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In the paper is presented a new proof of the fundamental theorem in 
network synthesis of arbitrary, square (stable) admittance matrix of real, 
rational functons in complex frequency s (RRF matrix), by active, 
multiport, transformerless, balanced RC network. Since the theorem 
establishes only the neccessary condition for network existence, it is 
proved firstly that this condition is also sufficient if active elements used 
in realization are balanced voltage-controlled voltage sources (VCVS) 
and then is given a formulation of a new realization procedure of RRF 
admittance matrices, by using theoretically minimum number of balanced 
VCVS. The proposed procedure relies on a new theorem on 
representation of regular, polynomial matrices (λ-matrices) in s (having 
the specified degree), as product of two λ−matrices. The obtained results 
are the most general in nature and are easily applicable in active, 
transformerless, multiport, RC network synthesis 
 
Keywords: Active RC synthesis, balanced networks, transformerless 
synthesis, factorization of polynomial matrices. 

 
 
 
1. INTRODUCTION 
 
 It is well-known that the immitance matrices of pas-
sive, multiport, transformerless RLC networks are para-
mount [1, 2] ∀ s ∈ [0, ∞) (s is, in general, the complex 
frequency). A symmetric, P-th order real matrix is said 
to be paramount if each of its r-th order main minors 
(r=1, 2, ... P) is not less than the absolute value of any 
other minor established from the same rows (columns). 
Since the paramountcy is a necessary condition, Telegen 
has tried (and succeeded) to prove that it is also suffici-
ent for existence of two- and three-port, purely resistive 
networks. If P > 3 the paramountcy does not assure the 
resistive P-port existence and the synthesis problem ap-
peares to be equivalent to synthesis of resistive network 
with internal nodes. Unfortunately, this problem is not 
solved yet, except for ladder one- and two-ports. The 
procedures proposed for realization of immitance matri-
ces during past few decades reduce to active network 
synthesis of pertinent admittance matrices by networks 
with no internal nodes [3-5]. In these realizations the 
passive, transformerless, RC subnetworks are either ba-
lanced (PBRCT0) [3, 4], or common-ground (PGRCT0) 
[5], depending on whether the coefficient matrices of  
the second Foster's expansion of pertinent admittance 
matrix are dominant (DMCSFE) [2-4], or hyperdomi-
nant (HDMCSFE), respectively [5-9].  
 Multiport network synthesis problem is encountered 

yet in case of minimal synthesis of RRF, w(s)=P(s)/Q(s) 
[P(s) and Q(s) are mutually prime polynomials], since it 
appeares to be equivalent to synthesis of passive or ac-
tive resistive network with δw+1 ports {δw is the degree 
of w(s) in Duffin-Hazony's sense [10]}. It has been pro-
ved that δw=max {P0, Q0}, where P0 and Q0 are the al-
gebraic degrees of P(s) and Q(s), respectively [10, 11]. 
 It has also been known [4] that arbitrary stable RRF 
admittance matrix of order P can always be realized by 
active BRCT0 network with P negative immitance con-
verters (NICs), or by common-ground (GRCT0) network 
with 2P VCVS [5]. In all cases [3-5] the realization net-
work and the complete set of equivalent realizations are 
strongly dependent on a special factorization of the P-th 
order, generally regular, polynomial matrix (=λ-matrix, 
λM; "lambda matrix") in s. A λ-matrix is said to be ge-
nerally regular if it is not singular ∀s. In section 2 we 
shall first prove our prerequisite, 
 

Theorem 1: The sufficient condition for factorization of 
P-th order, generally regular λM P(s), having degree L, 
whose determinant has K distinct zeros, in form P(s)= 
=P1(s)⋅P2(s), where p2=P2

0 reads: K > (P-1)⋅L+p2-1. The 
coefficients matrices of s in P1(s) and P2(s) are real or 
complex if the zeros of det P(s) are real or complex, res-
pectively, 

and in sections 3 and 4 we give proof of our main result, 
 

Theorem 2: For realization of arbitrary P-th order ma-
trix of RRFs in complex frequency s, as the admittance 
matrix of active BRCT0 P-port network: 
(a) P controlled sources (CS) with real-valued control-
ling coefficients are necessary, 
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(b) In general, the realization can not be acchieved by 
active P-port with less than P CS, 
(c) P balanced VCVS with real-valued and by modulii 
greater than unity controlling coefficients (i e. voltage 
"amplifications") are necessary and sufficient in general 
case. 
    
2. FACTORIZATION OF REGULAR λ−MATRIX 
  
 In this section we shall prove Theorem 1. Let us first 
suppose that P=[pij(s)] is a P-th order, generally regular 
λM, such that L=max {pij

0(s)} (i, j=1, 2, ... P). Assume  
that the coefficient matrix of sL in P(s) is regular. Then: 

  det ( )
=0

P s a sk
k

k

P L
= ⋅

⋅

∑ .   (1) 

Suppose det P(s) has K distinct zeros sk (k=1, 2, ... K). 
For each s=sk the columns P(j)(sk) (j= 1, 2, ... P) of P(sk) 
are linearly dependent, i. e. there must exist P numbers 
q1k, q2k, ... , qPk  provided that at least one of them is 
different from zero, which assure the following: 

  q sjk
j

k P
j

P
⋅ =∑ P ( )

=1
( ) 0 ,1 , (2) 

where 0P,1 is P-dimensional column-vector. Let the poly- 
nomial Ck(s) be the greatest common-divisor of all co-
factors Dik(s) (i=1, 2, ... P) of P(s). Laplace expansion 
of det P(s) with respect to entries of the k-th column of 
P(s) reads: 
 

 det ( ) ( ) ( ) ' ( )
=1 =1

P s p D s C s p D sik ik k
i

P
ik ik

i

P
= ⋅ =∑ ∑ .   (3) 

 

