}_{\alpha(i)}$$
. (5.196)

5.6.1 Odredjivanje generalisane sile od sila teže robotskog sistema

Primer 10 Odrediti generalisane sile od sila teže robotskog sistema (primer 2). Na osnovu izvedenog izraza za generalisanu silu dobija se izraz za $Q_{3(g)}$ za treći segment:

$$Q_{3(g)} = -\sum_{i=3}^{n=3} m_i g \vec{T}_{\alpha(i)} \cdot \vec{k} = -m_3 g \left(T_{3(3)}^{(0)} \right) \left(k^{(0)} \right) = -m_3 g \left(\left[A_{0,3} \right] \left(T_{3(3)}^{(3)} \right) \right) \left(k^{(0)} \right) = -m_3 g \left(\left[A_{0,1} \right] \left[A_{1,2} \right] I \right] \left(T_{3(3)}^{(3)} \right) \left(k^{(0)} \right) \right)$$

$$(5.197)$$

Generalisane sile odredjujemo u odnosu na nepokretni koordinatni sistem, što je i naznačeno u izrazima za vektore sa $\binom{0}{2}$. U prethodnim primerima odredjen je $\{T_{3(3)}^{(3)}\}$:

$$\left\{T_{3(3)}^{(3)}\right\} = \left\{e_3^{(3)}\right\} = \left\{\begin{matrix}0\\1\\0\end{matrix}\right\}$$
(5.198)

kao i $[A_{0,1}][A_{1,2}]$: (5.199)

$$\begin{bmatrix} A_{0,3} \end{bmatrix} = \begin{bmatrix} A_{0,1} \end{bmatrix} \begin{bmatrix} A_{1,2} \end{bmatrix} \begin{bmatrix} A_{2,3} \end{bmatrix} = \begin{bmatrix} A_{0,1} \end{bmatrix} \begin{bmatrix} A_{1,2} \end{bmatrix} \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} \cos q^1 & -\sin q^1 & 0 \\ \sin q^1 & \cos q^1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos q^2 & -\sin q^2 \\ 0 & \sin q^2 & \cos q^2 \end{bmatrix} = \\ = \begin{bmatrix} \cos q^1 & -\sin q^1 \cos q^2 & \sin q^1 \sin q^2 \\ \sin q^1 & \cos q^1 \cos q^2 & -\sin q^2 \cos q^1 \\ 0 & \sin q^2 & \cos q^2 \end{bmatrix}$$

Zamenom u dati izraz sledi:

$$Q_{3(g)} = -5 \cdot 9.81 \left[\begin{bmatrix} \cos q^1 & -\sin q^1 \cos q^2 & \sin q^1 \sin q^2 \\ \sin q^1 & \cos q^1 \cos q^2 & -\sin q^2 \cos q^1 \\ 0 & \sin q^2 & \cos q^2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \left\{ \begin{matrix} 0 \\ 0 \\ 1 \\ 0 \end{matrix} \right\} = (5.200)$$
$$= -49.05 \left(-\sin q^1 \cos q^2 & \cos q^1 \cos q^2 & \sin q^2 \right) \left\{ \begin{matrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{matrix} \right\} = -49.05 \sin q^2$$

<u>Program M.19</u> >> genersilaq3

unesi vrednost za masu treceg segmenta m3=5 unesi vrednost treceg kvazibaznog vektora t33=[0,1,0]' Q3g = -49.05*sin(conj(q2))

Na sličan način moguće je odrediti i $Q_{2(g)}$.

$$Q_{2(g)} = -\sum_{i=2}^{5} m_i g \vec{T}_{2(i)} \cdot \vec{k} = -m_2 g \vec{T}_{2(2)} \cdot \vec{k} - m_3 g \vec{T}_{2(3)} \cdot \vec{k} =$$

$$= -m_2 g (T_{2(2)}^{(0)}) \cdot \left\{ k^{(0)} \right\} - m_3 g (T_{2(3)}^{(0)}) \cdot \left\{ k^{(0)} \right\}$$
(5.201)

gde su $\vec{T}_{2(2)}$, $\vec{T}_{2(3)}$ dati sa:

$$\left\{T_{2(2)}^{(2)}\right\} = \left\{\begin{array}{c}0\\0\\0,3\end{array}\right\}, \quad \left\{T_{2(3)}^{(2)}\right\} = \left\{\begin{array}{c}0\\0\\0\\0,8+q^3\end{array}\right\}$$
(5.202)

a u odnosu na nepokretni *Oxyz* koordinatni sistem: (5.203)

$$\left\{ T_{1(1)}^{(0)} \right\} = \left[A_{0,1} \right] \left\{ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right\} = \left[\begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right\}, \quad \left\{ T_{1(2)}^{(0)} \right\} = \left[A_{0,1} \right] \left\{ T_{1(2)}^{(1)} \right\} = \left\{ \begin{matrix} -0, 3\cos q^{2}\cos q^{1} \\ -0, 3\cos q^{2}\sin q^{1} \\ 0 \end{matrix} \right\}$$

$$\left\{ T_{1(3)}^{(0)} \right\} = \left[A_{0,1} \right] \left\{ T_{1(3)}^{(1)} \right\} = \left\{ \begin{matrix} -\cos q^{2}\cos q^{1} \left(0, 8 + q^{3} \right) \\ \sin q^{1}\cos q^{2} \left(0, 8 + q^{3} \right) \\ 0 \end{matrix} \right\}$$

$$(5.207)$$

Zamenom u izraz za generalisanu silu dobija se,konačno:

$$Q_{1(g)} = -49,05 \begin{pmatrix} (0 & 0 & 0) \begin{cases} 0 \\ 0 \\ 1 \end{pmatrix} + (-0,3\cos q^{2}\cos q^{1} & -0,3\cos q^{2}\sin q^{1} & 0) \begin{cases} 0 \\ 0 \\ 1 \end{pmatrix} + \\ + (-\cos q^{2}\cos q^{1}(0,8+q^{3}) & \sin q^{1}\cos q^{2}(0,8+q^{3}) & 0) \begin{cases} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$

5.6.2 Odredjivanje generalisane sile od sila u opruzi robotskog sistema

Primer 11 *Izvesti izraz za generalisanu silu od sile u opruzi robotskog sistema sa n stepeni slobode*.

