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In the paper is presented a new proof of the fundamental theorem in
network synthesis of arbitrary, square (stable) admittance matrix of real,
rational functons in complex frequency s (RRF matrix), by active,
multiport, transformerless, balanced RC network. Since the theorem
establishes only the neccessary condition for network existence, it is
proved firstly that this condition is also sufficient if active elements used
in realization are balanced voltage-controlled voltage sources (VCVS)
and then is given a formulation of a new realization procedure of RRF
admittance matrices, by using theoretically minimum number of balanced
VCVS. The proposed procedure relies on a new theorem on
representation of regular, polynomial matrices (A-matrices) in s (having
the specified degree), as product of two A—matrices. The obtained results
are the most general in nature and are easily applicable in active,

transformerless, multiport, RC network synthesis
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1. INTRODUCTION

It is well-known that the immitance matrices of pas-
sive, multiport, transformerless RLC networks are para-
mount [1,2] V s € [0, o) (s is, in general, the complex
frequency). A symmetric, P-th order real matrix is said
to be paramount if each of its r-th order main minors
(=1, 2, ... P) is not less than the absolute value of any
other minor established from the same rows (columns).
Since the paramountcy is a necessary condition, Telegen
has tried (and succeeded) to prove that it is also suffici-
ent for existence of two- and three-port, purely resistive
networks. If P > 3 the paramountcy does not assure the
resistive P-port existence and the synthesis problem ap-
peares to be equivalent to synthesis of resistive network
with internal nodes. Unfortunately, this problem is not
solved yet, except for ladder one- and two-ports. The
procedures proposed for realization of immitance matri-
ces during past few decades reduce to active network
synthesis of pertinent admittance matrices by networks
with no internal nodes [3-5]. In these realizations the
passive, transformerless, RC subnetworks are either ba-
lanced (PBRCTy) [3, 4], or common-ground (PGRCTy)
[5], depending on whether the coefficient matrices of
the second Foster's expansion of pertinent admittance
matrix are dominant (DMCSFE) [2-4], or hyperdomi-
nant (HDMCSFE), respectively [5-9].

Multiport network synthesis problem is encountered
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yet in case of minimal synthesis of RRF, w(s)=P(s)/O(s)
[P(s) and QO(s) are mutually prime polynomials], since it
appeares to be equivalent to synthesis of passive or ac-
tive resistive network with dw+1 ports {ow is the degree
of w(s) in Duffin-Hazony's sense [10]}. It has been pro-
ved that Sw=max {P°, 0"}, where P° and Q" are the al-
gebraic degrees of P(s) and Q(s), respectively [10, 11].

It has also been known [4] that arbitrary stable RRF'
admittance matrix of order P can always be realized by
active BRCT, network with P negative immitance con-
verters (NICs), or by common-ground (GRCT,) network
with 2P VCVS [5]. In all cases [3-5] the realization net-
work and the complete set of equivalent realizations are
strongly dependent on a special factorization of the P-th
order, generally regular, polynomial matrix (=A-matrix,
AM; "lambda matrix") in s. A A-matrix is said to be ge-
nerally regular if it is not singular Vs. In section 2 we
shall first prove our prerequisite,

Theorem 1: The sufficient condition for factorization of
P-th order, generally regular \M P(s), having degree L,
whose determinant has K distinct zeros, in form P(s)=
=P,(s)-Py(s), where p2:P20 reads: K > (P-1)-L+p,-1. The
coefficients matrices of s in P\(s) and P,(s) are real or
complex if the zeros of det P(s) are real or complex, res-
pectively,

and in sections 3 and 4 we give proof of our main result,

Theorem 2: For realization of arbitrary P-th order ma-
trix of RRFs in complex frequency s, as the admittance
matrix of active BRCT, P-port network:

(a) P controlled sources (CS) with real-valued control-
ling coefficients are necessary,
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(b) In general, the realization can not be acchieved by
active P-port with less than P CS,

(c) P balanced VCVS with real-valued and by modulii
greater than unity controlling coefficients (i e. voltage
"amplifications") are necessary and sufficient in general
case.