If s=sh is a zero of Ck(s), then rank P(sh) ≤ P-1. If poly-
nomial det P(s)/Ck(s) has at least one zero s=sk which is 
different from zeros of Ck(s) and furthermore rank P(sk) 
=P-1, then the folowing systems of simultaneous linear 
algebraic equations in qjk  (j=1, 2, ... , P) have only the 
trivial solution and a non-trivial one, respectively: 

q s q sjk
j

k P
j
j k

P
jk

j
k P

j

P
⋅ = ⋅ =

≠

∑ ∑P P( )

=1

( )

=1
( )  ( )0 0, ,;1 1 . (4) 

Since P(s) is generally regular, we can put down: 

  q s s s sjk
j

k
j

P
k⋅ = − ⋅∑ P M( )

=1

( )( ) ( ) ( )1 , (5) 

where M1
(k)(s) is a P-dimensional λ-column-vector with 

degree not greater than L-1. Now, let us consider only 
those zeros s=sk of det P(s) which provide rank P(sk)=P-
-1. Then, at least one set of different indices (i. e. rows) 
{i1, i2, ..., iP-1} ∈ {1, 2,..., P} must exist for which holds: 

 q s q sjk i i i k kk i i i k
j
j k

P

P

j

P

j
⋅ = − ⋅

− −

≠

∑ P P
1 2 1 1 2 1, , ... , , ...    

=1

( ) ( )
( ) ( ) . (6) 

Since the second system of (4) has a non-trivial soluti-
on, we can first select qkk ≠ 0 arbitrarily and then we 
may calculate qjk (j ≠ k, j=1, 2, ... , P) uniquely from (6). 

From assumption  that rank P(sk)=P-1 it follows that a 
non-zero minor of P(sk) reads: 

  det ( )  ... , 
  ... , ( ), ( ), ... , Pi i i

k k P
k

P
s

1 2 1

1 2 1 1
, ,
, ,

−

− + , (7) 

and that it provides the existence of the constant, regular 
matrices Qk  (k=1, 2, ... , P), 
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which enable the following representation of P(s), 

P Q P P M( ) ( ) ... ( ) ( ) ( )(1) ( ) ( )s s s s s sk
k

k
k⋅ = − ⋅−1

1  

               P P( ) ( )( ) ... ( )k Ps s+1 . (9) 

Since Ck
0 ≤ (P-1)⋅L, number of distinct zeros of Ck(s) is 

not greater than (P-1)⋅L. The sufficient condition for any 
factorization of P(s) reads K > (P-1)⋅L, since only then 
can exist at least one zero of polynomial det P(s)/Ck(s), 
which is different from zeros of Ck(s). Let this condition 
be satisfied and let there exists at least P distinct zeros 
s1, s2, ... , sP of det P(s). If L-1 ≥ 1/(P-1) the existence of 
these zeros is automatically assured if K > (P-1)⋅L. Then 
the following factorization of P(s) holds: 

P P Q Q M P( ) = ( ) ( ) ( ) ( )(1) (2)s s s s s s⋅ ⋅ = − ⋅−
1 1

1
1 1 ...  

... P Q M( ) (1)( ) ( ) ( ) ( )P s s s s s s⋅ = − ⋅ − ⋅−
1

1
1 1 2  

⋅ ⋅ ⋅ =− −M P P Q Q1 2
1

1
1(2) (3) ( )( ) ( ) ( )s s sP... ... = 

= − − ⋅ ⋅ ⋅( )  ...  ( ) (  ...  )(1) ( ) -1s s s sP
P

P1 1 1 1 2M M Q Q Q   

= ⋅ ⋅ −M M1 1 1
1(1) ( )

(1)( ) ... ( ) ( )s s sP D Q          (10) 

where  =  ...  (1)Q Q Q Q1 2⋅ ⋅ ⋅ P , and 

D1 1 2( ) diag ( ) ( ) ... ( )s s s s s s sP= − − − . 
 

Q(1) is a regular, constant, P-th order matrix. In this way, 
the generally regular matrix P(s) is represented as pro-
duct of two regular, P-th order λ-matrices: NL-1=[M1

(1) | 
... | M1

(P-1)] with polynomial degree L-1 and T1(s)=D1(s)⋅ 
⋅Q(1)

-1 with unit polynomial degree. By extraction of a li-
near matrix factor T1(s), whose determinant is a P-th or-
der polynomial is s, we have acchieved that the number 
of distinct zeros of det NL-1 becomes equal to K1=K-P. 
 Let us suppose that s=sk is zero of det P(s) having  
order tk > 1 and, in addition, that the rank P(sk)=r < P-1. 
It is convenient that first r columns of P(sk) be linearly 
independent. Since this is not the case, in general, we 
must apply the right-hand multiplication of P(sk), by a 
transposition matrix R=R1⋅R2⋅ ... ⋅Rr having r regular, 
column-permutation matrix factors. Permutation matrix 
of the i-th and j-th column of P(sk) is regular, right-hand 
matrix multiplicant of P(sk), whose entries are: 
r m n i j r r r rmn mn ii jj ij ji= ≠ = = = =δ , , , , ( ) ( );   0 1 , (11) 
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where δmn is Kronecker's δ-symbol. In this way, we can 
always represent P(s) as P(s)⋅R⋅R-1=[P ' (1) | P ' (2) | ...... | 
P ' (P) ]⋅R-1, where the first r columns of [P ' (1) | P ' (2) | ... 
| P ' (P) ] are linearly independent. Bearing this in mind, 
we infer that the system of linear equations in qjk: 

  q sjk
j

k P
j

r
⋅ =∑ P ( )( )

=1

' ,0 1 , (12) 

has only the trivial solution since determinant of system, 

  q sjk i i i k
j

r

r
r

j
⋅ =∑ P '  ( )  

=1

( )

