Asymptotic Solution of Nonlinear
Vibrations of Antisymmetric
Laminated Angle-Ply Plate

Goran Janevski In this paper single frequency vibration of laminated angle-ply
Research and Teaching Associate rectangular plate which is freely supported on its own edges are analyzed.
University of Ni$ The classical Kirhhoff theory is used and the vibration equations of
Faculty of Mechanical Engineering Karman type are analyzed using the Airy function. Asymptotic solution in

the first approximation is given. Numerical example includes analyses of
single frequency plate vibration in stationary and instationary conditions
under the activity of time-dependence outer impulse. Amplitude-frequency
and phase-frequency characteristics of plate in stationary and
instationary conditions for different laminate characteristics are
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1. INTRODUCTION laminated plate under the time dependent external force
effect are considered. Also, influence of mechanical and
The problem of laminated composite vibrations has others characteristics to amplitude and phase of
been the object of consideration during the past five asymptotic solution is given in the first approximation.
decades. The equations of laminated plate vibrations are
essentially identical to those for a single-layer 2. PROBLEM FORMULATION
orthotropic plate. Jones (1975) gave the fundamental
basis for tension-deformation state of laminated plates Components of deformation tensor and components
and differential equations of linear plates vibrations. of curvature of the plate middle surface are defined as
Khdeir and Reddy (1999) consider the free vibrations of follows:
laminated composite plates, for different boundary ou 1.0wa
conditions, comparing the Kirhhoff theory with applied c o + B (a)
one. Tylikovski (1993) considers stability of nonlinear x ov 1 ,0w
symmetrical laminated cross-ply plates. The equation of te} = Ey (= oy + E(E) ’
vibration of cross-ply laminated plate is derived by Y xy ou oOv  Oowow
introduction of Airy function. Ghazarian and Locke 5+§+§§
(1995) with the invoking of Galerkin method determine )
equations of laminated plate vibrations, which are _ow (1)
simple for analysis. . ox?
Very applicable asymptotic method of Krilova- (K} = Kx _ (32_w
Bogoloubova-Mitropolski  1964) for solving of Y o2 ’
nonlinear vibrations continuum problems is applied in Ky ow Ow
papers of Pavlovi¢ (1984) and K. Hedrih and others -2 ox oy

(1974), (1978), (1986). Pavlovi¢ (1984) published a
study about analysis for resonant regime two-frequent
vibrations of shallow shells; K.Hedrih and the others
(1986) analyze four-frequent vibrations of thin shells
with an initial irregularity. Janevski (2001) analyze
single frequency vibration symmetrically laminated

where u(x,y,f), v(x,,f) are in-plane displacements
whether w(x,y,?) is displacement normal to the middle
surface of plate..

Membrane force, moments of bending and torsion
moment in the cross section along axes can be presented

cross-ply plate, consider influence of mechanical and as:
others characteristics to amplitude and phase of N, M,
asymptotic solution. {N}=<{N v (e My=3M v )

In the present paper single frequency vibrations of N, M,
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Matrix of stiffness [C] for antisymmetric angle-ply

laminates has the form:

(4, 4, 0 0 0 Bj]
Ay Ay 0 0 0 By
0 0 Ag Big Byg 0
0 0 By Dy Dy 0]°
0 0 Byy Dy Dyy 0O

[Big Byg 0 0 0 Deg |

[C]= 4)

and matrices of extensional stiffness [4], coupling
stiffness [B] and bending stiffness [D] are defined as:

A A, O 0 0 B
[A]=|4, 4y 0 [,[Bl=]| 0 0 By |,
0 0 A B By O (5)
Dy Dy 0
[D]=| Dy Dy, 0
0 0 Dg
Elements of matrix of stiffness are defined as
hi/2
(45, B;,0,)= [ (12,220, dz,
-h/2

where Q;; are the reduced in-plane stiffness of an

individual lamina, and h is thickness of plate.

Differential equations of plate vibration are obtained
from condition that forces and moments in coordinate
direction are balanced dynamically

oN, ON, . N, +6Ny o,

Ox Oy Ox oy
o2M oM . *M 2
X +2 xy + Yy + Nx o“w + (6)
ox? 0Ox 0y 6y2 ox?
o%w *w *w ow
——+ N, =—+q=ph—+2Bph=—
W axay TNy o tq=p o2 +2Bph 7,
where p is the density material of plate, § is damping
coefficient and ¢(x, y,¢) is external disturbing force.