2. FACTORIZATION OF REGULAR A-MATRIX

In this section we shall prove Theorem 1. Let us first
suppose that P=[p;(s)] is a P-th order, generally regular
AM, such that L=max {pi,-o(s)} @i, j=1, 2, ... P). Assume
that the coefficient matrix of s* in P(s) is regular. Then:

P-L
det P(s)= D a;-s* . (1)

k=0
Suppose det P(s) has K distinct zeros s; (k=1, 2, ... K).
For each s=s; the columns PV(s) (j=1, 2, ... P) of P(sy)
are linearly dependent, i. e. there must exist P numbers

91k G2k - » qpr — provided that at least one of them is
different from zero, which assure the following:
P
D i PP (s =0p) )
j=

where 0p; is P-dimensional column-vector. Let the poly-
nomial Ci(s) be the greatest common-divisor of all co-
factors Dy(s) (i=1, 2, ... P) of P(s). Laplace expansion
of det P(s) with respect to entries of the k-th column of
P(s) reads:

P P
det P(s) = ;Pﬂc Dy (5) = C (9) ;Pl‘k Dy'(s). (3)

If s=s,, is a zero of Cy(s), then rank P(s;) < P-1. If poly-
nomial det P(s)/Ci(s) has at least one zero s=s; which is
different from zeros of Cy(s) and furthermore rank P(sy)
=P-1, then the folowing systems of simultaneous linear
algebraic equations in ¢ (=1, 2, ..., P) have only the
trivial solution and a non-trivial one, respectively:

P . P .

Zl qj PP (sp)=0p; Zlq]'k P (s)=0p; . (4)
= =

J#k

Since P(s) is generally regular, we can put down:

P
> apPVs)=(5-50)-MP(s), )

j=1
where M,*“(s) is a P-dimensional A-column-vector with
degree not greater than L-1. Now, let us consider only
those zeros s=s; of det P(s) which provide rank P(s;)=P-
-1. Then, at least one set of different indices (i. e. rows)
{iy, iy ..., ip} € {1, 2,..., P} must exist for which holds:

P
) )
D5k By 0=~ B, G0 ©)
j=1
Jj#k
Since the second system of (4) has a non-trivial soluti-

on, we can first select gy # 0 arbitrarily and then we
may calculate gy (7 # k, j=1, 2, ..., P) uniquely from (6).
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From assumption that rank P(s;)=P-1 it follows that a
non-zero minor of P(s;) reads:

det Pill, 2, (k=) (K1), . Pl &

sy ey Dp

and that it provides the existence of the constant, regular
matrices Oy (k=1,2, ..., P),

10 .. 0 g O .. 0

_ _ 0 0 .. 1 9i-1,k 0o .. 0 N (8)
Ok _[qij]P,P_ 0 0 0 gy O 0
0 0 0 Grarp 1 0
0 0 .. 0 gp O .. 1]

which enable the following representation of P(s),
P©)-0 =[PV [ PED () L= M (o)
P () PP ©)

Since C;° < (P-1)-L, number of distinct zeros of C(s) is
not greater than (P-1)-L. The sufficient condition for any
factorization of P(s) reads K > (P-1)-L, since only then
can exist at least one zero of polynomial det P(s)/Ci(s),
which is different from zeros of Ci(s). Let this condition
be satisfied and let there exists at least P distinct zeros
S1, 82, ... , Spof det P(s). If L-1 > 1/(P-1) the existence of
these zeros is automatically assured if K > (P-1)-L. Then
the following factorization of P(s) holds:

P(5)=P()-0 -0 =[(s=s)- M (5) [ PO | .
PPl =[50 MV ) | s-s2):
MP () PO P00 = =

=[s=snm® .. s=spy M7 ]@1-0;- .. -0p)"!
(M) D@ pyo-ea) o)
where Q) =0;-Q,- ... -Qp,and
Dy(s)=diag [(s—51) | (s—s3) i ... i (s—sp)].

