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Military Applications of Explosive 
Propulsion 

 
Explosive propulsion has the significant role both in civil and in military 
applications. In this paper different geometrical configurations, which 
find their applications in practice, are studied mainly through 
determination of terminal velocity of liners achieved during explosion. 
Use of formulae, for studied geometrical configurations, in design of 
selected military items is presented. These formulae are the basic ones for 
design and optimisation of conventional warheads, anti-tactical ballistic 
missiles warheads, fuzes, etc. 
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1. INTRODUCTION 
 

The explosive propulsion is the part of physics of 
explosion which is dealing with acceleration of objects 
by detonation of an explosive charge. It finds its 
applications in many civil and military fields. As civil 
applications we′ll mention explosive clading and 
forming of metals, explosive welding of similar and 
dissimilar metals, etc. 

Military applications are numerous: high-explosive 
(HE) warheads (directed energy: shaped charge, hemi 
charge and explosively formed penetrator and omni-
directional: fragmentation and blast), anti-tactical 
ballistic missiles (ATBM) warheads, fuzes, etc. In 
laboratories plane metal plates are accelerated by 
detonations of explosive charges in their contact in 
order to get shock waves that can be conveniently used 
as laboratory tools to study  the equations of state of 
materials at extremely high pressures and temperatures, 
and their behaviour at high rate of  loading.  

In this paper we′ll consider some formulae and 
their modifications for one-dimensional geometry. Their 
military applications are specially concerned. 

 
2. EXPLOSIVELY DRIVEN LINERS 
 
2.1. Introduction 

       
Explosively driven liners movements, their 

destruction and fragments fly are carried out on the 
account of energies which are released during explosive 
detonations. A velocity of liner driven by explosive 
covered from all sides (for example, a sphere or a long 
cylinder) can be determined from the energy equation 
[1, 2]: 
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where are: sE  -energy transferred to surrounding media 
of liner (air, water, ground), kE  - kinetic energy of 
deto-nation products, pE  - internal (potential) energy of 

detonation products, dE  - energy used for plastic 
deformation of liner, mm  - liner mass, v - liner velocity, 

em - explosive charge mass, Q - explosive heat of 
explosion. 
 Based on this energy equation, and very often in 
connection with equation of momentum balance, 
different models are developed. Today the Gurney 
model is the most often used for various applications. 
British physicist Ronald W. Gurney developed a couple 
of simple ideas into a way to estimate the velocity of 
explosively driven fragments. Although shock waves 
played a very important part in the transfer of energy 
from the detonation of confined explosives to the 
surrounding metal ammunition cases, the assumptions 
Gurney made in his model to provide mathematical 
tractability had nothing to do with shock mechanics. 
Gurney assumed that: 
1. detonation of a given explosive releases a fixed 
amount of energy per unit mass which winds up as 
kinetic energy of the driven inert material (often metal) 
and the detonation product gases (he neglects energies 

sE , pE  and dE ); and 
2. those product gases have a uniform density and 
linear one-dimensional velocity profile in the spatial 
coordinates of the system. 

The physical justification of these assumptions 
may be thought of as follows. The first assumption is 
equivalent to an expectation that the efficiency of 
energy transfer to the metal will be consistent, 
regardless of the geometry or massiveness of the 
confinement of the explosive. This assumption turns out 
to be good one as long as there are no significant  "end 
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losses″ of gases, which cause the gases to expand in a  



16  ▪  Vol. 30, No 1, 2002 FME Transactions  

 

direction not contemplated in the one-dimensional 
model. The second assumption corresponds to a 
condition where there is opportunity for multiple shock 
reverberations in the gas space while the confinement is 
still intact, in which case the gas state inside the case 
tends toward constant density and a linear velocity 
profile. Both assumptions break down when the case 
mass is relatively light, because there is insufficient time 
for reverberations within the gas to drive toward steady 
expansion within the gas space; the result is that the 
case is then driven faster than the Gurney model 
predicts. 