+2N

From equation (3) moment of bending as well as
moment of torsion components can be expressed in
terms of transverse displacement of middle surface
plate:

o’w %w
M. =B,y. —D,<¥_p,<W,
x 167 xy 11 A2 12 5)/2
d%w 3w
M, = Bygy,, =Dy <= D (7)
y 261 xy 12 ax 22 o 6)/2
82

Introduce the function of tension y = y(x, y,¢) so that

2 2 2
R A Vi A e O
dy ox Ox Oy
the first and the second equation of system Eq. (6) are
satisfied. The condition of deformation compatibility
can be expressed as

N

2 2
azgx +8 €y _6 iy

6y2 o2 oxdy

(€))
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and according to Eq. (1) can be rewritten in the next
form:

2 2 2
528x+asy_ayxy:(62wj %w d%w . (10)
6y2 ox? Ox Oy Ox Oy ox? 6y

From equation (3) it follows that
8)( Nx
Ey Ny
ny [ -1 ny
=[C] , (11)
Kx MX
K, My
Ky Mxy

where [C]!is the inverse of the matrix of stiffness [C]:
4 45 0 0 0 B
* * B3
Ay Ay (: 0 0 By
4 Lo o 4. B, B, 0
[T = 66 16 726 . (12)
0 0 By Dy Dy, 0
* * *
[Big By 0 0 0 D |

From Egs. (8), (11) and (12) components of tensor of
deformation can be expressed in terms of function of
tension

£, = A o’ X4, o* XM,
8y ox?

=45 a"’+A* 8W+B26M (13)
6y ox?
] 82

Substituting Egs. (7) and (8) into third equation of the
system Eq. (6) and including of Eq. (13), after its
differentiation, into left side of Eq. (10) gives:

*w

ph—+2Bph—+LAU(W)+
64\118 oty o
+e + e —L(W,\V)ZQ(X,)/J),
! 6x36y 2 6x6y3
1 o*w o*tw
@ \V:__L(W’W)_k _k > (15)
AU 2 Paday 2 oxdy3

where following denotations are:
o*w 4w 4w

tg +g . (16)
ox? 12 8x28y2 2 6y4

Lyyw) =g

* *
811 = beBi6(Bi6Dy1 + ByeDyp) + Dy

* % *
812 = bgB1(Bi6Dyy + BygDyy) + b By (B Dy +
*

* *
82y =beBys(BigD1y + BygDyy) + Dsy
* * *
e =bg [BI6A66 = 2(Byg4y + BzéAzz)]a

* * *
e, =bg [326‘466 —2(Bygdy; + 326A12)]a
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64W 4 64“,
O, v="h +h +h ,  (17)
AU 11 ax4 12 axzayz 22 8)/4

hyy = bgBog(Big Ay + BygAyy) + Ay,

* * * * *
hyy =beB6(Big Al + BygApy) + beBog (B 4y +

* % * *
hyy = beBy6(Big A1) + BagAin) + 4y,
ky = be(BigDyy + BygDyy —2BycDeg)

ky =bg(B16Dy + BygDyy —2B1Dgg ) s

Egs. (14) and (15) are differential equations of plate
vibration. By solving of Egs. (14) and (15), knowing the
boundary and initially conditions, one can determine
transverse displacements of middle surface w(x,y,f) of
laminated plate, as well as function of tension y(x,),?).
Also according to equations (7), (8) and (13) all
necessary tensor of deformation components, force
components and moments are determined.

3. SINGLE FREQUENCY VIBRATIONS OF ANTISYM-
METRIC LAMINATED ANGLE-PLY PLATES

Let us consider plate vibration described by the
system of differential equations (14)- (15). Suppose
that disturbing force g(x,,?) is acting on the system. The
force is 2m-periodical in 0(t) with the constant

amplitude Pl* in the form

ey, 0 =B sinb w(xy),  (18)
where d0, /dt = v () is momentary frequency and ¢ is

a small positive parameter. For the laminated plate,
freely supported along edges, boundary conditions are
(Tylikovski (1993))

x=0
x:a}w=0;Mx=O, N,=0, Ny, =0;
=0 (19)
y:b}w:o;My=o,Ny=o, ny:O;
Let initially conditions are
N M
w(x, 3,0 |,_g = D D Py (%, )
i= lj 1 (20)
ow(x, y,t
% quywy(x ),
=0 =1 j=1

where W (x,y)=sin(imtx/a)sin(jny/b) are either
normal functions and Pij and q; are real numbers.

