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Determination of the Acceleration of a 
Characteristic Group by Method of 
Coupled Centers 
 
This paper presents the procedure of determination of acceleration of the 
characteristic points of dyad by Method of coupled centers. The dyad, by 
which a mechanism is spread applying the structural synthesis procedure, 
forms a four-member closed contour with the members of the mechanism. 
The contour is a slider-crank mechanism, in which all members are 
movable. A line that passes through the momentary centers of rotation, 
formed by the opposing contour members (i.e. members which are not in 
direct contact), has the key role in defining of dyad acceleration. 
Keywords:  Mechanism, acceleration, coupled centres. 
 

 
 
1. INTRODUCTION 
 

It is well known that every mechanism can be 
spread by statically defined kinematics group by the 
method of static synthesis, so that it still remains a 
mechanism. In this paper, we will discuss the 
determination of acceleration of a such two-member 
group, by Method of coupled centers. 
 
2. THESIS  
 

Suppose that a six-member planar mechanism 
OABDCH is given (Fig. 1). It basically consists of: the 
foundation (1), the drive member (2), connecting rod (3) 
and rocker (4), which form closed kinematics chain 
OABD. Determination of characteristic accelerations of 
such a mechanism by Method of coupled centers has 
already been presented in [1] and [2], and here it will 
only be interpreted.  

Let the IP (Fig. 2) be known, prescribed, or unit 
acceleration of point A of the drive member 2, which 
rotates at a constant angular velocity.  

2
2A AOIP ω== na  .                      (1) 

By Method of coupled centers we will define all 
characteristic accelerations of mechanism OABD: line 
through D (Fig. 1), parallel with AO, crosses the 
member AB at point G. A line through I, parallel with 
LW and line through P, parallel with GL, by their 
intersection define point T. 

DG//AO   ,                                   (2) 

IT//LW  ,                                     (3) 

PT//GL  ,                                     (4) 

Line through P, parallel with BD and line through T, 

parallel with AB, define point V, by which accelerations 
of mechanism OABD are defined. 

PV//BD ,                                 (5) 

TV//AB ,                                 (6) 

naBPV =   ,                           (7) 

A
BTV na=   .                            (8) 

For determination of characteristic accelerations of 
members 5 and 6, the contour group HBCH is formed, 
and its members 3, 4, 5 and 6 form a closed kinematics 
hain.  

A line which passes through momentary centers of 
rotation M(46) and N(35) (formed by members of the 
contour group which are not in direct contact), have the 
key role in determination of the acceleration of 
members 5 and 6. All components of the normal 
acceleration vectors (including the Coriolis acceleration 
as well) within the four-member closed contour, form a 
polygon which is closed by a vector PARALLEL with 
mentioned line MN. 

 
Figure 1. Six-member planar mechanism OABDCH. 
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Figure 2. Plan of Accelerations 

Procedure is the following: components of normal 
acceleration of the point C, naC  and B

C na  are 
determined from the similarity conditions of triangles 

PQV∆DCB∆ ≅ , where: 

naCPQ =  ,                               (9) 
B
CQV na=  .                             (10) 

The normal component of relative acceleration B
3H na of 

point H of member AB can be determined from the 
similarity conditions: 

AB
AHTVUV

AB
BH

TV
UV =⇒=   ,            (11) 

where   

B
HUV na= .                               (12) 

A line through D, parallel with JH, and member CH 
define point F (Fig. 1). Line through P (Fig. 2), parallel 
with FJ, and line through Q, parallel with CH, define 
point R, i.e. acceleration C

Hna  . 

DF//JH  ,                                (13) 

PR//FJ ,                                  (14) 

QR//CH  ,                               (15) 

C
HQR na=  .                             (16) 

Coriolis acceleration in sliding couple H between 
members 6 and 3 is normal to AB, and its magnitude is 
determined by point S, as crossing point of line through 
R, parallel with coupled centers M(46) N(35) and the 
normal on TV through point U. 

SR//MN ,                              (17) 

TVSU ⊥ ,                              (18) 

cora 3H6HSU = .                           (a) 
 
3. PROOF 
 

In order to prove assumption (a), we will project 
the closed contours UVQRSU on direction normal to 
TV (normal to member 3) and on TV (direction of 

member 3). Coriolis acceleration, which is represented 
by SU, is determined by equation: 

)sin(RS)sin(QR)sin(QVSU γ−β−α=  .      (19) 

At the same time, projections of the mentioned 
quantities on direction of member 3 give equation (20), 
which will enable determination of the value of  RS, 

0)cos(RS)cos(QR)cos(QVUV =γ−β−α+ . (20) 

The following relations are known:  

;
HM
BM)sin(;

BN
BH)cos(;

BN
HN)sin( =β=α=α   

;
HM
BH)cos( =β ;

MN
BMHN)sin( +=γ ;

MN
BH)cos( =γ  

The normal component of relative acceleration of point 
C with respect to B is determined from the similarity 
conditions: 

 
BD
BCPVQV

BD
BC

PV
QV =⇒=  .            (21) 

Normal relative acceleration component of point H of 
member 5, with respect to point C is determined by 
Method of coupled centers from the similarity: 

CJ
CFPQQR

CJ
CF

PQ
QR =⇒= ,              (22) 

where C
HQR na= , and further 

BD
CDPVPQ

BD
CD

PV
PQ =⇒= .              (23) 

From the similarity of triangles LBG∆PVT∆ ≅  the 
following is obtained: 

BL
BGPVTV

BL
BG

PV
TV =⇒= .            (24) 

By substituting (24), (11), (21), (22) and (23) in (20) 
and solving for RS, we obtain: 