The Gurney model may be applied to any explo-
sive/metal system with a cross-section admitting one-
dimensional  translation  motion  of  the  metal  
typically normal to its surface, regardless of the 
direction of detonation propagation. The one-
dimensional geometries considered are planar, 
cylindrical, and spherical. By applying the principles of 
conservation of energy and conservation of momentum 
to selected control masses, the equations for the 
asymptotic velocity of the liners may be derived. In the 
cases where a symmetry boundary falls within the 
definition of control mass, as in symmetric sandwich 
and exploding cylinder and sphere, only the equation for 
conservation of energy is needed. When no symmetry 
boundary is defined, or when the boundary falls outside 
the control mass, an equation for conservation of 
momentum must be developed. 

 
2.2. Symmetric geometries 

 
In this paper we refer to the mass of the explosive 

charge em , and the mass of liner or liners as mm  or 

nm , where mm  is the liner mass which velocity we are 
concerned with, and mn is tamping mass. Naturally, in 
the case of planar geometry we speak of a mass per unit 
area, whereas in the case of cylindrical geometry we are 
referring to a mass per unit length. 

Let us illustrate Gurney′s approach by considering 
the symmetric sandwich, in which a slab of explosive is 
confined by a metal layer of same mass on each side. In 
figure 2.1 is a diagram of the control mass used for the 
symmetric sandwich, where X refers to the Lagrangian 
position. The vertical dimension and that normal to the 

 

Figure 2.1 Control mass used for the symmetric sandwich 
 
plane of the paper are assumed to be infinite in length so 
that edge effects can be ignored. The X-axis is taken to 

be normal to the metal surface, and it is assumed that 
the metal moves in this direction. This assumption is 
valid when the detonation wave parallel to the X-axis, 
and is only slightly in error when the detonation travels 
perpendicular to the X-axis.  

If we use the Gurney assumption that the explosive 
material velocity vg is proportional to the distance from 
the symmetry boundary X=0, we have: 

( ) 1vX
XXv
m

g =  ,                           (2.2) 

where vl is the terminal, rigid-body speed of the metal 
liner and is also the speed of the gaseous explosion 
products in contact with the liner. The liner and 
explosive mass per unit area are defined as 

mm = ρm tm   ,                              (2.3) 

and 

me = ρe Xm ,                              (2.4) 

respectively. The equation for the total kinetic energy 
per unit area of the control mass keE  may be written as 
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The equation (2.5) may be integrated using the defi-
nitions in equations (2.2), (2.3), and (2.4). So we get: 

2)3
1(2 lmeke vmmE +=  ,                   (2.6) 

If we define E as the kinetic energy per unit mass 
of explosive, or eke mE / , the equation (2.6) simplifies 
to: 
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where the term E2 is an explosive material constant 
with units of velocity, or the Gurney velocity of the 
explosive. It is the single material constant needed to 
estimate the ability of an explosive to launch a mass of 
material. The different ways for calculation of Gurney 
velocity for explosives are discussed in [3]. 

Using the same procedure we get the Gurney 
equations for a exploding cylinder and sphere: 
Cylindrical case: 
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Spherical case:  
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The variations of normalised liner velocities with 
em mm /  for the symmetric sandwich, cylinder and 

sphere are shown in figure 2.2. 



FME Transactions   Vol. 30, No 1, 2002 ▪ 17 
 

2.3. Asymmetric geometries 
 

For one-dimensional geometry that do not contain 
a symmetry boundary within the control mass, the 
equation for conservation of momentum is used to 
determine the material location in the gas explosive 
products that experiences, on average, no change in 
position. The approximation of a linear velocity 
distribution in the gas explosive products is then used to 
integrate the energy equation. 

 

Figure 2.2 Variations of the normalised liner velocities 
with liner-to-charge mass ratios for the symmetric 
sandwich, cylinder and sphere 

For the asymmetric sandwich, or plane parallel plates, a 
diagram of the control mass is shown in figure 2.3. The 
velocity in the gas explosive products is expressed as 
 

 
 

Figure 2.3 Control mass used for the asymmetric 
sandwich. 