According to boundary and initially conditions (Egs.
(19), (20)), in the single frequency regime of plate
vibration transverse displacement w(x,y,) as solution of
system Egs. (14)-(15) is supposed in the form

W p.0) = 0w (69) = fiosin)sin) , @1)

where f(#)is unknown function of time, which will be

determined from the equation of vibration.
Taking Eq. (16) into consideration, function L(w,w)
is evaluated in the form:
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2, A2 2. )2
L(W’W):za w0 w_, 0w | _
ox? 6y2 Ox Oy

= 2b2 f1 ) {cos( ) + cos(—— y)}

and included in the Eq. (15). Solving of partial
differential equation one determines function of tension
in the form:

}\‘2 2 2
= /i cos(z—m) + —f2
32y, a’ 32)2h

M, + 22k, )
By + N2l + 3y,

(—) +
(22)

f cos(%) cos(%).

where A = a/b isratio of plate sides.

Multiply Eq. (14) by wy;(x,y)dxdy, after substitution
of disturbing force equation (18) and expressions Egs.
(21)-(22) in its right and left side respectively, to
integrate by plate surface (x € (0,a),y €(0,b)). If we

introduce substitution
0 =HO/h, (23)

after the integration, we will obtain differential equation
in unknown function &;(t)

E +of & =—2BE +a,&f +ePsin®, (24)
where:
1 o

of = h 4(g11+k g12+7bg22)

p (25)
1 h =t x2 1

o =——————(— ), (26)

VTG p 027 By a2y,
P =P /ph?. 27)

The Eq. (24) represents differential equation of
compulsory vibration of plate in the single frequency
regime with the frequency given by the Eq. (25).

For the composition of the asymptotic
approximations of the solution of the perturbed
vibration equation (3.24), which corresponds to the
single frequency vibrations, it is indispensable that

V() = 0., where w,, 1is circular frequency “un-

perturbed” vibration. Also, the following conditions
should be fulfilled (Mitropolski and Mosenkov (1976),
Hedrih (1978)):

a) The possible harmonic vibrations with proper circular
frequency ., only depending on two arbitrary

constants,

b) By an unique solution of the equation of
“unperturbed vibrations” which to the balance of the
plate, a trivial solution w(x,y,f)=0 appears,

¢) In the perturbed system are absent the internal

resonant states, that is, o, #(p/q) ®,,, where m,n=2,3,

4,... and p and ¢ are reciprocally simple numbers.

With these assumptions, the asymptotic solution of
the equation of perturbed vibrations is (Mitropolski
(1964)):
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& = aj cos(0; + @) + eu + 821/15-2) +... (28)

where 1t =¢¢ is “slowly-changed time” and ug-l)(r, 0,

a;,, o), ug.z)(r, 0y,a;,¢;),... are periodical functions

whose arguments are: 0, and ¢; with the period 2m;
amplitude and phase of solution (Eq. (28)) which can be
found from differential equations

d
dr
‘ (29)
%:(Dl —Vl +SBI +8282 + ...

Where A](Tsa]s(pl)a A2(15a19@1)7 B](Tsa]s(pl)a

B,y (t,a;,¢1), ... are unknown functions in “slowly-

changed time” and amplitude and phase. These
functions can be determined of supposed solution (Eq.
(28)) in the equation (24) and equalizing of coefficient
along by the same harmonics. Staying on the first
approximation, the solution of equation (24) will have
the form

& = ajcos(vit+¢p), 30)

where differential equations in the first approximation
will be

da, 8
— =—Pa; - cos
dt ' o, +v, Pr>
(€2))
ﬂzm -V —éﬁa2+Lsin(p

4. NUMERICAL ANALYSIS OF COMPULSIVE
VIBRATION OF LAMINATED PLATE IN
STATIONARY CONDITIONS

If expressions (31), which the first approximation
differential equations of solution (30), are equal to zero,
ie.

B d 0
—Ba;, — cos(Q; =
1 o +V #1 ’
39 o il .
O -V, —=>—ai +————singp, =0
8o, b 7 a(e) +vy) P ="

the equations, which define relationship of amplitude
and phase of asymptotic solution (30), will be obtained.

Solving these equations in amplitude a,=f;(v) and
phase @;=f(v) we obtain amplitude-frequency and
phase-frequency characteristics of laminated plates
vibration for stationary conditions. For all numerical
examples the following characteristics of laminated
plate are taken: dimension of plate ¢=2 m, b=1 m;
thickness of plate #=1 cm; specific density of plate
material p=2600 kg/m’; damping coefficient p=6 s and

amplitude of disturbance Pl*=1300 N/m’. Changes of

amplitude-frequency and phase-frequency character-
istics due to changes of some laminates characteristics
are given in the next examples.