Slika 5.6

Potencijalna energija date opruge je odredjena izrazom:

$$E_{P} = \frac{1}{2}c(l - l_{0})^{2}, \ l = \overline{FiFj}$$
(5.209)

gde je odgovarajuća generalisana sila od sila u opruzi data sa:

$$Q_{\alpha(c)} = -\frac{\partial E_P}{\partial q^{\alpha}} = -c(l - l_0)\frac{\partial l}{\partial q^{\alpha}}, \quad \alpha = 1, 2, ..., n$$
(5.210)

Uočava se da je:

$$l = l(q^{i+1}, q^{i+2}, ..., q^j) \Longrightarrow \frac{\partial l}{\partial q^{\alpha}} = 0, \ \forall \alpha \le i, \alpha > j$$
(5.211)

odnosno:

$$Q_{\alpha(c)} = 0, \quad j < \alpha \le i \tag{5.212}$$

Dalje je potrebno odrediti $\frac{\partial l}{\partial q^{\alpha}}$, $i < \alpha \le j$. Uočava se da je:

$$l = \left| \overline{F_i F_j} \right|, \quad \overline{F_i F_j} = \overline{C_i C_j} + \vec{\tau}_j - \vec{\tau}_i = \vec{r}_j - \vec{r}_i + \vec{\tau}_j - \vec{\tau}_i =$$

$$= \sum_{k=1}^{j} \left(\vec{\rho}_{kk} + \xi_k q^k \vec{e}_k \right) + \vec{\rho}_j - \sum_{k=1}^{i} \left(\vec{\rho}_{kk} + \xi_k q^k \vec{e}_k \right) - \vec{\rho}_i + \vec{\tau}_j - \vec{\tau}_i = (5.213)$$

$$= \sum_{k=i+1}^{j} \left(\vec{\rho}_{kk} + \xi_k q^k \vec{e}_k \right) + \vec{\rho}_j - \vec{\rho}_i + \vec{\tau}_j - \vec{\tau}_i$$

Takodje je:

$$l^{2} = \overrightarrow{F_{i}F_{j}} \cdot \overrightarrow{F_{i}F_{j}} \Rightarrow l \frac{\partial l}{\partial q^{\alpha}} = \overrightarrow{F_{i}F_{j}} \cdot \frac{\partial F_{i}F_{j}}{\partial q^{\alpha}}, \quad \alpha = k = i+1, i+2, ..., j$$
(5.214)

gde su:

$$\frac{\partial F_i F_j}{\partial q^{\alpha}} = \frac{\partial}{\partial q^{\alpha}} \left(\vec{r}_j - \vec{r}_i + \vec{\tau}_j - \vec{\tau}_i \right) = \frac{\partial}{\partial q^{\alpha}} \left(\vec{r}_j + \vec{\tau}_j \right) = \frac{\partial \vec{r}_j^*}{\partial q^{\alpha}} = \vec{T}_{\alpha(j)}^*$$
(5.215)

$$\vec{T}_{\alpha(j)}^{*} = \vec{\xi}_{\alpha} \vec{e}_{\alpha} \times \vec{R}_{\alpha(j)}^{*} + \xi_{\alpha} \vec{e}_{\alpha}$$

$$\vec{R}_{\alpha(j)}^{*} = \sum_{l=\alpha}^{j} \left(\vec{\rho}_{ll} + \xi_{l} \vec{e}_{l} q^{l} \right) + \vec{\rho}_{j} + \vec{\tau}_{j}$$
(5.216)

Na taj način dolazi se odgovarajućeg izraza za generalisanu silu od sila u opruzi:

$$Q_{\alpha(c)} = -c(l-l_0)\frac{\partial l}{\partial q^{\alpha}} = -c\left(\left|\sum_{\alpha=i+1}^{j} \left(\vec{\rho}_{\alpha\alpha} + \xi_{\alpha}q^{\alpha}\vec{e}_{\alpha}\right) + \vec{\rho}_j - \vec{\rho}_i + \vec{\tau}_j - \vec{\tau}_i\right| - l_0\right)\vec{T}_{\alpha(j)}^*, \quad i < \alpha \le j \le n$$
(5.217)

Primer 12 Odrediti generalisane sile od sile u opruzi, za prethodno korišćeni robotski sistem sa tri stepena slobode(primer 2).Opruga je postavljena izmedju tačaka F_1 i F_3 na način prikazan slikom $|\vec{\tau}_1| = 0.1$, $|\vec{\tau}_3| = 0.1$. Poznata je krutost opruge **c** i dužina neistegnute opruge l_0 .

Sa slike 5.7 se može uočiti da je

$$\left\{\tau_{1}^{(1)}\right\} = \left\{\begin{matrix} 0\\0,1\\0 \end{matrix}\right\}, \quad \left\{\tau_{3}^{(3)}\right\} = \left\{\begin{matrix} 0\\-0,1\\0 \end{matrix}\right\}$$
(5.218)

kao i:

$$\overrightarrow{F_1F_3} = -\vec{\tau}_1 - \vec{\rho}_1 + \vec{\rho}_{22} + q^3\vec{e}_3 + \vec{\rho}_{33} + \vec{\rho}_3 + \vec{\tau}_3$$
(5.219)

u odnosu na lokalni koordinatni sistem $C_1\xi_1\eta_1\zeta_1$ je:

$$\left\{ F_{1}F_{3}^{(1)} \right\} = -\left\{ \tau_{1}^{(1)} \right\} - \left\{ \rho_{1}^{(1)} \right\} + \left\{ \rho_{22}^{(1)} \right\} + q^{3} \left\{ e_{3}^{(1)} \right\} + \left\{ \rho_{33}^{(1)} \right\} + \left\{ \rho_{3}^{(1)} \right\} + \left\{ \tau_{3}^{(1)} \right\} = = -\left\{ \tau_{1}^{(1)} \right\} - \left\{ \rho_{1}^{(1)} \right\} + \left[A_{1,2} \right] \left\{ \left\{ \rho_{22}^{(2)} \right\} + q^{3} \left\{ e_{3}^{(3)} \right\} + \left\{ \rho_{33}^{(3)} \right\} + \left\{ \rho_{3}^{(3)} \right\} + \left\{ \sigma_{3}^{(3)} \right\} + \left\{ \tau_{3}^{(3)} \right\} \right\}$$
(5.220)

$$\begin{aligned} \text{tj.:} & \left\{F_{1}F_{3}^{(1)}\right\} = \\ &= -\begin{cases} 0\\0,1\\0 \end{cases} - \begin{cases} 0\\0,1\\-0,4 \end{cases} + \begin{bmatrix} 1 & 0 & 0\\0 & \cos q^{2} & -\sin q^{2}\\0 & \sin q^{2} & \cos q^{2} \end{bmatrix} \left[\begin{cases} 0\\0,6\\0 \end{bmatrix} + q^{3} \begin{cases} 0\\1\\0 \end{bmatrix} + \begin{cases} 0\\0,4 \\0 \end{bmatrix} + \begin{cases} 0\\-0,2\\0 \end{bmatrix} + \begin{cases} 0\\-0,1\\0 \end{bmatrix} \right] = \\ &= \begin{cases} 0\\\left\{(0,7+q^{3})\cos q^{2} - 0,1\\0,4+\left(0,7+q^{3}\right)\sin q^{2} \end{bmatrix} \end{aligned} \end{aligned}$$

$$(5.221)$$

N

$$Q_{3}(c) = -c \left(1 - \frac{l_{0}}{l}\right) \left(0 \quad \left(0, 7 + q^{3}\right) \cos q^{2} - 0, 1 \quad 0, 4 + \left(0, 7 + q^{3}\right) \sin q^{2}\right) \left\{ \begin{array}{c} 0 \\ \cos q^{2} \\ \sin q^{2} \end{array} \right\} = \\ = -c \left(1 - \frac{l_{0}}{l}\right) \left(\left(\left(0, 7 + q^{3}\right) \cos q^{2} - 0, 1\right) \cos q^{2} + \left(0, 4 + \left(0, 7 + q^{3}\right) \sin q^{2}\right) \sin q^{2}\right) \right) \\ Q_{3}(c) = -c \left(1 - \frac{l_{0}}{\left[\left(0, 7 + q^{3}\right) \cos q^{2} - 0, 1\right]^{2} + \left[\left(0, 7 + q^{3}\right) \sin q^{2} + 0, 4\right]^{2}}\right) \left(5.236\right) \\ \cdot \left(\left(\left(0, 7 + q^{3}\right) \cos q^{2} - 0, 1\right) \cos q^{2} + \left(0, 4 + \left(0, 7 + q^{3}\right) \sin q^{2}\right) \sin q^{2}\right)\right) \\ \end{array}$$

5.6.3 Odredjivanje generalisane sile od sile viskoznog trenja robotskog sistema

Primer 13 Izvesti izraz za generalisanu silu od sila viskoznog trenja za dati robotski sistem sa n stepeni slobode.

Sila viskoznog trenja je odredjena sa

$$\vec{F}_w = -\beta \vec{v}_r = -\beta \dot{\xi} \vec{\lambda} \tag{5.237}$$

gde je sa \vec{v}_r označena relativna brzina klipa u odnosu na cilindar prigušivača, a $\beta = const$. Virtualni rad $\delta A(\vec{F}_w)$ je definisan sledećim izrazom:

$$\delta A(\vec{F}_w) = \vec{F}_w \delta \vec{s}_r = -\beta \dot{\xi} \delta \xi \tag{5.238}$$

Potrebno je uočiti da je

$$\dot{\xi} = \frac{d\xi}{dt} = \dot{l} = \sum_{k=1}^{n} \frac{\partial l}{\partial q^{k}} \, \delta \dot{q}^{k} \,, \quad \delta \xi = \delta l = \sum_{\alpha=1}^{n} \frac{\partial l}{\partial q^{\alpha}} \, \delta q^{\alpha} \,, \tag{5.239}$$

posle zamene u izraz za virtualni rad dobija se izraz za generalisanu silu kao:

$$\delta A\left(\vec{F}_{w}\right) = -\beta \sum_{k=1}^{n} \sum_{\alpha=1}^{n} \frac{\partial l}{\partial q^{k}} \frac{\partial l}{\partial q^{\alpha}} \dot{q}^{k} \, \delta q^{\alpha} = \sum_{\alpha=1}^{n} \left(-\beta \sum_{k=1}^{n} \frac{\partial l}{\partial q^{\alpha}} \frac{\partial l}{\partial q^{k}} \dot{q}^{k}\right) \delta q^{\alpha} = \sum_{\alpha=1}^{n} Q_{\alpha(w)} \delta q^{\alpha} \tag{5.240}$$

$$Q_{\alpha(w)} = -\beta \frac{\partial l}{\partial q^{\alpha}} \sum_{k=1}^{n} \frac{\partial l}{\partial q^{k}} \dot{q}^{k}$$
(5.241)

Uočava se takodje da je:

$$l = l\left(q^{i+1}, q^{i+2}, ..., q^{j}\right) \Longrightarrow \frac{\partial l}{\partial q^{\alpha}} = \begin{cases} 0, & j < \alpha \le i \\ \neq 0, & i < \alpha \le j \end{cases}$$
(5.242)

odnosno:

$$Q_{\alpha(w)} = \begin{cases} 0, & j < \alpha \le i \\ -\beta \frac{\partial l}{\partial q^{\alpha}} \sum_{k=i+1}^{j} \frac{\partial l}{\partial q^{k}} \dot{q}^{k}, & i < \alpha \le j \le n \end{cases}$$
(5.243)

pri čemu je takodje:

$$\frac{\partial l}{\partial q^{k(\alpha)}} = \frac{\overline{F_i F_j}}{l} \frac{\partial \overline{F_i F_j}}{\partial q^{k(\alpha)}}, \quad \alpha, k = i+1, i+2, \dots, j$$
(5.244)

a vektor $\overrightarrow{F_iF_j}$ je dat sa (5.213):