0. is a regular, constant, P-th order matrix. In this way,
the generally regular matrix P(s) is represented as pro-
duct of two regular, P-th order A-matrices: N, =[M ,® |
... | M"Y with polynomial degree L-1 and T'(s)=D(s)-
-0 1)" with unit polynomial degree. By extraction of a li-
near matrix factor 7'(s), whose determinant is a P-th or-
der polynomial is s, we have acchieved that the number
of distinct zeros of det /V;_; becomes equal to K;=K-P.

Let us suppose that s=s; is zero of det P(s) having
order #; > 1 and, in addition, that the rank P(s;)=r < P-1.
It is convenient that first » columns of P(s;) be linearly
independent. Since this is not the case, in general, we
must apply the right-hand multiplication of P(sy), by a
transposition matrix R=R;-R,- ... -R, having r regular,
column-permutation matrix factors. Permutation matrix
of the i-th and j-th column of P(s;) is regular, right-hand
matrix multiplicant of P(s;), whose entries are:

Ton = O, (mun) # (@, )); 1y =1y =0, 1 =rj; =1, (11)
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where J,,, is Kronecker's 5-symbol. In this way, we can
always represent P(s) as P(s)-R-R'=[P' V| P'@| ... |
P'P1.R", where the first » columns of [P' V| P' @] ..
| P' ] are linearly independent. Bearing this in mind,
we infer that the system of linear equations in g

-
P (50 =05, . (12)
1
has only the trivial solution since determinant of system,
d o
quk'P' iy, ir(sk):()r,la (13)
j=1

with maximum order » (» < P) is different from zero.
Let us now construct the following set of constant,
regular matrices {0, 0@, ..., 0"} so as to be:
P(s)-R-0M..0P") = [P' M pr
r+1

N
DIVIRAR RCE I B Y anl JRCH P ()
i=1 L=l

o\ = [q,(,{;) L U712 (P)]

where the matrices Q% have a following structure:

1o .0 g, 0 0
0 1 .. 0 ¢ 0 . 0
0 0 0 g o 0
QW) =| 0 0 0 0 0| (15
0 .0 0
0 0 g,y O 0
0 0 0 1 0
0 .. .. 0 0 0 .. 1

Matrices Q) are regular if and only if for Vj =1, 2, ...,
(P-r), q,f,-ﬁ,-(’) # 0. These entries are to be assumed arbi-
trarily, provided that the previous condition is satisfied.

Since rank (P-R)=r, then for s=s; the following sys-
tems of linear equations in q,;rﬁ(") [=1, 2, ..., (r-1)]
have unique solutions for Vj=1, 2, ..., (P-r) [recall that
@rjr+)” # 0 have already been arbitrarily assumed]:

r+j

Doath P V@ =(s=5) M) (16)
i=1

Once the matrices 0" are known, then from (16) matri-
ces M"7(s) can easily be determined. Thereof we get:

P(5)={P(s)-RI-0}-Q" R =[pr W {pr

s MU -5 MPD]e R, (17)
where 0=0"-0@. ... .0, In this way we have proved
that if rank P(s;)=r < P-1 matrix P(s) can be represented
as product of two matrices regular for s # 5. The first of
them, N, =[P' V| PP | PO M| .| M;")] has
degree L or L-1, whereas the second one, Ti(s)=D(s)
-R".Q" has unit-degree, where D,(s) is diagonal matrix
Di(s)=diag [1 1 ... 1 (s-sy) ... (s-s;)] (« r unities).