1 2
1, , ... ,0 , (13) 

with maximum order r (r < P) is different from zero.  
 Let us now construct the following set of constant, 
regular matrices {Q(1), Q(2), ... , Q(P-r)} so as to be: 
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where the matrices Q(j) have a following structure: 
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Matrices Q(j) are regular if and only if for ∀j =1, 2, ... , 
(P-r), qr+j,r+j

(j) ≠ 0. These entries are to be assumed arbi-
trarily, provided that the previous condition is satisfied. 
 Since rank (P⋅R)=r, then for s=sk the following sys-
tems of linear equations in qi,r+j

(j) [i=1, 2, ... , (r+j-1)] 
have unique solutions for ∀j=1, 2, ... , (P-r) [recall that 
qr+j,r+j

(j) ≠ 0 have already been arbitrarily assumed]: 

  q s s s si r j
j

i

r j
i

k
r j

, +
=

+
+⋅ − ⋅∑ ( ) ( ) ( ) '  ( ) = ( ) ( )

1
P M . (16) 

Once the matrices Q(j) are known, then from (16) matri-
ces M(r+j)(s) can easily be determined. Thereof we get: 
P P R Q Q R P P( ) = [ ( ) ]  '   '  (1) ( )s s r⋅ ⋅ ⋅ ⋅ =− −l q 1 1 ...  

( ) ( )( ) ( )s s s sk
r

k
P− −+ − −M M Q R1 1 1... ,   (17) 

where Q=Q(1)⋅Q(2)⋅ ... ⋅Q(P-r). In this way we have proved 
that if rank P(sk)=r < P-1 matrix P(s) can be represented 
as product of two matrices regular for s ≠ sk. The first of 
them, NL-1=[P ' (1) | P ' (2) |...| P ' (r) | M1

(r+1) | ... | M1
(P)] has 

degree L or L-1, whereas the second one, T1(s)=D1(s)⋅ 
⋅R-1⋅Q-1 has unit-degree, where D1(s) is diagonal matrix 
D1(s)=diag [1 1 ... 1 (s-sk) ... (s-sk)] (← r unities). 
 Up to now we have proved that the condition K > 
(P-1)⋅L assures extraction of linear λ-matrix-factor from 

P(s). In the sequel we shall derive a sufficient condition 
for factorization of a regular λ-matrix P(s)=P1(s)⋅P2(s), 
where both P1(s) and P2(s) are regular and, in addition,  
P2

0=p2 and P1
0 =p1 ∈ [L-p2, L]  depending on the rank 

of P(sk), NL-1(sk+1) etc. If Pmin=Lmin=2 [⇒ (P-1)⋅L ≥ P] 
and K > (P-1)⋅L, factorization (10), or (17) (i. e. extrac-
tion of linear matrix factor) is always possible. In next 
step, i. e. for K1 > (P-1)⋅(L-1), we have analogously: 

  N N T N N TL L L L− − − −= ⋅ = ⋅1 2 2 2 3 3,   ..., , (18) 

where number of distinct zeros of det NL-2 is not smaller 
than K2=K1-P=K-2P, of det NL-3 is not smaller than K3= 
=K2-P=K-3P, and so on. Let us now suppose that in the 
(h-1)-st step we have represented P(s) as product of two 
λ-matrices NL-(h-1) and Th-1 having degrees ∈ [L-h+1, L] 
and h-1, respectively. For extraction of a linear matrix 
factor from NL-(h-1) it is sufficient that number Kh-1 of 
distinct zeros of det NL-(h-1) is greater than (P-1)⋅(L-h+1). 
Since Kh-1 is not smaller than K-(h-1)⋅P, and taking into 
account the condition L ≥ h+1, which is neccesary and 
sufficient for NL-h to be at least monome in s, we obtain: 
K h P P L h L h− − ⋅ > − ⋅ − − ∧ ≥ +( ) ( ) [ ( )]    1 1 1 1 . (19) 
This is the worst case sufficient condition for extraction 
of a linear matrix factor. Therefrom, for h=p2 we get, 
  K P L p L p> − ⋅ + ∧ ≥ +( ) -1    1 12 2 . (20) 

This is the sufficient condition for representation of P(s) 
as product of two generally regular λ-matrices P1(s) and 
P2(s) with degrees p1 ∈ [L-p2, L] and p2 ∈ [1, L-1], res-
pectively. For selected p2 ∈ [1, L-1] ⇒ p1 ∈ [L-p2, L]  
depending on ranks of matrices obtained during applica-
tion of the proposed procedure. It is obvious that 
coefficient-matrices of s in P1(s) and P2(s) are real or 
complex if the zeros of det P(s) are real or complex, 
respectively. 
 This completes the proof of Theorem 1. 

Comment: In proving theorem, the P-th order coeffici-
ent matrix of sL in P(s) is supposed to be regular. On 
contrary, if it is singular and has the rank r < P, it can be 
shown that sufficient condition for extraction of a linear 
matrix factor from P(s) becomes slightly weaker than 
the previous condition  K > (P-1)⋅L and it now reads: 
  K P L P r> − ⋅ − −( ) ( )1 . (21) 

The proof of assertion (21) is straighforward and is left 
to the reader. 
 
