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Effects of Hard Stopping of the Ski Lift 
on Dynamical Strain of the Pulling 
Rope 
 
The ski lift has been modeled as per of the Theory of Small Oscillations of 
a material system with finite number of degrees of freedom of movement, 
as shown at the Fig. 1. The material system of the ski lift is allowed to six 
degrees of freedom of movement, that take into account the elastic 
properties of the pulling ropes and the lower foothold, as well as the 
mobility of rotating and translatory masses at the upper foothold. Upon 
determination of the main forms of oscillation and corresponding modal 
columns, on the basis of initial parameters, the laws of ski lift movement 
were set. Dynamical forces at lower parts of the up-going and down-
going rope tracks were determined by means of the said laws of 
movement. The ratios of dynamical rope strains amount to 3.96 and 2.26 
respectively, implying that considerable dimensions of the pulling ropes 
must be set if their breakage at hard stops is to be avoided. 
 
Keywords: Ski lift, pulling rope, static force, dynamic force, laws of 
movement. 

 
 
 
 
1. INTRODUCTION 

Ski lift is a machine where elastic elements (ropes) 
play an important role, as their task is to transfer 
movement to relatively large masses originating from 
the skiers’ presence and from the weight of the ropes 
themselves. Consequently, the ski lift is extremely prone 
to oscillations that are translated along the full length of 
the rope line and affect the elements of the ski lift 
structure in a very complex way. Any change in the 
uniformity of ski lift movement is, therefore, a strong 
impulse for appearance of oscillations. This paper is a 
research into the effects of hard stopping which can 
occur, for example, as a result of power supply failure. 
The research was made on the basis of the Theory of 
Small Oscillations and accompanied by a numerical 
example. 

 
2. ELASTIC—INERTIAL MODEL OF THE SKI LIFT 
 

The Fig. 1 shows an elastic inertial material system 
of the ski lift, that is the system comprising elastic and 
inertial elements. Moment of inertia of the lower pulley 
is neglected, because his movement around vertical axe 
is dumped by AC drive and gear unit. Longitudinal 
oscillations of the up-going and down-going ropes are 
neglected because users of the ski lift are leaned on the 

ground and represent longitudinal rigidity during the 
movement. 

Where : 

Lower foothold      m= 450 kg 

Lower foothold gear mass   m1= 500kg 

lower foothold height                l= 2.5 m  

Lower foothold moment of inertia J0= 1000 kg m2 

Rope rigidity                  C= 30 kN/m 

Reduced mass of the down-going rope m3= 5300 kg 

Reduces mass of the up-going rope  m4= 11300 kg 

Moment of inertia of the upper foothold pulley 
        J2= 234 kg 
m2 

Lower foothold pulley diameter   r= 2.5 m 

Upper foothold gear mass           m2= 400kg 

Tensile rope rigidity              C1= 45 kN/m 

Counter weight mass             m5= 10000 kg 
m3  represents the sum of masses of the pulling rope of 
the down-going track and the empty towing devices 
concentrated at the mid-span.   

m5  represents the masses of the pulling rope of the up-
going track, towing devices and the skiers concentrated 
at the mid-span. 
 

 
Received: September 2001, revised: February 2002, accepted:
March 2002. 
Correspondence to:  
Slobodan To{i}, Faculty of Mechanical Engineering,  
27. marta 80, 11000 Belgrade, Yugoslavia 
© Faculty of Mechanical Engineering, Belgrade. All rights reserved. FME Transactions (2002) 30, 11-14           11 
 



12  ▪  Vol. 30, No 1, 2002  FME Transactions  

 

 
Fig. 1  Dynamic model of the ski lift 
 
3. DETERMINATION OF COEFFICIENTS OF 

RIGIDITY AND INERTIA OF THE MATERIAL 
SYSTEM SHOWN AT THE FIGURE 1 
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Potential spring energy of the up-going track 
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Potential spring energy of the tension rope 
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Potential weight energy of the down-going track  
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As all generalized forces are equal to zero in the 
point of stable balance the following six conditions are 
obtained: 
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On the basis of said six conditions the expression for the 
total potential energy is deduced to homogenous square 
form:  
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If the generalized coordinates are numerically marked as 
follows: 
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On the basis of the expression for potential energy the 
rigidity matrix [ ]c  is obtained, whose minors meet the 
Sylvester criterion. 

Kinetic energy of the material system of the ski lift 

The kinetic energy system reads 
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and from this expression the matrix of inertia (a) 
coefficients is obtained according to already introduced 
numerical expression of generalized coordinates. 
 