Up to now we have proved that the condition K >
(P-1)-L assures extraction of linear A-matrix-factor from
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P(s). In the sequel we shall derive a sufficient condition
for factorization of a regular A-matrix P(s)=P(s)-P,(s),
where both P;(s) and Py(s) are regular and, in addition,
P20=p2 and P,° =p; € [L-p,, L]— depending on the rank
of P(sy), Npi(sx1) etc. If Pyin=Lyin=2 [= (P-1)-L > P]
and K > (P-1)-L, factorization (10), or (17) (i. e. extrac-
tion of linear matrix factor) is always possible. In next
step, i. e. for K; > (P-1)-(L-1), we have analogously:

Np1=Np 2T, Ny =N, 3T, ..., (18)

where number of distinct zeros of det /V;_, is not smaller
than K,=K-P=K-2P, of det N3 is not smaller than K3=
=K,-P=K-3P, and so on. Let us now suppose that in the
(h-1)-st step we have represented P(s) as product of two
A-matrices Ny .1y and T}, having degrees € [L-A+1, L]
and A-1, respectively. For extraction of a linear matrix
factor from N; .1 it is sufficient that number K, of
distinct zeros of det IV;.(,.1) is greater than (P-1)-(L-h+1).
Since Kj,; is not smaller than K-(%-1)-P, and taking into
account the condition L > A+1, which is neccesary and
sufficient for V;_, to be at least monome in s, we obtain:

K—(h=1)-P>(P=1)-[L—(h-1)] A L>h+1. (19)

This is the worst case sufficient condition for extraction
of a linear matrix factor. Therefrom, for 1=p, we get,

K>(P-1)-L+py-1 A L>2py+1.  (20)

This is the sufficient condition for representation of P(s)
as product of two generally regular A-matrices P;(s) and
Py(s) with degrees p; € [L-p,, L] and p, € [1, L-1], res-
pectively. For selected p, € [1, L-1] = p; € [L-p,, L] —
depending on ranks of matrices obtained during applica-
tion of the proposed procedure. It is obvious that
coefficient-matrices of s in Pi(s) and P,(s) are real or
complex if the zeros of det P(s) are real or complex,
respectively.
This completes the proof of Theorem 1.

Comment: In proving theorem, the P-th order coeffici-
ent matrix of s* in P(s) is supposed to be regular. On
contrary, if it is singular and has the rank » < P, it can be
shown that sufficient condition for extraction of a linear
matrix factor from P(s) becomes slightly weaker than
the previous condition K > (P-1)-L and it now reads:

K>(P-1)-L-(P-r). 1)

The proof of assertion (21) is straighforward and is left
to the reader.

3. GENERAL ACTIVE NETWORK STRUCTURE

In this section we shall give proof of items (a) and
(b) of Theorem 2, while in section 4 we prove item (c),
by formulation of new, general synthesis procedure. At
the outset consider general linear, active BT, or BT P-
port network N=N, U Npdepicted in Fig. 1. N, is linear
active subnetwork, while Np is linear BRLCT or BRCT,
multiport subnetwork with arbitrary number of passive
elements. N, contains arbitrary number of controlled so-
urces (CS) of all four possible types. Let E=[E; E, _ Ep]"
and I=[I, I, _Ip]" ("T" transposition of matrix) be the P-
dimensional column-vectors of Laplace transforms of
voltages and currents at accessible ports, respectively.
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Let A=[I,'...I,' E\'...E,']" be (h+m)-dimensional column—
vector of Laplace transforms of controlled currents and
voltages of CS and let B=[/,"... ;" E\"... EM" be (j+k)-
dimensional column—vector of Laplace transforms of
controlling currents and voltages. Denote by C, (h+m) x
(j+k) RRF matrix whose entries are controlled coeffici-
ents of generalized CS imbeded into subnetwork N,.
Certainly, it must hold A=C-B. Assuming E and A to be
the network excitations, then by force of superposition
principle, which holds in /inear electrical networks, we
may write:

I=Yy-E+D-A n B=F-E+G-A4, (22

where: (i) ¥, is the admittance-matrix of P-port network
produced by elimination of CS (< 4=0), (ii)) D is P x
(h+m) matrix, whose entries are current-transmittances
and admittances, (iii) F is (j+k) x P matrix, whose entri-
es are voltage-tranmittances and admittances and (iv) G
is (j+k) x (h+m) matrix having as its entries the transfer-
immitances, or current- and voltage-transmittances.