 

( )
ms

s
mg XX

XX
vXv

−
−

=  ,                    (2.10) 

for the left-moving portion, and  
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for the right-moving portion. 
Using the equations for conservation of 

momentum for left-moving and right-moving portions, 
eliminating the pressure impulse term, and solving for 
Xs, the location of the stationary surface, we have: 
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Using the equation for conservation of energy, we get: 
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(2.13) 
The form of the equation (2.13) is well suited to directly 
reveal the effect of a change in configuration (e.g., 

em mm /  or en mm / ) upon the velocity imparted to 
metal. The figure 2.4 is a plot of the proportionate 
velocity increase of plate with mass mm due to tamping 
for various ratios em mm / . The figure illustrates that 
tamping a relatively heavy charge ( 2.0/ =em mm ) 
increases the velocity of plate with mass mm  very little, 
while adding tamping to a light charge ( 5/ =em mm ) 
increases the velocity considerably, particularly in the 
range 5/ <em mm . 

 
Figure 2.4. Gain in velocity of plate with mass mm  due 

to tamping factor em mm / . 

The plate velocities, obtained from the equation (2.13), 
were found in reasonably good agreement with 
experimental values at relatively high charge to metal 
mass ratio ( 2.0/ ≥me mm ). To solve this problem, we 
use the concept of uniform  pressure (density) and 
particle velocity of detonation products between flyer 
plates as shown in figure 2.5 for calculating their final 
velocities at low me mm / . Using equations for 
conservation of energy and momentum, and the 
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polytropic equation of state for the detonation products, 
we get: 
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where k is the polytropic exponent, yp  is the uniform 

pressure, ρy is the uniform density, emm  is the mass of 
detonation products moving with the velocity mv , and 

enm  is the mass of detonation products moving with the 
velocity nv . 

 
Figure 2.5. Variation of density and particle velocity of 
detonation products 

From previous equations we can consider the case 
when one plate is of infinite mass. That plate acts as a 
rigid boundary. The velocity of the other plate can be 
obtained by substituting mn=∞, mem=me, men=0, and vn=0 
in the equation (2.14). So we get: 
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The open-face sandwich shown in figure 2.6 is another 
example of asymmetric geometry. Using common 
procedure we get for that case: 
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Interesting results about velocity of a plane metal plate 
placed at the end of a cylindrical explosive charge are 
given in [4]. 

The principal motivation for analysing imploding 
geometries is to model the acceleration of the liner in 
shaped charge operation. The control volume used to 
derive formulas for imploding geometries is shown in 
figure 2.7.  
 

 
Figure 2.6.  Open-face sandwich configuration with 
assumed velocity distribution 

 
Figure 2.7. Control volume for imploding geometries 
 
The final velocity of the metal liner in this case is:   
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where 
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Note that as RI and R0 both approach infinity, this 
formula approaches the classical formula for the open-
face sandwich. Usually for Ψ the next approximation is 
used: 
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over the range 1.25 ≤ R0/RI ≤ 1.72, K is constant which 
value is 0.933, and τ* is a characteristic time given by 
formula: 

CJ
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p
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where pCJ is the Chapman-Jouget pressure. 
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For imploding cylinders with exterior confine-
ment, the location the zero-radial-velocity position, Rs, is 
evaluated by solving a cubic equation: 
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The imploding liner velocity is then given as: 
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(2.22) 
In similar manner, using the fourth-polynomial equation 
for hypothetical stationary surface RS, we get the 
equation for estimating the velocity of imploding liner 
of imploding sphere with exterior confinement: 
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(2.23) 
The simple gas-dynamic assumptions made in the 
Gurney model do not apply for certain circumstances, 
and then Gurney analysis either should not be applied or 
should be applied with corrections to account for the 
deviations [5]. 
 
3. MILITARY APPLICATIONS OF MODELS 

 
3.1. Introduction 

The equations, considered in section 2, are widely 
used in design of military items. For example, the 
equations developed for cylindrical geometries are used 
in design of shaped charges. In this section we′ll give 
some interesting equations for design warheads and 
fuzes for which starting points in developments were the 
equations given in section 2. 