3. GENERAL ACTIVE NETWORK STRUCTURE 
 
 In this section we shall give proof of items (a) and 
(b) of Theorem 2, while in section 4 we prove item (c), 
by formulation of new, general synthesis procedure. At 
the outset consider general linear, active BT, or BT0 P-
port network N=NA ∪ NP depicted in Fig. 1. NA is linear 
active subnetwork, while NP is linear BRLCT or BRCT0 
multiport subnetwork with arbitrary number of passive 
elements. NA contains arbitrary number of controlled so-
urces (CS) of all four possible types. Let E=[E1 E2 ... EP]T 
and I=[I1 I2 ... IP]T ("T" transposition of matrix) be the P-
dimensional column-vectors of Laplace transforms of 
voltages and currents at accessible ports, respectively. 
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Let A=[I1'...Ih' E1'...Em']T be (h+m)-dimensional column–
vector of Laplace transforms of controlled currents and 
voltages of CS and let B=[I1''... Ij'' E1''... Ek'']T be (j+k)-
dimensional column–vector of Laplace transforms of 
controlling currents and voltages. Denote by C, (h+m) × 
(j+k) RRF matrix whose entries are controlled coeffici-
ents of generalized CS imbeded into subnetwork NA. 
Certainly, it must hold A=C⋅B. Assuming E and A to be 
the network excitations, then by force of superposition 
principle, which holds in linear electrical networks, we 
may write: 
  I Y E D A B F E G A= ⋅ + ⋅ ∧ = ⋅ + ⋅0       , (22) 

where: (i) Y0 is the admittance-matrix of P-port network 
produced by elimination of CS (⇔ A=0), (ii) D is P × 
(h+m) matrix, whose entries are current-transmittances 
and admittances, (iii) F is (j+k) × P matrix, whose entri-
es are voltage-tranmittances and admittances and (iv) G 
is (j+k) × (h+m) matrix having as its entries the transfer-
immitances, or current- and voltage-transmittances. 
 

E1

E2

E P

I1

I2

I P

(1)

(2)

(P)

N P

+

BRLCT or
BRCT

NETWORK

 

0

I1' '

Ek ' '

I1'

Em'

A

B

N A

N

 
Figure 1. General active realization network 
 

Let Uh+m be the (h+m)-th order identity matrix. If matrix 
Uh+m-C⋅G is regular, then from (22) we obtain the ad-
mittance matrix Y=Y(s) [I=Y(s)⋅E] of the overall P-port, 
active, BRLCT or BRCT0 network (Fig. 1), which in ge-
neral may have all four types of generalized CS: 

  Y Y D U C G C F( ) = ( - )-1s h m0 + ⋅ ⋅ ⋅ ⋅+ . (23) 

The minimum number of CS which is necessary for rea-
lization of matrix Y is obtained by investigating the rank 
of Y-Y0, whose entries are RRFs having poles s1, ..., sq, 
with multiplicities, say, n1, ... , nq, respectively. Since 
Laurent's complex expansion of Y(s)-Y0(s) reads: 

Y Y A B( ) - ( ) ( )(- )
( ) -s s s s sk

k
k
i

i
k

k

n

i

q

k

p i

0
110

= ⋅ + ⋅ −
===

∑∑∑ , (24) 

and since the rank of product of two matrices never ex-
ceeds the ranks of  matrix factors, we can write, 

  rank - rank min (  )Y Y C0b g ≤ ≤ + +j k h m, , 
  s p→ ∞ ≤:  rang rang A C , (25) 

  s s i qi n
i

i
→ ≤ =:  rank rank  (   ...  ,  )(- )

( )B C , , ,1 2 . 
 

The matrix Y0 must be positive real [2, 10], since it rela- 
tes to the passive (B)RLCT, or (B)RCT0] network NP. If  
network is purely resistive, Y0 must be positive semide-
finite. In the most general case the matrix Y(s) can have  
the following two properties with respect to its poles: 

(1) They may lie in right-half complex plane and/or on 
imaginary axis having multiplicities greater than unity. 
(2) They may be in the left-half complex plane and are 
different  from poles of Y0; or they are the same as poles 
of Y0, but have the greater multiplicities than poles of 
Y0. 
In both cases (1) and (2) matrix Y0 does not influence 
the values of entries in coefficient matrices Ap (p ≥ 2) 
and B(- )

( ) ,  > 1 (   ...  ,  )n
i

i
i

n i q= 1 2, , . If one of them has 

rank P, then from (25) follows rank C ≥ P. This conclu-
sion means that, in the most general case, for existence 
of active, balanced P-port (B)RLCT or (B)RCT0 network 
which realizes the arbitrary, P-th order, RRF matrix as  
admittance matrix of network, it is necessary that the 
active subnetwork NA (Fig. 1) has at least P CS and the 
same number of controlling ports. The sufficiency of the 
proposed conditions for existence of network realization  
by using negative immitance converters (NICs) as active 
elements is proved elsewhere [4]. That completes proof 
of items (a) and (b) of Theorem 2. 
 Unfortunately, NICs as active elements are potentia-
lly unstable. This gave us impetus to develop our reali-
zation structure and our general procedure for synthesis 
and realization of arbitrary admittance matrices (possib-
ly stable). In new procedure we are going to present, the   
minimum number (=P) of balanced voltage-controlled 
voltage sources (VCVS) is implemented. Herewith, we 
prove that P balanced CS is, in general, sufficient for re-
alization of any P-th order admittance RRF matrix. The  
preferable matrix realizations from engineering point of 
view are stable ones. So, we shall apply algorithm only 
to those cases, bearing in mind that unstable admittance 
matrices can also be realizad by using the same proce-
dure. Passive subnetwork NP in realization structure pro-
posed is balanced, transformerles and RC (BRCT0). Rea-
lization networks with no inductors (L) and transformers 
(T) are preferable from the practical point of view. 
 
4. GENERAL NETWORK STRUCTURE AND 
 A NEW REALIZATION PROCEDURE 
 
 The proposed new general active network structure 
is depicted in Figure 2. Observe that subnetwork NP is 
BRCT0 and that balanced subnetwork NA contains only 
VCVS ("voltage amplifiers"). Let us now suppose that 
all these amplifiers are approximately ideal. This means 
that their input-impedances and output-admittances are 
infinite and that their voltage-gains A1, ... , AP are real 
and either finite, or infinite. Almost every operatitional 
amplifier in common use today satisfy previously stated 
three conditions (its open-loop gain is "infinite"). Let: 

E I A= = =[ ... ] ,  [ ... ] ,  diag ( ... ),T TE E I I A AP P P1 1 1

E Ia P P a P P PE E I I= = =+ +[ ... ] ,  [ ... ]T T
1 2 1 2 10 , , (26) 

E I E A Eb P P b P P b aE E I I= = = ⋅+ +[ ... ] ,  [ ... ] ,  T T
2 1 3 2 1 3 .   