Primer 14 Odrediti generalisanu silu od sila viskoznog trenja za dati robotski sistem sa 3 stepena slobode. Prigušivač je postavljen izmedju tačaka $F_1 i F_3$. $|C_1F_1| = |\vec{r}_1| = 0.1, |C_3F_3| = |\vec{r}_3| = 0.1$

Generalisan sila $Q_{1(w)}$ se može odrediti sa:

$$Q_{l(w)} = -\beta \frac{\partial l}{\partial q^{1}} \left(\sum_{k=1}^{3} \frac{\partial l}{\partial q^{k}} \dot{q}^{k} \right) = -\beta \frac{\partial l}{\partial q^{1}} \left(\frac{\partial l}{\partial q^{1}} \dot{q}^{1} + \frac{\partial l}{\partial q^{2}} \dot{q}^{2} + \frac{\partial l}{\partial q^{3}} \dot{q}^{3} \right)$$
(5.245)

Kako je
$$\frac{\partial l}{\partial q^1} = 0$$
 sledi: $Q_{1(w)} = 0$ (5.246)

Takodje je generalisana sila $Q_{2(w)}$ oblika:

$$Q_{2(w)} = -\beta \frac{\partial l}{\partial q^2} \left(\sum_{k=1}^3 \frac{\partial l}{\partial q^k} \dot{q}^k \right) = -\beta \frac{\partial l}{\partial q^2} \left(\frac{\partial l}{\partial q^1} \dot{q}^1 + \frac{\partial l}{\partial q^2} \dot{q}^2 + \frac{\partial l}{\partial q^3} \dot{q}^3 \right)$$
(5.247)

Prethodno su odredjeni izrazi za $\partial l / \partial q^2$, $\partial l / \partial q^3$ pa prema tome:

$$\begin{aligned} \mathcal{Q}_{2(w)} &= -\beta \left(\frac{\partial l}{\partial q^2} \right)^2 \dot{q}^2 - \beta \left(\frac{\partial l}{\partial q^2} \right) \left(\frac{\partial l}{\partial q^3} \right) \dot{q}^3 = \\ &= -\beta \frac{\left(\left(0,07 + 0,1q^3 \right) \left(\sin q^2 + 4\cos q^2 \right) \right)^2}{\left[\left(0,7 + q^3 \right) \cos q^2 - 0,1 \right]^2 + \left[\left(0,7 + q^3 \right) \sin q^2 + 0,4 \right]^2} \dot{q}^2 - \end{aligned}$$
(5.248)
$$&- \beta \frac{\left(\left(0,07 + 0,1q^3 \right) \left(\sin q^2 + 4\cos q^2 \right) \right) \left(\left(\left(0,7 + q^3 \right) \cos q^2 - 0,1 \right) \cos q^2 + \right) + \left(0,4 + \left(0,7 + q^3 \right) \sin q^2 \right) \sin q^2 \right)}{\left[\left(0,7 + q^3 \right) \cos q^2 - 0,1 \right]^2 + \left[\left(0,7 + q^3 \right) \sin q^2 + 0,4 \right]^2} \dot{q}^3 \end{aligned}$$
Na sličan način, treća generalisana sila $\mathcal{Q}_{3(w)}$ je: (5.249)

$$Q_{3(w)} = -\beta \frac{\partial l}{\partial q^3} \left(\sum_{k=1}^3 \frac{\partial l}{\partial q^k} \dot{q}^k \right) = -\beta \frac{\partial l}{\partial q^3} \left(\frac{\partial l}{\partial q^1} \dot{q}^1 + \frac{\partial l}{\partial q^2} \dot{q}^2 + \frac{\partial l}{\partial q^3} \dot{q}^3 \right) = -\beta \left(\frac{\partial l}{\partial q^3} \right) \left(\frac{\partial l}{\partial q^2} \dot{q}^2 - \beta \left(\frac{\partial l}{\partial q^3} \right)^2 \dot{q}^3$$

Slično, zamenom poznatih izraza za $\partial l/\partial q^2$, $\partial l/\partial q^3$ dobija se izraz za generalisanu silu $Q_{3(w)}$.

5.6.4 Odredjivanje generalisane sile od sile pogona robotskog sistema

Primer 15 *Izvesti izraz za generalisanu silu od sila pogona robotskog sistema sa n stepeni slobode.*

Slika 5.10

Kao što je to ranije istaknuto relativno kretanje proizvoljnog robotskog segmenta (V_{α}) u odnosu na segment $(V_{\alpha-1})$ kod robotskog sistema koji je dat u vidu otvorenog kinematičkog lanca bez grananja ostvaruje se pomoću pogonskih motora. Pri tome motor deluje na (V_{α}) pogonskom silom \vec{P}_{α} , u slučaju translacije $(\xi_{\alpha} = 1)$,odnosno spregom pogonskih sila čiji je moment \vec{M}_{α} , u slučaju rotacije $(\bar{\xi}_{\alpha} = 1)$. Takodje, motor deluje na segment $(V_{\alpha-1})$ pogonskom silom \vec{P}'_{α} odnosno odnosno spregom pogonskih sila čiji je moment \vec{M}'_{α} .Pri tome napadne tačke pogonskih sila $\vec{P}_{\alpha}, \vec{P}'_{\alpha}$ su $O'_{\alpha} \in (V_{\alpha}), O_{\alpha} \in (V_{\alpha-1})$, respektivno.Virtualni rad sistema pogonskih sila koji deluje na robotski sistem je odredjeno na sledeći način, gde je virtualno pomeranje robotskog sistema odredjeno sa:

$$\delta q = \delta q^2 = \delta q^3 \dots = \delta q^{\alpha-1} = \delta q^{\alpha+1} = \dots = \delta q^n = 0, \quad \delta q^\alpha \neq 0$$
(5.250)

tj.:

$$\delta A(\vec{P}_{\alpha}, \vec{P}_{\alpha}') = \vec{P}_{\alpha} \delta(AO_{\alpha}\vec{e}_{\alpha}) + \vec{P}_{\alpha}' \delta(AO_{\alpha}\vec{e}_{\alpha}) = \vec{P}_{\alpha} \delta(AO_{\alpha}\vec{e}_{\alpha} + \xi_{\alpha}q^{\alpha}\vec{e}_{\alpha}) + \vec{P}_{\alpha}' \delta(AO_{\alpha}\vec{e}_{\alpha}) = = \vec{P}_{\alpha}\vec{e}_{\alpha}\delta(AO_{\alpha} + \xi_{\alpha}q^{\alpha}) + \vec{P}_{\alpha}'\vec{e}_{\alpha}\delta(AO_{\alpha}) = \vec{P}_{\alpha}\vec{e}_{\alpha}\delta q^{\alpha} \overline{AO_{\alpha}} = const \Longrightarrow \delta(\overline{AO_{\alpha}}) = 0, \quad A \in osi \quad rotacije, translacije$$

$$(5.251)$$

Prema tome:

$$\delta A(\vec{P}_{\alpha}, \vec{P}_{\alpha}') = Q_{\alpha(P)} \delta q^{\alpha} = \vec{P}_{\alpha} \vec{e}_{\alpha} \delta q^{\alpha} \Rightarrow Q_{\alpha(P)} = \vec{P}_{\alpha} \vec{e}_{\alpha}$$
(5.252)

U slučaju rotacije sledi:

 (\mathbf{n})

(5.259)

(5.260)

(1)

 (\mathbf{n})

$$\delta A\left(\overline{M}_{\alpha}, \overline{M}_{\alpha}'\right) = \overline{M}_{\alpha} \delta\left(\overline{\xi}_{\alpha} q^{\alpha} \overline{e}_{\alpha}\right) + \overline{M}_{\alpha}' \delta(0) = \overline{M}_{\alpha} \overline{e}_{\alpha} \delta q^{\alpha}$$
(5.253)

jer spreg pogonskih sila čiji je moment \vec{M}'_{α} deluje na segment $(V_{\alpha-1})$.Dalje, može se odrediti:

$$\delta A(\vec{M}_{\alpha}, \vec{M}_{\alpha}') = Q_{\alpha(M)} \delta q^{\alpha} = \vec{M}_{\alpha} \vec{e}_{\alpha} \delta q^{\alpha} \Longrightarrow Q_{\alpha(M)} = \vec{M}_{\alpha} \vec{e}_{\alpha}$$
(5.254)

Na kraju se dobija:

$$Q_{\alpha(pog)} = Q_{\alpha(P)} + Q_{\alpha(M)} = \xi_{\alpha} \vec{P}_{\alpha} \vec{e}_{\alpha} + \bar{\xi}_{\alpha} \vec{M}_{\alpha} \vec{e}_{\alpha}$$
(5.255)

gde su u opštem slučaju:

$$\vec{P}_{\alpha} = \vec{P}_{\alpha}(t), \quad \vec{M}_{\alpha} = \vec{M}_{\alpha}(t) \tag{5.256}$$

poznate funkcije vremena.

Primer 16 Odrediti generalisanu silu od pogonskih sila i momenata za dati robotski sistem (primer 2) sa 3 stepena slobode. Motori su postavljeni u odgovarajućim rotacionim zglobovima odnosno translatornim zglobu. Svi zglobovi su dati u vidu kinematskih parova V klase. Pri tome poznato je:

$$\vec{M}_1 = M_1 \vec{e}_1, \ \vec{M}_2 = M_2 \vec{e}_2, \ \vec{P}_3 = F_3 \vec{e}_3, \ M_1 = const, \ M_2 = const, \ F_3 = const, \ (5.257)$$

Kako je prvi zglob rotacioni sledi:

$$Q_{1(pog)} = Q_{1(P)} + Q_{1(M)} = 0 \cdot \vec{P}_1 \vec{e}_1 + 1 \cdot \vec{M}_1 \vec{e}_1 = M_1 \vec{e}_1 \cdot \vec{e}_1 = M_1 \begin{pmatrix} 0 & 0 & 1 \\ 0 \\ 1 \end{pmatrix} = M_1 (5.258)$$

Takodje je i drugi zglob rotacioni, pa je:

$$Q_{2(pog)} = Q_{2(P)} + Q_{2(M)} = 0 \cdot \vec{P}_{2}\vec{e}_{2} + 1 \cdot \vec{M}_{2}\vec{e}_{2} = M_{2}\vec{e}_{2} \cdot \vec{e}_{2} = M_{2}\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{cases} 1 \\ 0 \\ 0 \\ 0 \end{cases} = M_{2}$$

Treći zglob je u ovom slučaju translatorni odakle sledi:

$$Q_{3(pog)} = Q_{3(P)} + Q_{3(M)} = 1 \cdot \vec{P}_{3}\vec{e}_{3} + 0 \cdot \vec{M}_{3}\vec{e}_{3} = F_{3}\vec{e}_{3} \cdot \vec{e}_{3} = F_{3}(0 \ 1 \ 0) \begin{cases} 0\\1\\0 \end{cases} = F_{3}.$$

5.7 Kovarijantni oblik diferencijalnih jednačina kretanja robotskog sistema

Primer 17 Izvesti kovarijantni oblik diferencijalnih jednačina kretanja robotskog sistema sa n stepeni slobode koji je dat u obliku otvorenog kinematičkog lanca u obliku Langranževih jednačina druge vrste.