Amplitude-frequency characteristics of four-layered
antisymmetric laminate with lamina orientation 0% 90%/
0% 90° and thickness 0.2h / 0.3h / 0.3h / 0.2h while
changing the relation of longitudinal and transverse
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modulus of elasticity (E,/E,=5;10;40) are shown in
Fig.1a. With the increasing of the relation E|/E,
amplitude-frequency curves are getting displaced to
higher amplitudes and lower frequencies.  Frequency
region in which for some frequencies of external force
there is possibility of three stationary states (two are
stable, one is unstable), that is frequency region between
resonant jumps, is getting displaced to lower
frequencies.  Fig.1»  shows  phase  frequency
characteristics whose examination gives the same
conclusions.
3 —

LN /

21 | | | |
100 150 200 250 3000 Vi

Figure 1. Amplitude-frequency (a) and phase-frequency (b)
characteristic for different ratio E,/E, (1-E,/E,=5, 2 -
E,/E,=10, 3 - E,/E,=40)

In the next example the laminate analysis for the
ratio E,/E,=10, and for the same orientation of
individual lamina 0°90°/0°90° are performed. While
analyzing the thickness of lamina is changed.
Amplitude-frequency and phase-frequency characteris-
tics for different thickness are shown in Fig.2. It is
obvious that with the decreasing of external lamina
thickness and with the increasing of internal lamina
thickness, amplitudes have lower values on the higher
frequencies of external disturbing force.

Amplitude - frequency and phase - frequency
characteristics for different number of lamina are shown
in Fig. 3. At the ratio E/E)=10 it is taken that total
thickness of longitudinal lamina is the same as the
thickness of transversal laminae (by h/2), i.e. for two
layered laminate (30%-30°, 0.5h/0.5h), for four-layered
laminate (30% -30% 30 -30°, 0.25h/0.25h/0.25h/0.25h)
and for six layered laminate (30%/-30%/30%-30°/30°/-30°,

FME Transactions



0.1h/0.15h/0.25h/0.25h/0.15h/0.1h ). With the incre-
asing of number of lamina amplitude maximums are
decreasing, and they are occurring on the higher
frequencies. Amplitude-frequency and phase-frequency
T (a)

a
25

15

0.5

10

characteristics for different angle of lamina are shown in
Fig. 4. With the increasing of angle of lamina amplitude
maximums are decreasing, and they are occurring on the
higher frequencies.

‘F (b)

Figure 2. Amplitude-frequency (a) and phase-frequency (b) characteristics for different thickness lamina (1-0.4h/ 0.1h/

0.1h/0.4h, 2 - 0.3h/0.2h/0.2h/0.3h, 3 - 0.2h/0.3h/0.3h/0.2h)

T (a)
ay
2.5

0.5

T < )

| | |

|
00 150 200 250 30d 2

| 1
100 150 200 250 S(Jl) Vi

Figure 3. Amplitude-frequency (a) and phase-frequency (b) characteristics for different number of laminae (1-ll laminae +¢ /

-@/, 2-IV laminae +@/-¢/+¢/-¢/, 3-VI laminae +@/-@/+@/-¢/+p/-Q)

T (a)

a, 1

25 |- /
2

0.5

o= — ce—c oSl

100 150 200 250 300 350 400 Vi

| 1 | | 1 |
100 150 200 250 300 350 400" V1

Figure 4. Amplitude-frequency (a) and phase-frequency (b) characteristics for different angle of lamina (1-¢=30°, 2-p=45°, 3-

¢=60°, 4-¢=75°)
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5. NUMERICAL ANALYSIS OF COMPULSIVE
VIBRATION OF LAMINATED PLATES IN
INSTATIONARY CONDITIONS

The equations (31) are the first approximation
differential equations of asymptotical solution of
differential equation (24). Numerical solving of these
equations by means of Runge-Kutta method (the fourth
order), gives amplitude frequency characteristics of
single frequency regime of laminated plate vibration in
instationary conditions. The dependence of these curves
on changing of same laminate characteristics is given in
the next examples.

Amplitude-frequency characteristics of four-layered
laminate (0% 90° 0% 90°, 0.2h/ 0.3h/ 0.3h/ 0.2h) for
different ratios of longitudinal and transverse modulus
of elasticity are shown in Fig. 5. Amplitude-frequency
characteristics at linear increasing of external force
frequency are shown in Fig. 5a. Passing by resonant
state is realized by decreasing of external force
frequency as in Fig. 5b. It can be concluded, on the
basis of both diagrams, that due to increasing of ratio
E\/E,, maximums of amplitude are increasing too, and
are displaced toward lower frequencies.