3.2. Warheads design 

Naturally fragmenting warheads are classified as 
uncontrolled fragmentation devices. The idea behind the 
natural fragmentation warhead is to break the case into a 
number of fragment masses giving a bias toward a 
particular mass. The four-step natural fragmentation 
break-up process is shown in figure 3.1. 

The modified equation (2.8) that accounts for 
warhead length, L, is expressed as: 
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Figure 3.1 Expansion process of natural fragmentation 
warhead. 

Here De is the explosive′s diameter. This equation 
accounts for explosive gas venting based on warhead 
length. If we know the desired peak velocity of 
fragments from consideration of warhead effectiveness 
the ratio me/mm is given by: 
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Based on initial warhead geometry, D0=2R0 and DI=2RI, 
the internal diameter of warhead case, DI,, is: 
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Here ρm and ρe are metal and explosive density, 
respectively. The ratio of the outside case radius to the 
inside case radius is expressed as: 
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Premade fragment warhead design logic offers the 
warhead designer the best method of selecting the exact 
fragment weight and size to be used in a warhead. 
Premade fragmentation warheads require an inner liner. 
The inner case is usually made of aluminium, which 
sometimes acts as a structure to carry dynamic missile 
loads. Aluminium is light, to maximise initial fragment 
launch velocity, but strong enough to contain explosive 
gases for a short period of time. A warhead with 
premade fragments with an uncontrolled fragmentation 
case is shown in figure 3.2. This type of warhead would 
generate a combined-effects warhead that would 
accelerate large mass fragments at heavy components 
with small, light fragments that would kill thin 
components. 

In this case the peak fragment velocity is given by 
expression: 
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Figure 3.2. Premade fragments on uncontrolled 
fragmentation case 

Here η is the explosive efficiency, and B is constant. 
This equation is used for optimisation of premade 
fragment and liner thickness for given fragment 
velocity, warhead weight and volume. 

KE-rod warhead technology offers designers a 
new type of warhead that can attack and destroy 
ballistic missiles. This warhead deploys high-density 
massive rods at tactical ballistic missiles (TBM) that can 
penetrate thick or hardened payloads. This concept is 
becoming more popular but differs significantly 
compared to conventional blast fragmentation warheads. 
In this concept we analise centre core and jelly roll 
concepts. 

The centre core KE-rod warhead configuration is 
used during isotropic missile/target encounters. The 
warhead device contains a centre explosive core 
surrounded by rods arranged circumferentially, as 
shown in figure 3.3. 

 
Figure 3.3. Geometric description of centre core warhead 

Starting from the equation (3.1), we get the following 
equation for the explosive radius Re: 
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(3.6) 
Here δ is 2)2( EvmR=δ . This equation is used to 
estimate rod velocity mRv  as function of explosive 

radius Re, rod diameter DR, number of rod tiers N, and 
rod length L. 

The jelly roll KE-warhead ejects its rods about the 
missile axis and is only used during isotropic 
missile/target engagements. The jelly roll configuration 
consists of explosive, buffer, and rods arranged in 
alternating circular layers as illustrated in figure 3.4. 

The rod ejection velocity is expressed as a 
function of inner rod radius ri, where each rod velocity 
is computed based on inner rod geometric location: 
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Figure 3.4. Jelly roll geometric configuration 
This equation computes the same rod launch velocity on 
each row given a constant explosive thickness. 

 
Gimbaled warheads offer warhead designers 

unique and novel warhead options for use against TBM 
targets. A gimbaled warhead is shown in figure 3.5. 

This warhead is designed to fire fragments through 
the front end of the warhead instead of out the sides of 
the warhead as in most conventional devices. Metal 
confinement is used via the cylindrical case with a metal 
tamper inserted on the aft end. The tamper thickness 
controls the peak fragment velocity. 