Primer 19 Prikazati kovarijantni oblik diferencijalnih jednačina kretanja robotskog sistema (primer 2,18) sa 3 stepena slobode u prostoru stanja.

Diferencijalne jednačine kretanja datog robotskog sistema date su izrazima (5.287), (5.288) i (5.289). Uvode se sledeće veličine stanja:

$$X_{1} = q^{1}, X_{2} = q^{2}, X_{3} = q^{3},$$

$$X_{4} = \dot{q}^{1}, X_{5} = \dot{q}^{2}, X_{6} = \dot{q}^{3}$$
(5.287)

Na taj način matematički model robotskog sistema koji je izveden i dat u obliku tri nelinearne diferencijalne jednačine drugog reda, sada se može predstaviti u obliku šest nelinearnih diferencijalnih jednačina ali prvog reda, tj., u vektorskom obliku tzv. *jednačine stanja* datog objekta-robotskog sistema.Jednačine stanja su oblika:

$$\begin{split} & X_{1} = X_{4} \\ & \dot{X}_{2} = X_{5} . \\ & \dot{X}_{3} = X_{6} \\ & \dot{X}_{4} = \ddot{q}^{1} = \frac{M_{1} - 2\Gamma_{12,1}\dot{q}^{1}\dot{q}^{2} - 2\Gamma_{13,1}\dot{q}^{1}\dot{q}^{3}}{a_{11}} \Longrightarrow \\ & \dot{X}_{4} = \frac{\ddot{q}^{1} = \frac{M_{1} - 2\Gamma_{12,1}(X_{2}, X_{3}) \cdot X_{4} \cdot X_{5} - 2\Gamma_{13,1}(X_{2}, X_{3}) \cdot X_{4} \cdot X_{6}}{a_{11}(X_{2}, X_{3})}, \\ & \dot{X}_{4} = \frac{M_{1} - 2\Gamma_{12,1}(X_{2}, X_{3}) \cdot X_{4} \cdot X_{5} - 2\Gamma_{13,1}(X_{2}, X_{3}) \cdot X_{4} \cdot X_{6}}{a_{11}(X_{2}, X_{3})}, \\ & \dot{X}^{5} = \ddot{q}^{2} = \frac{M_{2} + Q_{2g}(q^{2}, q^{3}) + \Gamma_{12,1}(\dot{q}^{1})^{2} - 2\Gamma_{23,2}\dot{q}^{2}\dot{q}^{3}}{a_{22}} \Longrightarrow \\ & \dot{X}^{5} = \frac{M_{2} + Q_{2g}(X_{2}, X_{3}) + \Gamma_{12,1}(X_{2}, X_{3}) \cdot (X_{4})^{2} - 2\Gamma_{23,2}(X_{3}) \cdot X_{5} \cdot X_{6}}{a_{22}(X_{3})} \\ & \dot{X}^{5} = \frac{M_{2} + Q_{2g}(X_{2}, X_{3}) + \Gamma_{12,1}(\dot{q}^{1})^{2} + \Gamma_{23,2}(\dot{q}^{2})^{2}}{a_{23}} \Longrightarrow \qquad (5.290) \\ & \dot{X}^{6} = \ddot{q}^{3} = \frac{F_{3} + Q_{3g}(q^{2}) + \Gamma_{13,1}(\dot{q}^{1})^{2} + \Gamma_{23,2}(\dot{q}^{2})^{2}}{5} \Longrightarrow \qquad (5.291) \\ & \dot{X}^{6} = \frac{F_{3} + Q_{3g}(X_{2}) + \Gamma_{13,1}(X_{2}, X_{3}) \cdot (X_{4})^{2} + \Gamma_{23,2}(X_{3}) \cdot (X_{5})^{2}}{5} \end{split}$$

Neka vektor upravljanja predstavljaju date generalisane pogonske sile $U = (M_1, M_2, F_3)^T$. Ako se uvede vektor stanja sa: $X = (X_1, X_2, X_3, X_4, X_5, X_6)^T$ onda se odgovarajuća vektorska jednačina stanja datog robota može napisati u opštem obliku:

$$\dot{\boldsymbol{X}} = f\left(\boldsymbol{X}, \boldsymbol{U}\right). \tag{5.292}$$

ili preciznije kao

$$\dot{\mathbf{X}} = A(\mathbf{X}) + B(\mathbf{X})U. \tag{5.293}$$

ako je $\alpha(\leq)\beta$. Ako segmenti α, β i γ se ne nalaze u istoj grani razgranate strukture može se lako pokazati da je $\Gamma_{\alpha\beta,\gamma} = 0$. U slučaju mehaničkog sistema razgranate strukture generalisane sile Q_{α} se izračunavaju na osnovu sledećeg izraza:

$$Q_{\alpha} = \sum_{i:\alpha(\leq)i}^{n} \left(\vec{F}_{Ri} \cdot \vec{T}_{\alpha(i)} + \vec{M}_{CiR} \cdot \overline{\xi}_{\alpha} \vec{e}_{\alpha} \right)$$
(5.302)

Primer 21. Za dati robotski sistem sa pet stepeni slobode(slika) koji je dat u obliku kinematičkog lanca sa grananjem odrediti koeficijent osnovnog metričkog tenzora a_{13} , Kristofelov simbol I vrste $\Gamma_{21,3}$ kao i generalisanu silu od sile zemljine

Geometrija datog robotskog sistema odredjena je sa: $\overline{\xi_i} = 1$, i = 1, 2, 3, 4, 5

$$\begin{split} m_{1} &= 10, m_{2} = m_{4} = 5, \quad m_{3} = m_{3} = 2 \quad kg \\ \left\{ e_{1}^{(1)} \right\} &= \begin{cases} 1\\0\\0 \end{cases}, \quad \left\{ e_{2}^{(2)} \right\} &= \begin{cases} 0\\1\\0 \end{cases}, \\ \left\{ e_{3}^{(3)} \right\} &= \begin{cases} 0\\0\\1 \end{cases}, \quad \left\{ e_{4}^{(4)} \right\} &= \begin{cases} 0\\1\\0 \end{cases}, \quad \left\{ e_{5}^{(5)} \right\} &= \begin{cases} 1\\0\\0 \end{cases}, \end{split}$$
(5.303)

