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Determination of the Acceleration of 
the Characteristic Mechanism by 
Introducing a Fictitious Bar 
 
This paper treats the problem of determination of the acceleration of a group of 
specific mechanisms differing only by the number of attributed dyads. The solution 
is simple in the case where the first term of such a mechanism receives the motive 
power. When it is the last term of the mechanism that the motive power is 
conveyed to, then the problem arises. The problem is to solve by the method of 
characteristical instantaneous teamed centres of rotation of the terms. 
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1.  INTRODUCTION 
 

It is known that a four-bar linkage mechanism can 
be simply extended with a dyad with pin constraints in 
such a way that one bar of the dyad is connected to the 
connecting rod and the second one is pin supported. The 
mechanism thus achieved can be extended with a new 
dyad by connecting it with the preceding one in the 
same way the preceding is connected to the basic 
mechanism. This adding of dyads to the mechanism can 
repeatedly continue. The determination of the 
kinematics values (of the acceleration above all) in such 
a mechanism is simple. The problem arises when, 
instead of the first moving bar in such kinematics chain, 
the last one becomes the motive bar. Classical methods 
in theories of mechanisms solve such cases only if the 
number of bars of these mechanisms is reduced to a 
minimum. 

In this paper the procedure of the determination of 
the acceleration by introducing a fictitious bar will be 
exposed for the group of mechanisms mentioned above. 
It has been noticed that certain groups of bars of these 
mechanisms may be temporarily replaced by an 
equivalent fictitious bar in order to enable us to 
determine the characteristic accelerations by means of 
the Method of coupled centers. 
 
2.  THESIS 
 

A kinematics chain given in Fig. 1 receives its 
motive power through the bar 2. The kinematics chain 
can not have less than six bars and their number must be 
always even. For solving such problems using the 
Method of coupled centers a fictitious bar is to be 
introduced, which is equivalent to the teamed 
kinematics three-bar-group in a given moment (Fig. 2). 
The equivalent bar thus achieved forms together with 
two other bars in the chain a new teamed kinematics 
three-bars-group that is subject to a new replacement by 

a new equivalent bar... and so on until we come to the 
motive bar. This replacement process goes from the end 
to the beginning of the kinematics chain. 

Having finished the procedure of introducing the 
fictitious equivalent bars, accelerations  of bars of the 
mechanism are to be determined starting from the 
motive bar, whose law of motion is known, until the end 
of the kinematics chain. The determination of the 
acceleration of a teamed group's bars makes "disappear" 
the fictitious bar of that group. 

The equivalent bar represents the radius of 
curvature of the trajectory of the point of the middle bar 
of the teamed three-bar-group, the point being receiver 
of the motive power for the group. The determination of 
the radius of curvature is explained in the paper [2]. 

 
Figure 1. The kinematics chain. 

 
Figure 2. The mechanism with fictitous bas. 

In order to prove this assertion we will proceed as 
follows. In the six-bar mechanism OABECDH, 
illustrated in Fig. 3, we determine the equivalent bar 
f(BG) that replaces the three-bar kinematics group 5-4-6 
and forms a temporary mechanism OABG. Apart from 
the mechanism OABG there are also the mechanisms 
GBCE, GBDH and ECDH in the new kinematics chain. 
By means of the motive bar 2 we determine the 
acceleration of the fictitious bar f of the mechanism 
OABG. The same procedure applies for determination 
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of the acceleration of the bar 6 of the mechanism GBCE 
by using the motive bar f. The acceleration of the bar 5 
of the mechanism ECDH is to be determined by using 
the motive bar 6. Finally, the determination of the 
acceleration of the bar 5 of the mechanism GBDH 
follows by using the motive bar f. 
 

 
Figure 3. The six-bar meshanism OABECDH. 

If the acceleration values of the bar 5 of the 
mechanism GBDH, that are obtained through the 
acceleration of the fictitious bar f, are the same as the 
acceleration values of the bar 5 of the mechanism 
ECDH, that are obtained though the acceleration of the 
bar 6, then it is true that the acceleration of the 
mentioned kinematics chain can be determined by 
means of a fictitious bar. 
 