The peak velocity of fragments and tamper can be 
computed using following equations: 
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bavv fmtn /=  ,                                          (3.9) 

where a/b=[(me/mm)+2]/[( me/mm )+2(mn/mm )]. 
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Figure 3.5. Description of a gimbaled warhead 

 

3.3. Fuzes 
 

In fuzes detonation is often transferred from a 
detonating element (called the donor) to a second 
explosive charge (called the acceptor) by use of the 
donor charge to drive a flying plate which impacts the 
acceptor charge and shock initiates it. This concept is 
applied in low-energy flyer plate detonators as shown in 
figure 3.6, which use a 3.5 A firing current to initiate a 
mixture of TiH/ClO4 which detonates a small charge of 
HNAB explosive. This projects an aluminium flyer 
plate over a 10 mm range at up to 1.3 km/s to impact 
another two pellets of HNAB pressed to different 
densities, giving reliable full-order detonation output. 

 
Figure 3.6. Low-energy flying plate detonator 

In this and other applications involving detonation 
by flyer plate impact, it is typically desired that a 
minimal amount of donor charge be required and that 
efficient use be made of the flyer plate. These 
conditions lead to the use of thin flyer plates, which can 
be driven to high velocities by small donor charges. The 
response of explosives to the impact of thin flyer plates 
resulted in the shock-initiation criterion in the form P2τ. 
Here P is the shock pressure driven into the explosive, 
and τ is the shock duration. The criterion in this form is 
useful for engineering design purposes. To evaluate 
initiation criterion as a function of design parameters, 
we′ll consider the donor-acceptor-flyer configuration 
sketched in figure 3.7.  

Using sandwich formula, the expression for P2τ 
becomes: 
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Here subscripts a, d, and f refer to acceptor, donor, and 
flyer, respectively. Also, in the equation (3.10) z = ρU, 
where U is the shock velocity, and Z=za/zf. The previous 
equation is used for optimisation of detonators from 
different design aspects. 

 

 
Figure 3.7. Detonation transfer configuration 

4. CONCLUSIONS 
 

On the basis of previous considerations, we can 
draw the following conclusions: 

Explosive propulsion has the significant role both in 
civil and in military applications. 

Different geometrical configurations, which find 
their applications in practice, are studied mainly through 
determination of terminal velocity of liners achieved 
during explosion. 

Use of formulae, for studied geometrical 
configurations, in design of selected military items is 
presented. These formulae are the basic ones for design 
and optimisation of conventional warheads, anti-tactical 
ballistic missiles warheads, fuzes, etc.   
   
REFERENCES 

[1] Baum, F.A., Orlenko, L. P., Stanjukovi~, K. P., 
^eli{ev, V. P., [ehter, B.T.: Fizika vzriva, 

Nauka, Moskva, 1975  

[2] Jaramaz, S.: Physics of Explosion, Faculty of 
Mechanical Engineering, Belgrade, 1997 

[3] Jolgam, S.: Contribution to Study of Motion of 
Explosively Driven Metal Plates, M. Sc. Thesis, 
Faculty of Mechanical Engineering, Belgrade, 
1999 

[4] Yadav, H.S., Kamat, P.V., Sandarm, S.G.: Study 
of an Explosive-Driven Metal Plate, Propellants, 
Explosives, Pyrotechnics 11, 16-22 (1986) 



22  ▪  Vol. 30, No 1, 2002 FME Transactions  

 

[5] Jaramaz, S.: Warheads Design and Terminal 
Ballistics, Faculty of Mechanical Engineering, 
Belgrade, 2000 

 
 

VOJNE PRIMENE EKSPLOZIVNE PROPULZIJE 
 

S. Jaramaz, D. Mickovi} 

Eksplozivna propulzija ima zna~ajnu ulogu u 
civilnim i vojnim primenama. U ovom radu 

razli~ite geometrijske konfiguracije, koje 
imaju primenu u praksi, prou~avane su uglavnom 
kroz odre|ivawe krajwe brzine obloga koje se 
posti`u za vreme eksplozije. Data je upotreba 
formula, za razmatrane geometrijske konfi-
guracije, u projektovawu izabranih vojnih 
proizvoda. Ove formule su bazne za 
projektovawe i optimizaciju konvencionalnih 
bojevih glava, bojevih glava anti-takti~kih 
balisti~kih projektila, upaqa~a, itd. 
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