⋅⋅
⋅⋅−







⋅
⋅+

⋅
⋅=

BDCJHM
CDCFMNPV

BDBN
BCMN

BLAB
BGMNPVRS     

(25) 

By substituting (21), (22), (23) and (25) in (19), the 
following is obtained: 

−






⋅⋅
⋅⋅−

⋅
⋅=

BDCJHM
CDCFBM

BDBN
BCHNPVSU

 +






⋅
⋅+

⋅
⋅+−

BDBN
BCMN

BLAB
BGMN

MN
BMHNPV   

BDCJHM
CDCFMN

MN
BMHNPV

⋅⋅
⋅⋅++   .               (26) 

From the similarity of triangles CHN∆CMB∆ ≅  
follows the relation: 

BMHN
BM

BN
BC

−
= ,                        (27) 

i.e. CJH∆CDF∆ ≅  
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CH
CF

CJ
CD = .                             (28) 

Substituting (27) and (28) in (26), and after some 
mathematics, the equation gets the form: 

−







−
−

⋅
⋅=

BM)(HN
BM

CHHM
CFHN

BD
PVSU

22
 

( )BMHN
AB
BG

BD
PV

2

2
+−  .                     (29)  

The following expressions are obtained from the 
similarity of triangles FEH∆MBH∆CZH∆ ≅≅ , or 

CBZ∆NBH∆ ≅ :  

BN
BC

BH
BZ = ,                              (30) 

BH
BMHZCZ

BH
BM

HZ
CZ =⇒=  ,             (31) 

BH
EZ

HM
CF =   ,                           (32) 

HZ
EZ

CH
CF =  ,                             (33) 

BZ
CZ

BH
HN =  .                             (34) 

By substituting (32), (33) and (34) in (29), with the 
condition that EZ=BZ+BE, we have: 

−







⋅
+⋅+⋅=

BZHZ
CZBE

HZ
CZBE2

HZ
CZBZ

BD
PVSU

2
 

( )



 ++

−
− BMHN

AB
BG

BMHN
BM

BD
PV

2

22
 ,          (35) 

and further, using (30) and (27), after proper canceling 
out: 

−







⋅
+⋅=

BHBZ
BMBE

BH
BMBE2

BD
PVSU

2
 







 +− BM

AB
BGHN

AB
BG

BD
PV

2

2

2

2
.                 (36) 

The similarity of triangles BLA∆BDG∆ ≅ and 
BLH∆BDE∆ ≅ gives the equation: 

BH
BE

AB
BG = ,                                (37) 

while from (34) and (31) we get: 

BZ
BMHZHN ⋅= .                            (38) 

Substituting (37) and (38) in (36)and after systemati-
zation of members: 

( )






⋅
−−

+=
BZBH

BZHZBHBE
2

BH
BEBM

BD
PVSU ,      (39) 

and further, substituting BZHZBZ −=  and 
BEBHEH −=  in (39) : 

2BH
EHBMBE

BD
PV2SU ⋅⋅= .                     (40) 

From the similarity of triangles DLK∆DBM∆ ≅ and 
BLH∆BDE∆ ≅  we get the expressions: 

BH
BE

BL
BD =  ,                               (41) 

BM
KLBEEH

BE
EH

BD
DL

BM
KL =⇒== ,          (42) 

and by substituting (42) in (40) the following is 
obtained: 

KL
BH
BE

BD
PV2SU

2

2
=   ,                      (43) 

Equation (24) may be written in form: 

BD

AB
PV
TV

BL
BG

2
4

2
3

B

B
A

ω

ω
===

n

n

a

a
,              (44) 

from which comes the expression: 

BGBD
BLAB2

3
2
4 ⋅

⋅ω=ω .                         (45) 

If we write (43) as: 

KL
BHBH
BEBE2SU 2

4 ⋅
⋅ω= .                      (46) 

by placing (45), (41) and (37) in (46) we get: 

KLω2SU 2
3= ,                             (47) 

which, by the fact that the magnitude of relative velocity 
in sliding couple is equal to the product of the common 
angular velocity and the distance of the absolute 
momentary centers of rotation 

KL33H6H ω=v ,                     (48) 

proves the assumption (a) 

3H6H33H6H 2SU vω==cora . 
 
4. CONCLUSION 
 

This paper treats, among other things, the problem 
of determination of the Coriolis` acceleration of a point. 
It is demonstrated that Coriolis` acceleration can be 
reduced to relative acceleration; by the method of 
teamed centres Coriolis` acceleration is treated as 
“normal acceleration of a point” and the magnitude and 
direction in space are determined, in spite of the fast 
that basically Coriolis` acceleration, as we know from 
kinematics, is not normal acceleration of a point. 
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ODRE\IVAWE UBRZAWA KOD 

KARAKTERISTI^NE KINEMATSKE GRUPE 
METODOM SPREGNUTIH CENTARA 

 
S. \or|evi} 

 
U radu se razmatra postupak odre|ivawa 

ubrzawa karakteristi~nih ta~aka dijade 
Metodom spregnutih centara. Dijada, kojom je 
postupkom strukturne sinteze pro{iren neki 
mehanizmu, obrazuje sa ~lanovima mehanizma 
~etvoro~lanu zatvorenu konturu. Kontura 
predstavlja klipni mehanizam kod koga su svi 
~lanovi pokretni. Prava koja prolazi kroz 
trenutne centre rotacie, koje obrazuju naspr-
mni ~lanovi konture (~lanovi koji nisu u 
direktnom dodiru), ima kqu~nu ulogu u defini-
awu ubrzawa dijade. 

 
 