At this instance we recall that the admitance matrix Y= 
=Y(s) to be realized must satisfy relation I=Y⋅E. On the 
other hand, the admittance matrix Y*(s) of balanced, RC 
transformerless, reciprocal subnetwork NP (Fig. 2) with 
augmented number of accessible ports (=3P) and no in-
ternal nodes must be symmetric and must have the 
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following structure [2, 10] (since network NP is 
passive): 

  Y
Y Y Y
Y Y Y
Y Y Y

I
I
I

Y
E

E
E

* , *=
L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

= ⋅
L

N
MMM

O

Q
PPP

11 12 13

12 22 23

13 23 33

T

T T
     a

b

a

b

. (27) 

Bearing in mind that that always must be: 

 I E A Ea P P P b aI I= = ∧ = ⋅+[ ... ]   T
1 2 10 , , (28) 

then by eliminating Ia and Ib from (27) and using I=Y⋅E, 
we obtain, provided that Y22+Y23⋅A is regular: 

   Y Y Y Y A Y Y A Y= − + ⋅ ⋅ + ⋅ ⋅11 12 13 22 23 12( ) ( )-1 T .   (29) 

(1)

(2)

(P)

+

-
(P+1)

(2P)

(2P+1)

(3P)

+

-

a

b

I1

I2

IP

IP+1

I2P

I2P+1

I3P

   BRCT0
NETWORK

NP

NA

A1

AP

E1

E2

EP

EP+1

E2P

E2P+1

E3P

 
Figure 2.  The proposed network structure 

Our main intention in conducting the sufficiency proof 
of Theorem 2 is to show that for arbitrary RRF matrix 
Y(s) there always exisits at least one (and infinite many) 
sets of real voltage-gains A1, A2, … AP for which it is 
possible to identify all submatrices Yij (i,j=1, 2, 3) in 
(27) so as to assure dominancy of coefficient matrices of 
the second Foster's expansion (DMCSFE) of Y*. As is 
well-known [10] the dominancy represents necessary 
and sufficient condition for BRCT0-realization of Y*. 
Putting it methaphorically, the VCVSs play a role of 
"Deus ex machina" means for successful solution of all 
network synthesis tasks. These tasks can always be 
accomlished by the approprite selection of: (i) P-th 
order matrix Y11, which must be realizable by a BRCT0 
network and (ii) finite or infinite voltage-amplifier 
gains.  
 Let xij, q, Nij and D (i,j=1, 2,…, P) be polynomials in 
s such that: {1} Y=[Nij]P,P/D (← Y is given by statement 
of problem), {2}Y11=[xij]P,P/q (← Y11 must be appropri-
ately selected and must be realizable by BRCT0 
network) and {3} P=[D⋅xij-q⋅Nij]P,P must be a regular, 
factorizable λ-matrix in the sense of Theorem 1. 
Factorizabilty of P can always be acchieved by suitable 
selection of Y11. In addition, Y11 must have strictly 
dominant coefficient-matrices of its second Foster's 
expansion, although the dominancy (but not strictly) of 
Y11 is necessary and sufficient for its realization by a 
BRCT0 network [2, 10]. 
 In the sequel we shall distinguish between the follo-
wing two cases: (i) voltage-amplifier gains are finite and 
(ii) these gains are infinite. For each of these cases, we 
shall develop the steps of general synthesis procedure. 
 
Case 1o:   Real and finite voltage-amplifier gains  
 

 Presuming the factorizabilty of P=P1⋅P2, from (29) 
we infer that if c1 and c2 are arbitrarily selected reals 
(c1⋅c2 ≠ 0)  a possible identification of matrices reads: 

 

Y Y A P Y Y A U12 13
1

1
22 23

1 2
+ = + =c q

D
c c q P ;  ,   (30) 

Y U12 2 2= P T ;(  is the - th order identity matrix)/ c q PP , 
wherefrom it becomes clear that Y22+Y23⋅A is generally 
regular matrix. Let the numerical ratio r=c2/c1 is selec-
ted arbitrarily, wherefrom it still remains to determine c2 

≠ 0 appropriately. By virtue of {2}, the roots of polyno-
mial q(s) must be simple and lie in the origin and/or on 
negative real axis [2, 6, 10]. In addition, the following 
must hold P2(s) ≤ Q+1 (Q=q0) [2]. We can now identify 
both Y12 and Y13, after the Laurent's complex expansion 
of P2

T/q: 

Y P K K12
2

2 2 0

1
=

⋅
= ⋅ ⋅ + ⋅

+

F
H
GG

I
K
JJ∞

=
∑

T

c q c
s s

s sm
mm

Q
, 

Y P P A13
2

1 2
11

=
⋅

⋅ ⋅ ⋅ −

c q
r( - )T  

 
 

(31) 

where it has been assumed q(s)=s⋅(s-s1)⋅(s-s2)⋅ … ⋅(s-sQ) 
and s0= 0 < s1 <…< sQ. By selecting sufficiently great c2 
we can produce entries of Y12 and Y13 arbitrarily small, 
so as to assure the true dominancy of the first P rows 
and columns of symmetric matrix Y*(s). Remember that 
Y*(s) must be realizable by a BRCT0 network. 
 All entries of matrix Y23 and off-diagonal entries of 
Y22 must not have poles distinct from poles of diagonal 
entries of Y22. These diagonal entries must essentially 
correspond to input admittances of BRCT0 networks [2]. 
Let us identify now the other submatrices.  We have: 