Slika 5.15

Primenom programskog paketa **Mathematica 5.0**, [17] dobijaju se tri nezavisne dopunske jednačine u diferencijalnom obliku, gde je ovde prikazana prva jednačina [2]:

Equation (1) QN[1] = -1 qd [1] - 0.70710678 qd [2] -0.57735027 qd [3] + 0.40824829 qd [3] Sin [q[2]] -0.47140452qd[4] - 0.35355339qd[4] Cos[q[2]] Cos[q[3]] +0.20412414qd[4] Cos[q[2]] Sin[q[3]] + 0.11785113qd[4] Cos[q[3]] +0.16666667qd[4] Cos[q[3]] Sin[q[2]] + 0.3333333qd[4] Sin[q[2]] +0.28867513qd[4] Sin[q[2]] Sin[q[3]] + 0.20412415qd[4] Sin[q[3]](5.370)

.....

5.10 Redundantni robotski sistem

Primer 24 Za kinematički redundantan roboski sistem sa n stepeni slobode dati postupak razrešenja postojeće kinematičke redundanse.

5.10.1 Rešenje redundanse primenom optimizacije kriterijuma po generalisanim koordinatama, [7].

Neka je poznat kinematički model koji dat je sledećim izrazom:

$$\overline{q}^{i}(t) = f^{i}\left(q^{1}, q^{2}, ..., q^{n}\right), \quad i = 1, 2, ..., m,$$
(5.371)

Na kraju, primenom pogodno usvojenog postupka numeričke integracije moguće je sada uz poznavanje početnih uslova $\dot{q}_{opt}(0), q_{opt}(0)$ odrediti i vektore $\dot{q}_{opt}(t), q_{opt}(t)$.

Primer 25 Za kinematički redundantan roboski sistem sa 4 stepeni slobode rešiti postojeću kinematičku redundansu.

Figure 5.16.

i	$ec{ ho}_{ii}$	$\vec{ ho}_i$	\vec{e}_i
1	$(0,0,0)^T$	$(0,0,0)^T$	$(0, 0, 1)^T$
2	$(0,1,0)^T$	$(0, -0.5, 0)^T$	$(0,1,0)^T$
3	$(0,0,1)^T$	$(0, 0, -0.5)^T$	$(1,0,0)^T$
4	$(1,0,0)^T$	$(-0.5, 0, 0)^T$	$(0, 0, 1)^T$

Table 1. Vrednosti koji definišu geometriju robota

Ovde je prvi kinematički par četvrte klase koji je predstavljen u vidu dva segmenta pete klase gde je prvi segment fiktivan. Ostala dva zgloba su data u vidu kinematičkog para pete klase.Pri tome su odgovarajuće matrice transformacije, ([19]):

$$\begin{bmatrix} A_{0,1} \end{bmatrix} = \begin{bmatrix} \cos q^1 & -\sin q^1 & 0 \\ \sin q^1 & \cos q^1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} A_{1,2} \end{bmatrix} = \begin{bmatrix} \cos q^2 & 0 & \sin q^2 \\ 0 & 1 & 0 \\ -\sin q^2 & 0 & \cos q^2 \end{bmatrix}$$
(5.418)
$$\begin{bmatrix} A_{2,3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos q^3 & -\sin q^3 \\ 0 & \sin q^3 & \cos q^3 \end{bmatrix}, \quad \begin{bmatrix} A_{3,4} \end{bmatrix} = \begin{bmatrix} \cos q^4 & -\sin nq^4 & 0 \\ \sin q^4 & \cos q^3 & -0 \\ 0 & 0 & 1 \end{bmatrix}.$$

6. PRIMERI I REŠENI ISPITNI ZADACI

Primer 1. (februar 1999). Za robot prikazan na slici koji se nalazi u referentnoj konfiguraciji, za sledeće vrednosti generalisanih koordinata i generalisanih brzina respektivno $q^i = i \cdot 0.1 \text{ rad}$, $\dot{q}^i = i \cdot 0.2 \text{ rad/s}$, i = 1,2,3, odrediti sledeće veličine: a) Položaj vrha hvataljke \vec{r}_H ,

- b) Koeficijent metričkog tenzora a_{22} ,
- c) Kinetičku energiju trećeg segmenta E_{k3} ,

Slika	6. <i>1</i>
-------	-------------

Podaci o robotu su siedeci.	Podaci o ro	botu su	sledeći:
-----------------------------	-------------	---------	----------

Segment	1	2	3
m _i kg	3	3	3
l _i m	2	2	2
q^i m, rad	0.1	0.2	0.3
\dot{q}^i m/s, rad/s	0.2	0.4	0.6

l abela 0.1	a 6.1	a	Tabel	1
-------------	-------	---	-------	---

Uočeni robot poseduje n=3 stepena slobode i dat je u obliku otvorenog kinematičkog lanca sa zglobovima koji pripadaju kinematskim parovima V klase. Kako su svi zglobovi rotacioni, parametar ξ koji određuje da li je uočeni zglob translatoran ili rotacion je sada prema definiciji:

$$\xi_1 = \xi_2 = \xi_3 = 0, \tag{6.1}$$

odnosno:

$$\overline{\xi}_1 = \overline{\xi}_2 = \overline{\xi}_3 = 1, \quad \overline{\xi}_i = 1 - \xi_i, \ i = 1, 2, 3$$
(6.2)

Projekcije jediničnog vektora $\vec{e}_i^{(i)}$ na ose koordinatnog sistema $C_i \xi_i \eta_i \zeta_i$ su:

$$\left\{ e_1^{(1)} \right\} = \begin{cases} 0\\1\\0 \end{cases}, \quad \left\{ e_2^{(2)} \right\} = \begin{cases} 1\\0\\0 \end{cases}, \quad \left\{ e_3^{(3)} \right\} = \begin{cases} 0\\0\\1 \end{cases},$$
(6.3)