25 L v;=100+15t

2 1 7/
E i / /

a,

Figure 5. Amplitude-frequency characteristics for different
ratio E/E, (1 - E/E,=5, 2 - E/E,=10, 3 - E,/E,=40)
Amplitude-frequency characteristics for different
thickness of longitudinal and transverse lamina’s
orientation while £,/E,=10 are shown in Fig. 6. It is
obvious that with increasing of internal lamina
thickness, maximums of amplitude are decreasing.

82 = Vol. 30, No 2, 2002

v,=100+15t

0.5

1

Figure 6. Amplitude-frequency characteristics for different
thickness of laminae (1-0.4h/0.1h/0.1h/0.4h, 2-0.3h/ 0.2h/
0.2h/ 0.3h, 3-0.2h/0.3h/0.3h/0.2h)

25
v;=100+15t
a, 2

2

e —
(O8]

15

—————

0.5

300 Vi

v,=500-15t

foo 150 200 250 300 vy

Figure 7. Amplitude-frequency characteristics for different
number of laminae (1-ll laminae +@/-¢/, 2-IV laminae +¢/-
@/+@/~¢/, 3-VI laminae +@/-Q/+Q/-p/+Q/-Q)

The influence of number of laminaec on the
amplitude-frequency characteristics in instationary state
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is shown in Fig. 7. At the ratio E,/E,=10 it is taken that
total thickness of longitudinal lamina is the same as
thickness of transverse laminae (by h/2), that is for two
layered laminate (0°/90°, 0.5h/0.5h), for four-layered
laminate (0% 90% 0% 90°, 0.25h/0.25h/0.25h/0.25h)
and for six layered laminate (0°%90°0°90%0%90°,
0.1h/0.15h/0.25h/0.25h/0.15h/0.1h ). It is evident
that with increasing of lamina number, maximums of
amplitude are decreasing.

The influence of angle of laminae on the amplitude-
frequency characteristics in instationary state is shown
in Fig. 8. It is evident that with increasing of lamina
angle, maximums of amplitude are decreasing.

2 - v,=100+15t

0.5

100 200 300 400 2

Figure 8. Amplitude-frequency characteristics for different
angle of lamina (1-¢=30°, 2-¢=45", 3-p=60°, 4-9=75")

6. CONCLUSIONS

On the basis of analysis of amplitude-frequency
characteristics for single frequency regime of laminated
plate vibrations in stationary and instationary we can
conclude:

- while increasing of the ratio of longitudinal and
transverse modulus of elasticity E|/E,, absolute values
of vibration amplitudes increase,

- in the four-layered laminates where laminae
orientation is 0°/90°/0°/90°, amplitudes of vibration are
larger on the lower frequencies with increasing of
thickness internal laminae, and

- while increasing of lamina number, by the same
thickness of longitudinal and transverse lamina,
amplitudes are decreasing,

- while increasing angle of lamina, amplitudes are
decreasing.
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ACUMMTOTCKO peLiee HefIMHeapHUx ocuunaymja
aHTUCUMETPUYHUX YraoHMX flamenacTux nrova

FopaH JaHeBCKMU

Y pany cy anamm3upaHe jegqHO(pPEKBEHTHE
ocIpianyje aHTUCHMETpPUYHE YyraoHe JamenacTe
I104€, IPaBOyraoHoOr 00JuKa, CI00OHO OCIIOWkEHE
Ha cBOjuM KpajeBmma. Kopwumrhena je kiracnyHa
teopuja Kupxodg-a, ypobemeM Anpuj-eBe HalloHCKe
(pyHKIIMje aHANM3UpaHa je jeAHauYnHA OCHUIOBaHA

84 = Vol. 30, No 2, 2002

mamenacre movye Kapman-oBor Tuna. [lata cy
acUMITOTCKA pellekha Yy MpPBOj ampOKCUMAalUju.
Hymepuuku npumep o6yxBaTa aHalIM3y OCLUIOBA-
Ba IUIOYe Y CTAallMOHAPHUM M HeCTallMOHApHUM
yCIOBUMa TIOJ /I€jCTBOM BPEMEHCKH 3aBHCHE CIOJbA-
ke nobype. I'paduuku cy npukasaHe aMIUIATY-
IHO-(PpeKBeHTHE U (pa3HO-(PpPEKBEHTHE KapaKTepu-
CHTKE IJIOYE y CTAllMOHAPHUM U HECTAlMOHAPHUM
yCIOBMMA 3a pa3ilU4MTe KapaKTEepHUCTUKE Jame-
jara.
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