4. DETERMINATION OF THE FREQUENCY OF MAIN 

FORMS OF OSCILLATION AND 
CORRESPONDING MODAL COLUMNS 

 
We start from the matrix   

[ ] [ ] [ ]acA 1−=  

After elimination of m-1 form of oscillation m-th form 
of oscillation is obtained by means of iteration formula:  
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[ ] { } { }111 +++ µΛ=µ jmmjmmA  , 

where  2/1 rr ω=Λ   is the reciprocal value of the square 
of angular speed of frequency of the r-th main 
oscillation form, to which corresponds the modal 
column { }jrµ - r-th main form of system oscillation. 
The matrix  

[ ] [ ] [ ]mmm SAA 1−=  . 

It can be further shown that  

( ) ( )[ ]aconstv mm µ= .  . 

For m defined modal columns the Gauss elimination 
procedure gives: 
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m
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m
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The matrix  [ ]mS  is diagonal except in the m-th series 
which looks as follows: 
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In such way modal matrix [ ]µ   and angular speeds are 
determined. 
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5. DETERMINATION OF LAWS OF MOVEMENT OF 
THE SKI LIFT MATERIAL SYSTEM 

 
When all model columns and frequencies of main 

forms of oscillations are defined the laws of movement 
of the observed material system can be determined. For 
this determination initial parameters are used, which, for 
the hard stop case (j=3 m/s2) read: 
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In tabular presentation, the initial parameters read: 
Table 1. 

i 1 2 3 4 5 6 
( )0iq  0 1,13 -1,13 0 0,452 0 

( )0iq  0 0 0 0 0 0 

Laws of movement, presented as matrix, look as 
follows: 

{ } [ ]{ } [ ]{ }tBtAq ωµ+ωµ= sincos  

The matrices of the column of constants { }A  and { }B  
are determined as follows: 

{ } [ ] ( ){ }01 qA −µ=  , 

{ } [ ] ( ){ } { } { } 0001 =⇒=µ=ω − BqB  . 

The matrix of coefficients with cosines is : 
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10631.010308.010368.011525.0125912.0237.0
10148.010104.010809.052517.0720186.0115.0
10697.010485.010376.010307.0045217.1188.0

10208.010128.010631.0157885.0506697.0349.0

 

Where in the matrix [ ] jjjdij AAA =  6,....,1=j  and 

0=kjA   for  jk ≠ . 

The matrix of coefficients with sines is a zero 
matrix. Taking into account the law of movement, the 
material system of the ski lift model in the form of 
matrix reads for this set of initial parameters  

{ } [ ]{ }tKq ω= cos  . 
 
6. CONCLUSION 
 

The static force at the lower end of the up-going 
track is: 

N13441sin2 4
5 =β−= gm
gm

F stat
odl . 

The static force at the lower end of the down-going 
track is: 

N32360sin2 3
5 =β−= gm
gm

F stat
dol . 

Dynamic force at the lower end of the up-going track is: 

( ) 244 CqCxlxCF din
odl =≈ϕ−=∆  . 

Dynamic force at the lower end of the down-going track 
is: 

( ) 333 CqCxlxCF din
dol =≈ϕ−=∆  . 

From the matrix  [ ]K   it can be deduced that: 

tttq 825,2cos103,0932,1cos04,1206,1cos187,02 −+≈
m33,1max2 ≈⇒ q  

tttq 825,2cos525,0932,1cos72,0206,1cos115,03 −≈  

m36,1max3 ≈⇒ q  

It follows that: 

N39900max2max ==∆ CqF din
odl  

N40800max3max ==∆ CqF din
dol  

so that the dynamic coefficients at the lower ends of up-
going and down-going tracks amount to: 
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96,3max =
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Accordingly, the pulling ropes must have large 
dimensions in order to sustain the accidental stoppages. 
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UTICAJ NAGLOG ZAUSTAVQAWA SKI LIFTA NA 
DINAMI^KO OPTERE]EWE NOSE]E-VU^NOG 

U@ETA 

 
S. To{i}, S. Simonovi} 

 
Ski lift je modeliran teorijom malih 
oscilacija materijalnog sistema sa kona~nim 
brojem stepeni slobode kretawa kako je to 
prokazano na slici 1. Materijalnom sistemu ski 
lifta je dozvoqeno {est stepeni slobode 
kretawa koji uzimaju u obzir elasti~na svojstva 
nose}e-vu~nih u`adi i doweg oslonca, kao i 
pokretqivosti obrtnih i translatornih masa 
na gorwem osloncu. Posle odre|ivawa glavnih 
oblika oscilovawa i odgovaraju}ih modalnih 
kolona, na osnovu po~etnih uslova postavqeni 
su zakoni kretawa ski lifta. Primenom zakona 
kretawa odre|ene su dinami~ke sile u u`adima 
na dowim delovima grana uspona i spusta. 
Koeficijenti dinami~kih optere}awa 
respektivno iznose  3,96  i  2,26 {to pokazuje da 
ako se moraju odrediti velike dimenzije nose}e-
vu~nih u`adi ski lifta ako se `eli izbe}i 
wuhovo  kidawe  pri naglom zaustavqawu. 
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