Y Y A U F F22 23
1 2 0

+ = = +
+∞

=
∑D

c c q s s
s sP m

mm

Q
,  (32) 

 

where Fm=Fm⋅UP (m=∞, 0, 1, … , Q) are diagonal matri-
ces. Let Gm=[gij

(m)]P,P and Hm=[hij
(m)]P,P be arbitrarily se-

lected diagonal matrices whose diagonal entries are non- 
negative and satisfy the conditon gii

(m)⋅hii
(m)=0 (∀i=1, 2, 

…, P; ∀m=∞, 0, 1, … , Q). Let Dm=[dij
(m)]P,P=d(m)⋅UP 

(m=∞, 0, 1,…, Q) be the P-th order scalar matrix whose 
diagonal entries are positive and should be at first esti-
mated and thereon assumed appropriately. If we put Fm 
=(Gm+Dm)-(Hm+Dm), then from (32) follows a possible 
identification of matrices Y22 and Y23: 

Y G D G D22
0

= ⋅ + ⋅
+∞ ∞

=
∑( + ) ( + )s s

s sm m
mm

Q
, 

Y H D H D A23
1

0
= − ∞ ∞ +

=

−
+∑[ ]( + ) ( + )s s

s sm m
mm

Q
 

 
 

(33) 

Let Km=[kij
(m)]P,P (m=∞, 0, 1,…, Q). From (33) we infer 

that the second P rows (columns) of coefficient-matrices 
in the second Foster's expansion of Y* will be dominant 
if ∀i=1, 2,…, P and ∀ m=∞, 0, 1,…, Q  the following 
condition holds: 

g d g d
h d

Aii
m

ii
m

ij
m

ij
m ii

m
ii

m

jj
j i

P
( ) ( ) ( ) ( )

( ) ( )
+ ≥ + +

+L
NMM

O
QPP

+
=
≠

∑
1

 

  +
+

+ ⋅
=

∑h d
A c

kii
m

ii
m

j
ji
m

j

P( ) ( )
( )1

2 1
. (34) 
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The previous set of conditions essentialy reduces to: 

 g d
h d

A c
kii

m m ii
m m

j
ji
m

j

P
( ) ( )

( ) ( )
( )+ ≥

+
+ ⋅

=
∑1

2 1

. (35) 

Since gii
(m)⋅hii

(m)=0 (∀i=1, 2, … , P; ∀m=∞, 0, 1, … , Q), 
dominancy of the second P rows (columns) in MCSFE 
of Y*(s) is acchieved if all Ai (i=1, 2, … , P) are by mo-
dulus greater than unity and if all "d"-entries of selected 
scalar matrices, for m=∞, 0, 1, … , Q satisfy condition: 

 d
h
A

A
A

k
c

m
i P

ii
m

i

i

i

ji
m

j

P
( )

 ..., 

( ) ( )

max ≥
−

+
−

⋅
R
S|
T|

U
V|
W|=

=
∑1 2 21

1 1, ,
. (36) 

We can notice from (29) that Y does not depend on Y33. 
Thereof it follows that dominancy of the third P rows or 
columns of coefficient-matrices in the second Foster's 
expansion of Y* can always be acchieved with indefini-
te number degrees of freedom. Among many different 
choices of Y33 the most simple one seems to be selection 
of Y33 as constant diagonal matrix with positive, suffici-
ently great diagonal entries.  
 To this end we have proved the item (c) of Theorem 
2, i. e. that P balanced VCVSs with finite and by modulii 
greater than unity voltage-gains are sufficient for reali-
zation of any (preferably stable) P-th order RRF matrix 
as admittance matrix of BRCT0 network. It has also been 
proved that there exists indefinite number of topologica-
lly and parametrically equivalent network realizations. 
 
Case 2o:  Infinite voltage-amplifier gains 
 

 According to (28), in this case it must hold Ea=0P,1 
(since A → ∞). Hence, the identification (30) will not be 
valid anymore. If we rearrange (29) as follows : 

Y Y Y A Y Y A Y Y= − ⋅ + ⋅ ⋅ + ⋅− −
11 12

1
13 22

1
23 12( ) ( )-1 T , (37) 

and let A → ∞,  we finally obtain, 

  Y Y Y Y Y= − ⋅ ⋅−
11 13 23

1
12
T .                  (38) 

By using (38) we can make the following identification 
of the seeked matrices: 

   Y P Y P Y U12
2

2
13

1

1
23

1 2
=

⋅
=

⋅
=

⋅ ⋅
⋅

T
   

c q c q
D

c c q P, , . (39) 

In this case, all matrices Yii (i=1, 2, 3) are to be selected 
so as to assure the dominancy of coefficient-matrices in 
the second Foster's expansion of Y*. 
 In both cases 1o and 2o the produced matrix Y*(s) is 
to be realized by a parallel connection of at most q0+2 
BRCT0 networks. Eeach of them is comprised of at most 
3P⋅(3P-1)/2 half-lattice two-poles which can be realized 
almost by inspection [2]. 
 This completes the proof of item (c) and Theorem 2 
altogether. 
 Now, we shall consider and formulate the steps of 
algorithm for realization of RRF matrix Y(s)=[Nij]P,P/D 
by an active, BRCT0, P-port network.  
• Firstly, we must select symmetric, P-th order RRF 

matrix Y11(s)=[xij]P,P/q with strictly DMCSFE. Y11(s) 
must be realizable by BRCT0 P-port network. There-
fore, we have xij

0 ≤ xii
0=q0+ε (i,j=1, 2, … , P; i ≠ j), 

where ε=1 or 0, depending on whether the point at 

infinity is pole or common-point of Y11(s), respecti-
vely [2, 6-8, 10]. 