Projekcije vektora $\vec{\rho}_{ii}^{(i)}$ na ose koordinatnog sistema $C_i \xi_i \eta_i \zeta_i$ određene su:

$$\left\{ \varphi_{11}^{(1)} \right\} = \left\{ \begin{matrix} 0 \\ 0 \\ 2 \end{matrix} \right\}, \quad \left\{ \varphi_{22}^{(2)} \right\} = \left\{ \begin{matrix} 0 \\ 2 \\ 0 \end{matrix} \right\}, \quad \left\{ \varphi_{33}^{(3)} \right\} = \left\{ \begin{matrix} 0 \\ 2 \\ 0 \end{matrix} \right\}, \tag{6.4}$$

Slično, projekcije vektora $\vec{\rho}_i^{(i)}$ na ose koordinatnog sistema $C_i \xi_i \eta_i \zeta_i$ su date sa:

$$\{\rho_1^{(1)}\} = \begin{cases} 0\\0\\-1 \end{cases}, \ \{\rho_2^{(2)}\} = \begin{cases} 0\\-1\\0 \end{cases}, \ \{\rho_3^{(3)}\} = \begin{cases} 0\\-1\\0 \end{cases}, \tag{6.5}$$

Dualni objekat $\left[e_1^d\right]$ za vektor \vec{e}_1 može se odrediti prema definiciji kao:

 $\begin{array}{l} XXd4=(cc1^*(-U2-Q2g+g112^*XX(4)^*XX(4)-2^*g123^*XX(4)^*XX(6)-2^*g223^*XX(5)^*XX(6))...\\ +cc33^*(-U3+g113^*XX(4)^*XX(4)+2^*g123^*XX(4)^*XX(5)+2^*g223^*XX(5)^*XX(5))...\\ +(2^*g112^*XX(4)^*XX(5)+g113^*XX(4)^*XX(6)-2^*g231^*XX(5)^*XX(6)-2^*g23^*XX(5)^*XX(5)+U1))/cc22;\\ XXd5=(-a12^*XXd4+Q2g+U2-g112^*XX(4)^*XX(4)+2^*g123^*XX(4)^*XX(6)+2^*g223^*XX(5)^*XX(6))/a22;\\ XXd6=(U3-a13^*XXd4+g113^*XX(4)^*XX(4)-2^*g123^*XX(4)^*XX(5)-g223^*XX(5)^*XX(5))/a33;\\ XDOT=[XXd1,XXd2,XXd3,XXd4,XXd5,XXd6]';\\ end \end{array}$

Primer6 Za dati antropomorfni robot sa tri stepena slobode odrediti sve koeficijente metričkog tenzora,Kristofelove simbole I vrste ,generalisane sile usled sile zemljine teže kao i diferencijalne jednačine kretanja u simboličkom obliku.

Slika 6.10

Postupak automatskog odredjivanja osnovnih parametara dinamičkog modela kao što su: kovarijantne koordinate metričkog tenzora, Kristofelove simbole prve vrste i generalisane sile koje potiču od sile zemljine teže odnosno i automatsko formiranje diferencijalnih kretanja sistema krutih tela primenjen je za antromoporfni robot sa tri stepena slobode. Struktura ovog robotskog sistema predstavljena je u obliku otvorenog kinematičkog lanca bez grananja sa tri segmenta. Veze između segemenata su cilindrični zglobovi.Programski jezik korišćen za rešavanje ovog primera je simbolički jezik **Mathematica 5.0**.Ulazna datoteka pripremljena za simbolički proračun je data,[12]:

```
nBody=3;
eVec[1]={0,0,1};eVec[2]={0,1,0};eVec[3]={0,0,1};
roVec[1,1]= {0.14,0,0.5};
roVec[2,2]= {0.35,0,0};
roVec[3,3]= {0.36,0,0};
roVec[1]= {-0.14,0,0};
roVec[2]= {-0.175,0,0};
roVec[3]= {-0.13,0,0};
mass[1]=5;
mass[2]=2.45;
mass[3]=0.723;
tensJ[1]=DiagonalMatrix[{0.16,0.16,0.16}];
tensJ[2]=DiagonalMatrix[{0.00377,0.0353,0.0353}];
tensJ[3]=DiagonalMatrix[{0.00031,0.00488,0.00488}];
gGrav={0.0,0.0,-9.81};
kappa[1]=0;kappa[2]=0;kappa[3]=0;
VecM[1]={0,0,0};VecM[2]={0,0,0};VecM[3]={0,0,0};
VecP[1]={0,0,0};VecP[2]={0,0,0};VecP[3]={0,0,0};
```

Kao rezultat rada programa na izlazu dobijamo sređene i delimično uprošćene izraze.Ovde su prikazani osnovni prametri dinamičkog modela: *koeficijenti metričkog tenzora* (KoefMetr), *Kristofelovi simboli prve vrste* (KristSim), *generalisane sile* (Qsila) koje potiču od sile zemljine teže.

Koeficijenti metričkog tenzora su sledeći: $a_{11} \rightarrow \text{KoefMetr}[[1,1]]$

0.269088 + 0.190904 Cos[q[2]] + 0.195129 Cos[q[2]]² + 0.0465612 Cos[q[2]] Cos[q[3]] + 0.116403 Cos[q[2]]² Cos[q[3]] - 0.0428167 Cos[q[3]]² + 0.0428167 Cos[q[2]]² Cos[q[3]]²

```
a_{12} \rightarrow \text{KoefMetr}[[1,2]]
```

0.0582015 Sin[q[2]] Sin[q[3]] + 0.0428167 Cos[q[3]] Sin[q[2]] Sin[q[3]]

$a_{13} \rightarrow \text{KoefMetr}[[1,3]]$

```
0.0431267 Cos[q[2]] + 0.0232806 Cos[q[3]] +
0.0582015 Cos[q[2]] Cos[q[3]]
```