3.  PROOF 
 

Suppose the acceleration of the point A of the 
mechanism OABG to be known; on the acceleration 
plane (Fig. 4) it is represented as segment SM 

2
2An AOaSM ω==  .                       (1) 

 

 
Figure 4. The acceleration (plane) of the mechanism 
OABG 

Other accelerations in the mechanism OABG are 
determined by the Method of coupled centers [1]: a 
straight line through O, parallel to GB, is cutting the bar 
AB in the point T (OT GB). A straight line through S, 
parallel to TP, as well as a straight line through M, 
parallel to BA, determine the point N (SN TP; MN BA) 
i.e. the magnitude of the acceleration A

Bna  

A
BnaMN = .                                 (2) 

A straight line through S, parallel to BG (Fig. 4) and the 
one through N, parallel to PJ, determine the point R 
(SR BG; NR PJ) i.e. the magnitude of the acceleration 

Bna  of the equivalent bar f 

BnaSR =  .                                (3) 

A perpendicular to SR through R and a perpendicular to 
MN through N determine the point N' (RN'...MN) i.e. 
the magnitudes of the acceleration A

Bta  and Bta  

A
Bta'NN =  ,                                (4) 

Bta'RN =  .                               (5) 

Let us now take the mechanism GBCE (Fig. 3). The bar 
f plays the role of a motive bar with known acceleration 
components Bna  and Bta . By the Method of coupled 
centers we find out the characteristic accelerations of 
the bars 4 and 6: 

B
Cna'RR =   ,                              (6) 

Cna'SF =  .                               (7) 

The acceleration of the point C is to be determined by 
means of well-known mechanical relations (Fig. 5): 

CtCnC aaa +=  ,                          (8) 
B
Ct

B
CnBC aaaa ++= ,                      (9) 

where N'T'=RR' and BtBnB aaa'SN +==  which 

defines the magnitudes of tangential components 
B
CtCt aanda aCt  

B
Cta'K'T =  ,                            (10) 

Cta'K'F =  .                            (11) 

 

 
Figure 5. The acceleration of the mechanism GBCE. 

 
Figure 6. The mechanism ECBG. 

The magnitudes of the tangential accelerations can be 
calculated according to [3] from these relations: 
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BQ
'RN

CQ
'M'F'K'F
=

−  ,                         (12) 

BQ
'RN

BC
'M'R'K'T
=

−  .                       (13) 

Together with the bars 1, 5 and, partially, 4, the 
fictitious bar f forms the mechanism GBDH (Fig..6). By 
the Method of coupled centers it is possible to define the 
acceleration of the point D of the bar 5 (Fig. 7): 

DnaSX =  ,                               (14) 

DtaXY =  .                               (15) 

 

 
Figure 7. The acceleration of the mechanism GBDH. 

 
 

 
Figure 8. The acceleration of the mechanism HDCE. 

Now we can consider the mechanism ECDH. By the 
Method of coupled centers we determine the 
acceleration of the point D of the bar 5 through the 
acceleration of the point C (Fig. 8) 

Dna'SV =  ,                               (16) 

Dta'P'V =  .                               (17) 

If the acceleration values of the point D thus 
obtained are the same as those obtained through the 
point B of the fictitious bar, then it is true that the 
problem is solvable by introducing the fictitious bar. 

Let us orientate the bars f, 4, 5 and 6 by unit 
vectors 654f eande,e,e  respectively. Then we 
orientate the perpendiculars to these bars by unit vectors 

654f nandn,n,n  respectively, as well as the radius 
vectors QL, QK and QW by unit vectors 

1298 eande,e  respectively. The normal and total 
acceleration of the point C of the mechanism GBCE 

(Fig. 3), taking into account the point B (Fig. 5), can be 
expressed through normal and total accelerations: 

94f6 e'F'Re'RReRSe'SF −−−=−  ,             (18) 

44ff

66

n'K'Te'T'Nn'RNeRS
n'K'Fe'SF

−−−−=
=−−

           (19) 

Similar procedure can be prepared for the determination 
of the acceleration of the point D if we take as pole the 
point C in the mechanism ECBG (Fig. 8): 

8465 e'V'Qe'Q'Fe'SFe'SV ++−=−  ,          (20) 

 =−− 55 n'P'Ve'SV  

4466 n'P'Le'L'Kn'K'Fe'SF ++−−=  ,        (21) 

i.e., for the determination of the acceleration of the point 
D if we take as pole the point B in the mechanism 
GBDH (Fig. 7): 

124f5 eX'De'RDeRSeSX ++−=−  ,            (22) 

44ff

55

nY'Ee'E'Nn'RNeRS
nXYeSX

++−−
=−−

              (23) 

In order to prove the above assertion it should be 
demonstrated that: 

55 eSXe'SV −=−  , 

and  

5555 nXYeSXn'P'Ve'SV −−=−−   i.e. SV’=SX 

and  
V’P’=XY . 