• In addition, Y11(s) must assure the factorizability of 
Y11(s)-Y(s)=[D⋅xij-q⋅Nij]P,P/(q⋅D)=P(s)/(q⋅D)  accor-
ding to Theorem 1. 

• We shall deliberately suppose that xjj
0 is independent 

of j (j=1, 2,…, P). Then we have L=max [D0+max 
(xij

0), q0+max (Nij
0)]|i,j=1, 2, … , P=xii

0+Lε, provided that 
Lε=max [D0, max (Nij

0)-ε]|i,j=1, 2, … , P. 
• Strict dominancy of MCSFE in Y11(s) with sufficient-

ly great dominancy-margin [2, 9, 10] can always be 
acchieved by multiplication of its diagonal entries 
with sufficiently great, real, positive constant ρ: 

Y11

11 1
22

1

( ) = 1s q

x x
x

x x

P

P PP

⋅

⋅
⋅

⋅

L

N

MMMM

O

Q

PPPP

ρ
ρ

ρ

' ... ...
... ' ... ...
... ... ... ...

... ... '

,      (40) 

so that det P(s) can be represented as follows, 

det = det [ - ] =P D x q N D x R
ij ij

P P
ii

i

P

Pρ
ρ

′ +
L
NM

O
QP=

∏
1

, (41) 

R s P x P L R s
jj P

0 0 0( )      lim ( ), ,
ρ

ρ

ρρ
≤ ⋅ < ⋅ ∧ =

→∞
. 

When ρ → ∞, P⋅xjj
0 zeros of det P(s) approaches the ze-

ros of product x11'⋅x22'⋅ … ⋅ xPP' [← all of them should be 
selected to be real, simple and distinct from zeros of 
both polynomials D(s) and q(s)]. Thuswith, det P(s) can 
be produced to have at least P⋅xii

0 real, distinct zeros. 
Then, for extraction of k linear matrix factors from P(s) 
it is sufficient after extraction of the (k-1)-th factor to 
be: 

     P x P k P x L kii ii⋅ − ⋅ − − ⋅ −0 01 1 1( ) > ( ) [ + - ( )]ε . (42) 

This follows straighforwardly from (19). If we assume 
now k=Lε, the iniquality (42) reduces to xii

0 > P⋅Lε-1 and 
can be satisfied by selecting xii

0=P⋅Lε. It is shown thus-
with that if det P(s) has at least P⋅xii

0=P⋅(q0+ε) distinct, 
real zeros, the regular λ-matrix P(s) can be represented 
as product of regular λ-matrices P1(s) and P2(s), having 
degrees p1=xii

0=P⋅Lε and p2=Lε, respectively. We must 
recall that xii

0 > P⋅Lε-1 is only a sufficient condition (and 
not necessary one) for factorization of P(s). 
• Since Y11(s)=[xij]P,P/q must have strictly DMCSFE, it 

follows that is also necessary to be xii(0) ≠ 0 (i=1, 2, 
… , P). Otherwise, the strict dominancy of MCSFE 
of Y11(0) may be violated. 
Now we formulate steps of realization algorithm: 

(a) Select Y11(s)=[xij]P,P/q with strictly dominant MCSFE. 
Y11(s) must be realizable by a BRCT0 network. Zeros 
of xii(s) (i=1, 2,…, P) should be selected real, simple 
and distinct from zeros of polynomials D(s) and q(s). 
All polynomials xii(s) may have the same degree and 
in addition, xii(0) ≠ 0 (i=1, 2,… , P). These  diagonal 
entries possibly should be multiplied by sufficiently 
great real ρ > 0 in order to assure that the λ-matrix 
P(s)=[D⋅xij-q⋅Nij]P,P be regular and to have at least 
P⋅xii

0 real, simple and distinct zeros. 
(b) Let Lε=max [D0, max (Nij

0)-ε]|i,j=1, 2, … , P. Then, reali-
ze the factorization P(s)=P1(s)⋅P2(s), where degrees 
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of regular λ-matrices P1(s) and P2(s) are p1=xii
0=P⋅Lε 

and p2=Lε, respectively. 
(c) Select the real-valued voltage-amplifier gains Ai as 

|Ai| > 1 (i=1, 2,…, P). Then apply the identification 
procedure, either of the Case 10, or of the Case 20 to 
produce necessary block-matrices of Y*(s), which is 
realizable by pasive BRCT0 network. Realization of  
Y* is simple and straighforward [2]. And finally, by 
interconnection of VCVS and previously produced 
BRCT0, 3P-port network NP the balanced, active, P-
port, transformerless, RC network which realizes the 
admittance matrix Y(s) is finally constructed. 

 
5. A NUMERICAL EXAMPLE 
 
 By using the procedure proposed let us realize 2 × 2 
admittance matrix: 

Y ( ) =
[ ]

( )  ( ) =s
N

D s s
s s
s s D s sij =

+
+

−
L
NM

O
QP +1

1
2 1

2 1 1, . (43) 

 Although Y(s) is symmetric, it can not be realized by 
passive RLCT network, since the entry y22(s)=N22s)/D(s) 
=(2s-1)/(s+1) is not the input-admittance of RC network 
[2, 6]. Then, the passive network realization (RLCT or  
RLCT0) of Y(s) simply does not exist. According to the 
algorithm, we must first arbitrarily select Y11(s): 

Y11
1

1
3 1 0

0 2 1
1 0
0 1( ) =

[ ]
( )s
x

q s s
s

s
ij =

+
+

+
L
NM

O
QP = L

NM
O
QP +  

  +L
NM

O
QP +

+
2 0
0 1 1 1s

s q s s,   ( ) = , (44) 

which is realizable by parallel connection of two BRCT0 
two-ports. Nodes (1, 1') of port 1 and (2, 2') of port 2 are 
not mutually interconnected. Then, we obtain for P(s): 

P ( ) = [ - ] ( )s D x q N s s s
sij ij 2 2 1 2, = +

−
−

L
NM

O
QP , 

det ( ) = - ) ( ),   P s s s s P L K( ,− + = = =2 1 2 3 . 