e
T . n" AN
W A l Np o B} |
3 T e
T |
@I B2 | BRLCTor ‘ } N,
- BRCT, | Iy ‘ }
* | | NETWORK — 4l
I ‘ | \
- . + ‘
Py
()| Er 1 | D £ | \
| | \ |

Figure 1. General active realization network

Let Uy, be the (h+m)-th order identity matrix. If matrix
U,.,,-C-G is regular, then from (22) we obtain the ad-
mittance matrix Y=¥(s) [I=Y¥(s)-E] of the overall P-port,
active, BRLCT or BRCT, network (Fig. 1), which in ge-
neral may have all four types of generalized CS:

Y(s)=Yy+D-(Uy,,-C-G)'-C-F. (23)

The minimum number of CS which is necessary for rea-
lization of matrix ¥ is obtained by investigating the rank
of Y-¥,, whose entries are RRFs having poles sy, ..., 54,
with multiplicities, say, n,, ... , n,, respectively. Since
Laurent's complex expansion of ¥(s)-¥(s) reads:

p q n
Y(5)-Yo(s) =D Ap-s*+ D > BU) (=), (24)
k=0 i=1 k=1
and since the rank of product of two matrices never ex-
ceeds the ranks of matrix factors, we can write,

rank (Y -¥y) <rank C <min (j+k, h+m),
s — oo rang A, <rang C, 25)

s> 8 rankB((_’n)) <rank C, (i=1,2, ..., q).
The matrix ¥, must be positive real [2, 10], since it rela-
tes to the passive (B)RLCT, or (B)RCTy] network Np. If
network is purely resistive, ¥, must be positive semide-
finite. In the most general case the matrix ¥(s) can have
the following two properties with respect to its poles:
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(1) They may lie in right-half complex plane and/or on
imaginary axis having multiplicities greater than unity.
(2) They may be in the left-half complex plane and are
different from poles of ¥y; or they are the same as poles
of ¥y, but have the greater multiplicities than poles of
Y,.

In both cases (1) and (2) matrix ¥, does not influence
the values of entries in coefficient matrices 4, (p = 2)

and B((fr)l), n,>1({=12,..,q).If one of them has

rank P, then from (25) follows rank C > P. This conclu-
sion means that, in the most general case, for existence
of active, balanced P-port (B)RLCT or (B)RCT, network
which realizes the arbitrary, P-th order, RRF matrix as
admittance matrix of network, it is necessary that the
active subnetwork N, (Fig. 1) has at least P CS and the
same number of controlling ports. The sufficiency of the
proposed conditions for existence of network realization
by using negative immitance converters (N/Cs) as active
elements is proved elsewhere [4]. That completes proof
of items (a) and (b) of Theorem 2.

Unfortunately, NICs as active elements are potentia-
lly unstable. This gave us impetus to develop our reali-
zation structure and our general procedure for synthesis
and realization of arbitrary admittance matrices (possib-
ly stable). In new procedure we are going to present, the
minimum number (=P) of balanced voltage-controlled
voltage sources (VCVS) is implemented. Herewith, we
prove that P balanced CS is, in general, sufficient for re-
alization of any P-th order admittance RRF matrix. The
preferable matrix realizations from engineering point of
view are stable ones. So, we shall apply algorithm only
to those cases, bearing in mind that unstable admittance
matrices can also be realizad by using the same proce-
dure. Passive subnetwork Np in realization structure pro-
posed is balanced, transformerles and RC (BRCT)). Rea-
lization networks with no inductors (L) and transformers
(T) are preferable from the practical point of view.