Substituting (18) into (20) and equalizing it with (22) 
we obtain the expression: 

   =++− 124f eX'De'RDeRS  

8494f e'V'Qe'Q'Fe'R'Fe'RReRS ++−−−= ,    (24) 

whose final form is: 

( ) 12984 eX'De'R'Fe'V'Qe'Q'F'RR'RD −−=−+  . (25) 

From the similarity of the triangles: QBU'SRR ∆≅∆ , 
QCV'Q'SF ∆≅∆  and  QBZ'SRD ∆≅∆  follow the 

relations: 

SR
BQ
BU'RR =  ,                             (26) 

'SF
CQ
VC'Q'F =  ,                            (27) 

SR
BQ
ZB'RD = .                             (28) 

From the similarity of the triangles: KCQ'IF'R ∆≅∆ , 
LDQ'V'I'Q ∆≅∆  and DQW'XD'S ∆≅∆ follow the 

relations: 

CK
QK'IR'R'F =  ,                           (29) 
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DL
QL'I'Q'V'Q =  ,                          (30) 

DW
QW'S'DX'D =  .                        (31) 

Substituting (26), (27), (28), (29), (30) and (31) into 
(25) we obtain: 

=







−+ 4e'SF

CQ
VCSR

BQ
BUSR

BQ
ZB  

1298 e'S'D
DW
QWe'IR

CK
QKe'I'Q

DL
QL

−−=  .       (32) 

By introducing the expressions: 

458 e
QL
DLe

QL
QDe +=  ,                        (33) 

459 e
QK
DKe

QK
QDe +=  ,                        (34) 

4512 e
QW
DWe

QW
QDe += ,                       (35) 

into the expression (32), we obtain as its final form: 

=







++−−+ 4e'S'D'IR

CK
DK'I'Q'SF

CQ
VCSR

BQ
BUSR

BQ
ZB  

 5e'S'D
DW
QD'IR

CK
QD'I'Q

DL
QD







 −−= .              (36) 

For the equality (36) to be valid, it is necessary end 
sufficient that following conditions are satisfied: 

0'S'D'IR
CK
DK'I'Q'SF

CQ
VCSR

BQ
BUSR

BQ
ZB =++−−+ , (37) 

i.e. 

0'S'D
DW
QD'IR

CK
QD'I'Q

DL
QD

=−− .               (38) 

For the reasons that are easily understandable, we will 
analyze only one of them; let it be the expression (38). 
By introducing the relations: 

'Q'F'I'F'I'Q −=  ,                           (39) 

'RRIR'IR −= ,                            (40) 

'RD'RS'S'D −=  ,                           (41) 

into (38) and by using also the relations (26), (27) and 
(28), we obtain: 

−







−−








− SR

BQ
BUSR

BQ
BC

CK
QK'SF

CQ
VC'SF

CQ
DC

DL
QD  

0SR
BQ
ZBSR

BQ
DB

DW
QD =





 −−  ,                   (42) 

whose final form, after appropriate reductions, becomes: 

−
⋅
−

−
⋅
− SR

BQCK
)BUBC(QD'SF

CQDL
)VCDC(QD  

0SR
BQDW

)BZBD(QD
=

⋅
−

−  .                           (43) 

Using well-known relations in the mechanisms: 

BG/vaSR 2
BBn ==  ,                      (44) 

CE/va'SF 2
CCn == ,                        (45) 

BQv 4B ω=  ,                             (46) 

CQv 4C ω=  ,                             (47) 

and after appropriate reductions, the expression (43) 
acquires the following form: 

0
CQBGDW
DZBQQD

CQBGCK
UCBQQD

CEDL
DVQD

=−
⋅

−  .     (48) 