 

(45) 

Since the sufficient condition of Theorem 1 [K > (P-1)⋅L 
+p2-1] is satisfied with p2=2, we infer that extraction of 
linear matrix factor from P(s) is possible. So, we get: 

P P1 2
0 1

1 1
0 2

( ) =
( ) ( )

  ( ) =s
s

s s
s

s
s s

+
− + − +
L
NM

O
QP

−
−

L
NM

O
QP

, , (46) 

where P(s)=P1(s)⋅P2(s). Let us assume c1=c2=c (⇔ r=1)  
and A=diag (-2  2) (⇔ A1= -2 ∧ A2=2). According to 
(30) and (31) we obtain: 

Y P
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0 1
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1
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1 2
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− −

L
NM

O
QP +
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O
QP +
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2
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1 1 2

0 1
3 1 1c c

s
s

1 .            (47) 
 

The first two rows of coefficient-matrices in Y* are do-
minant if the same holds for submatrix: 

Y Y Y11 12 13
1 0 0 0 0 1

2
0 1 2 0 1

2
1

2

=
L

N
MMM

O

Q
PPP

+
− − −

c

c c c

 

  +
L

N
MMM

O

Q
PPP

⋅
+

−

−

2 0 0 1 0 1
2

0 1 3 1 3
2

1
2

1
c c

c c c c

s
s . (48) 

Symmetric real matrix Z=[zij]P,P is said to be dominant if  
∀i=1, 2, … , P its diagonal entry zii is not less than the 
sum of moduli of entries in the same row (column), i. e. 
zii ≥ |z1,i|+|z2,i|+…+|z1,i-1|+|z1,i+1|+…+|z1,P| [2]. Since each 
row of matrix (48) must be dominant, thereof we obtain 
that c ≥ 6. According to (30) and by algorithm we have: 

Y Y A U D U D U22 23 2 2 0 0 2 1 1 2
1

+ ⋅ = ⋅ = ⋅ = ⋅
c

d d, ,  , (49) 

where d0, d1 > 0. Then, Y22 and Y23 can be identified as: 
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(50) 

The third and the forth row of coefficient-matrices in Y* 
are dominant if the same holds for submatrix [Y12

T | Y22 | 
Y23]. One can easily show that the desired dominancy 
can be realized through selection c0=6, d0=2 and d1=1. 
Dominancy of the fifth and the sixth row of Y*(s) can 
be readily acchieved by selecting Y33 as diagonal matrix, 
as for example: 

 Y33
0

0
0

0
13 12

7 6
3 4

2 3 1( ) =s s
s

/
/

/
/

LNM OQP + LNM OQP ⋅
+

.  (51) 

Herewith, we completely accomplished construction of 
the seeked matrix Y*, which can be realized straightfor-
wardly (almost by inspection), by a passive, balanced, 
transformerless, RC,  six-port network: 
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(52) 
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Realization details of dominant matrices are duscussed 
elsewhere [2]. Network realizations of this class of ma-
trices are established exclusively from half-lattices with  
only serial, or crossed arms (pair of branches), inserted 
between each pair of nodes (i. e. network ports). By use 
of (52) we find, for example, that the network fragment 
between ports 2 and 3 looks like as is depicted in Fig 3. 
Thereon are denoted the dimensionless values of con-
ductances (Gn) and capacitances (Cn), normalized with 
respect to assumed values of angular frequency (ω0) and 
the impedance level (R0). Physical parameter values of 
these elements are obtained by denormalization process:  
the values of conductances are calculated as G=Gn/R0, 
whereas the values of capacitances are obtained as C= 
=Cn/(R0⋅ω0). 
 

25/36
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Figure 3. The fragment of active BRCT0  network which 
realizes the admittance matrix (43) 

 
6. CONCLUSIONS 
 
In paper is presented a new proof of fundamental theo-
rem in network synthesis of admittance matrices of real, 
rational functons in complex frequency by active, multi-
port, transformerless, balanced RC networks. It has been 
shown that the neccessary condition for network exis-
tence is also a sufficient one if active elements used are  
balanced voltage-amplifiers. A new procedure for reali-
zation of RRF admittance matrices is given also by use 
of minimum number of balanced VCVS. The procedure 
proposed relies on a new theorem on representation of 
regular, polynomial matrix as product of two 
polynomial matrices with selected degrees. The 
obtained results are the most general in nature and can 
easily be applied in transformerless, multiport, RC 
active network synthesis. 
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У раду се даје један нов доказ фундаменталне тео-
реме из активне синтезе балансних RC мрежа са ви-
ше приступа, без трансформатора. Мада та теорема 
даје само потребне услове за егзистенцију мреже, у 
раду је показано да су ти услови уједно и довољни 
за реализацију произвољне стабилне матрице реал-
них рационалних функција комплексне фреквенције, 
као адмитансне матрице мреже поменуте класе, у 
случају када се као активни елементи користе ба-
лансни напонски појачавачи, коначног или беско-
начног појачања. Такође, дат је и поступак реализа-
ције мрежа са минималним бројем таквих појачава-
ча. Поступак се заснива на примени нове теореме о 
факторизацији несингуларних полиномних матрица, 
која је у раду формулисана и доказана. Изложени 
резултати су генералног карактера, али се истовре-
мено они могу користити и за практичну синтезу ак-
тивних, балансних RC мрежа са више приступа, без 
трансформатора.  
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	In the paper is presented a new proof of the fundamental theorem in network synthesis of arbitrary, square (stable) admittance matrix of real, rational functons in complex frequency s (RRF matrix), by active, multiport, transformerless, balanced RC n
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