4. GENERAL NETWORK STRUCTURE AND
A NEW REALIZATION PROCEDURE

The proposed new general active network structure
is depicted in Figure 2. Observe that subnetwork Np is
BRCT, and that balanced subnetwork N, contains only
VCVS ("voltage amplifiers"). Let us now suppose that
all these amplifiers are approximately ideal. This means
that their input-impedances and output-admittances are
infinite and that their voltage-gains A4, ... , Ap are real
and either finite, or infinite. Almost every operatitional
amplifier in common use today satisfy previously stated
three conditions (its open-loop gain is "infinite"). Let:

E=[E..Ep)", I=[1,...1p]", A=diag (4,... Ap),

E,=[Epi..Esp]" I, =[Ipsi..lyp]’ =0p;, (26)
T T

Ey =[Eypsr--E3p) s Iy =[lhpsy-I3p], By = A-E,.

At this instance we recall that the admitance matrix Y=
=¥(s) to be realized must satisfy relation I=Y-E. On the
other hand, the admittance matrix ¥Y*(s) of balanced, RC
transformerless, reciprocal subnetwork Np (Fig. 2) with
augmented number of accessible ports (=3P) and no in-
ternal nodes must be symmetric and must have the
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following structure [2, 10] (since network Np is
passive):

Wy ih hi |1 E
Y*=|Y) Yy Ypy| |I,|=Y*|E, (27)
vl i T 'y E 2N N
Y3 Y3 Y33 I, E,
Bearing in mind that that always must be:
T
Ia:[1P+1"']2P] :OP,I /\Eb :A'Ea, (28)

then by eliminating I, and I, from (27) and using I=Y-E,
we obtain, provided that ¥,,+¥»;-A is regular:

-1 T
Y=Y -(Yp+Y3-4)- (Y +Yo3-4)" -¥5. (29)
I, Ipiy - _a - i ﬁ‘
TE (P+1) | YEpo | + Ny ‘
: (I)BRCT | . ‘ ; 4 \
); 0 Le |
2 NETWORK \ ‘ N \
- 2p) | Y EBp 1) ] |
2 @ Lpiy & ,iij‘ i Ap \
|
: (2P+1) | VEopi |1 }
. l
Ip Np Lp ‘ b ‘ ‘ ‘
£ \ \ | \
r 2 (3p) | VEp T, \
T 4

Figure 2. The proposed network structure

Our main intention in conducting the sufficiency proof
of Theorem 2 is to show that for arbitrary RRF matrix
¥(s) there always exisits at least one (and infinite many)
sets of real voltage-gains A, A,, ... Ap for which it is
possible to identify all submatrices Y; (i,j=1, 2, 3) in
(27) so as to assure dominancy of coefficient matrices of
the second Foster's expansion (DMCSFE) of Y*. As is
well-known [10] the dominancy represents necessary
and sufficient condition for BRCTy-realization of Y*.
Putting it methaphorically, the VCVSs play a role of
"Deus ex machina" means for successful solution of all
network synthesis tasks. These tasks can always be
accomlished by the approprite selection of: (i) P-th
order matrix ¥7;, which must be realizable by a BRCT,
network and (ii) finite or infinite voltage-amplifier
gains.

Let x;, g, Njand D (i,j=1, 2,..., P) be polynomials in
s such that: {1} Y=[N;]p /D (< Y is given by statement
of problem), {2} ¥,=[x;]]pr/q (<= Y11 must be appropri-
ately selected and must be realizable by BRCT
network) and {3} P=[D-x;-q-N;]pp must be a regular,
factorizable A-matrix in the sense of Theorem 1.
Factorizabilty of P can always be acchieved by suitable
selection of ¥j;. In addition, ¥;; must have strictly
dominant coefficient-matrices of its second Foster's
expansion, although the dominancy (but not strictly) of
Y, is necessary and sufficient for its realization by a
BRCT, network [2, 10].

In the sequel we shall distinguish between the follo-
wing two cases: (i) voltage-amplifier gains are finite and
(i1) these gains are infinite. For each of these cases, we
shall develop the steps of general synthesis procedure.