From the similarity of the triangles: EVLHDL ∆≅∆ , 
ECKGUK ∆≅∆ and GZWHDW ∆≅∆ , follow the 

relations: 

HL
ELHL

DL
DV −

=  ,                         (49) 

EK
EKGK

CK
UC −

=  ,                        (50) 

HW
GWHW

DW
DZ −

=  .                      (51) 

By using the instantaneous centers of zero velocity 
L(67), K(f6), W(5f) and C(55) we obtain the relations: 

6

5

HL
EL

ω
ω

= ,                                (52) 

f

6

EK
GK

ω
ω

= ,                               (53) 

f

5

HW
GW

ω
ω

= ,                              (54) 

6

4

CQ
CE

ω
ω

=  ,                              (55) 

and after substituting (52), (53) and (54) into (49), (50) 
and (51), and these ones into (48), we obtain: 

011
CQBG
BQQD

CE
QD1

f

5

f

6

6

5 =













ω
ω

−+





 −
ω
ω

⋅
⋅−








ω
ω

−  , 

  (56) 

and after some reductions it follows: 

( ) )
CQ

CE1(QD
46

56 ω
−

ω
ω−ω ,                  (57) 

and finally, substituting (55) into (57) it follows: 

( ) 0)11(QD
66

56 =
ω

−
ω

ω−ω ,                  (58) 

so that the condition (38) is fulfilled and it is proven that 
SX=SV'. 

In order to prove the assertion that the magnitudes 
of tangential accelerations are equal, i.e. that XY=V'P', 
we start from total accelerations of the point D, that are 
expressed by using the point C, i.e. B. Suppose that: 

5555 n'P'Ve'SVnXYeSX −−=−−  .         (59) 



FME Transactions Vol. 29, No1, 2002  ▪  39 
 

Substituting (19) into (21) and equalizing with (23) we 
obtain: 

−−=++−− f44ff eRSnY'Ee'E'Nn'RNeRS  

4444f n'P'Le'L'Kn'K'Te'T'Nn'RN ++−−− .  (60) 
By following reduction of the expression, and taking 
into account that N'E'=RD', N'T'=RR', K'L'=F'Q', we 
obtain: 

( ) ( ) 44 nY'E'K'T'P'Le'Q'F'RR'RD −−=−+ .    (61) 

For the equality (61) to be valid, it is necessary end 
sufficient that following conditions are satisfied: 

0'Q'F'RR'RD =−+  ,                       (62) 
i.e. 

0Y'E'K'T'P'L =−−  .                      (63) 

Now we analyze the expression (62). By substituting the 
expressions (26), (27) and (28) into (62) we obtain: 

0'SF
CQ
VCSR

BQ
BU

BQ
ZB =−





 +   .            (64) 

By using afterwards the expressions (44), (45), (46), and 
(47) we obtain: 

0
BQCE
CQVC

BG
BUZB =

⋅
⋅−+   .                 (65) 

From the similarity of the triangles  

VCEDCQZUG ∆≅∆≅∆   i.e. BCQBUG ∆≅∆  

 follow the relations: 

BQ
DC

BG
BUZB

=
+  ,                           (66) 

CQ
DC

CE
VC

=  .                               (67) 

Substituting (66) and (67) into (65) we obtain: 

0
BQCQ
CQDC

BQ
DC

=
⋅
⋅

−  ,                     (68) 

so that the condition (62) is fulfilled and it is proven that 
V'P'=XY and that three teamed bars may be replaced by 
an equivalent bar in order to determine the acceleration 
of specific forms of kinematics chains. 
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ODRE\IVAWE UBRZAWA KOD 
KARAKTERISTI^NOG MEHANIZMA  

UVO\EWEM FIKTIVNOG ^LANA 
 

S. \or|evi} 
 
Rad se bavi problemom odre|ivawa ubrzawa kod 
grupe specifi~nih mehanizama koji se 
me|usobno razlikuju samo po broju pridodatih 
di jada. Kada pogon pr i ma pr vi  č~l an mehani zma 
re{ewe je jednostavno. Kada pogon prima zadwi 
~lan mehanizma nastaje problem. Metoda kojom 
se re{ava problem bazirana je na sprezawu 
kar akt er i st i čni h t r enut nih centara rotacije 
~lanova. 
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