Case 1°: Real and finite voltage-amplifier gains

Presuming the factorizabilty of P=P;-P,, from (29)
we infer that if ¢; and ¢, are arbitrarily selected reals
(c1-c; # 0) — a possible identification of matrices reads:
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P,
le+Y13A— Y22+Y23A—

qUP, (30)

Y, = Pz /¢5 q;(U p is the P - th order identity matrix) ,
wherefrom it becomes clear that Y,)+Y,;-4 is generally
regular matrix. Let the numerical ratio r=c,/c; is selec-
ted arbitrarily, wherefrom it still remains to determine c,
# 0 appropriately. By virtue of {2}, the roots of polyno-
mial ¢(s) must be simple and lie in the origin and/or on
negative real axis [2, 6, 10]. In addition, the following
must hold P,(s) < O+1 (0=¢") [2]. We can now identify
both Yy, and Y3, after the Laurent's complex expansion
of P,'/q:

T 0
P 1
1712: 2 = —- KOO'S+ZKWI. 5 5
¢ q ¢
_ T -1
Y3 = (r-P-Py)-A
¢ q
where it has been assumed g(s)=s-(s-51)-(s-52) ... “(5-SQ)

and so= 0 <, <...<sq. By selecting sufficiently great ¢,
we can produce entries of ¥}, and Y3 arbitrarily small,
so as to assure the true dominancy of the first P rows
and columns of symmetric matrix Y*(s). Remember that
Y*(s) must be realizable by a BRCT, network.

All entries of matrix ¥,; and off-diagonal entries of
Y,, must not have poles distinct from poles of diagonal
entries of ¥,,. These diagonal entries must essentially
correspond to input admittances of BRCT, networks [2].
Let us identify now the other submatrices. We have:

0
Up=Fys+ Y F,——, (32)

Y22 +Y23 A=
16 q m=0 S+Sm

where F,=F,,-Up (m=x, 0, 1, ... , Q) are diagonal matri-
ces. Let Gm=[g,-j("’)]p, pand H,,,=[h,-j(m) ]p.p be arbitrarily se-
lected diagonal matrices whose diagonal entries are non-
negative and satisfy the conditon gﬁ('”)-h”("’)=0 (Vi=l, 2,

o Py Ym=w, 0, 1, ..., Q). Let D,~[d,\"]p=d"™-Up
(m=x, 0, 1,..., Q) be the P-th order scalar matrix whose
diagonal entries are positive and should be at first esti-
mated and thereon assumed appropriately. If we put F,,
=(G,+D,)-(H,+D,,), then from (32) follows a possible
identification of matrices Yzz and Y»;3:

Y5y =(G, +D,,)- S+Z(G +D,,)- ,
Ss+S

Y, = -[(H,, +Doo)s+Z(H +D
m=0

Let K,=[k;""]p.p (m=o, 0, 1,..., Q). From (33) we infer
that the second P rows (columns) of coefficient-matrices
in the second Foster's expansion of ¥* will be dominant
if Vi=1,2,..., Pand V m=x, 0, 1,..., O — the following
condition holds:

P pm) . g(m)
gz(zm) di(iM) > z lgém) +d;§'M) 4| : il +
= J
i
(m) (m)
4] |C |
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The previous set of conditions essentialy reduces to:

Rk o

Since g;"-h;{"=0 (Vi=1,2, ..., P; Vm—oo, 0,1,...,0),
dominancy of the second P rows (columns) in MCSFE
of Y*(s) is acchieved if all 4; (=1, 2, ..., P) are by mo-
dulus greater than unity and if all "d"-entries of selected
scalar matrices, for m=x, 0, 1, ... , O satisfy condition:

(m) e
o e 4] S|
d 21':{2?113 |Ai|_ |A|—1 Z‘ ‘ . (36)

gz(zm) +d(m) > il

We can notice from (29) that ¥ does not depend on ¥;;.
Thereof it follows that dominancy of the third P rows or
columns of coefficient-matrices in the second Foster's
expansion of ¥* can always be acchieved with indefini-
te number degrees of freedom. Among many different
choices of ¥33 the most simple one seems to be selection
of Y33 as constant diagonal matrix with positive, suffici-
ently great diagonal entries.

To this end we have proved the item (c¢) of Theorem
2, i. e. that P balanced V'CVSs with finite and by modulii
greater than unity voltage-gains are sufficient for reali-
zation of any (preferably stable) P-th order RRF matrix
as admittance matrix of BRCT, network. It has also been
proved that there exists indefinite number of topologica-
lly and parametrically equivalent network realizations.

Case 2°: Infinite voltage-amplifier gains

According to (28), in this case it must hold E,=0p,
(since A — ). Hence, the identification (30) will not be
valid anymore. If we rearrange (29) as follows :

Y=Y - Yy A +¥3) (Y A +¥53) 15,37)
and let A — oo, we finally obtain,
Y=Y -¥;- Y53 V. (38)

By using (38) we can make the following identification
of the seeked matrices:
T
Yy, =L’ Y3 = ! » Y3 =L'UP~ (39)
¢ q -q ¢ q

In this case, all matrices ¥;; (i=1, 2, 3) are to be selected

so as to assure the dominancy of coefficient-matrices in

the second Foster's expansion of ¥*.

In both cases 1° and 2° the produced matrix ¥*(s) is
to be realized by a parallel connection of at most ¢%+2
BRCT, networks. Eeach of them is comprised of at most
3P-(3P-1)/2 half-lattice two-poles which can be realized
almost by inspection [2].

This completes the proof of item (c¢) and Theorem 2
altogether.

Now, we shall consider and formulate the steps of
algorithm for realization of RRF matrix ¥(s)=[N;]p /D
by an active, BRCT), P-port network.

o Firstly, we must select symmetric, P-th order RRF
matrix Yy,(s)=[x;]pp/q with strictly DMCSFE. Y,(s)
must be realizable by BRCT, P-port network. There-
fore, we have x,»jo < xii0=q0+s (j=1,2, ..., P, i#)),
where e=1 or 0, depending on whether the point at
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infinity is pole or common-point of ¥y(s), respecti-
vely [2, 6-8, 10].

e In addition, ¥;(s) must assure the factorizability of
Y1(5)-¥(s)=[Dx;-¢-Ny1p.p/(¢-D)=P(s)/(g-D)—accor-
ding to Theorem 1.

e We shall deliberately suppose that xjj is 1ndependent
of j (=1, 2,. P) Then we have L=max [D"+max
), q°+max (NU Mij-1.2. .. =X +L, provided that
L=max [D’, max (N;*)-€]lij-1.2, ...

e Strict dominancy of MCSFE in ¥j(s) with sufficient-
ly great dominancy-margin [2, 9, 10] can always be
acchieved by multiplication of its diagonal entries

with sufficiently great, real, positive constant p:
p-xll' X1p
1 pP-Xyn' ...
Yll(s):_ 2 5 (40)
X p1 p')CPp‘
so that det P(s) can be represented as follows,

P
i=1 [Y)

R(s.p) _

RUs,p)<Pxly <P L A lim—=

p—>© p

When p — oo, P~xjj-0 zeros of det P(s) approaches the ze-
ros of product x;,"-x2," ... - xpp' [« all of them should be
selected to be real, simple and distinct from zeros of
both polynomials D(s) and g(s)]. Thuswith, det P(s) can
be produced to have at least P-x,-,-O real, distinct zeros.
Then, for extraction of k linear matrix factors from P(s)
it is sufficient after extraction of the (k-1)-th factor to
be:

Pxd—P(k=1)>(P-1)-[x0+ L, -(k-1]. (42)

This follows straighforwardly from (19). If we assume
now k=L,, the iniquality (42) reduces to xi’> P-L.-1 and
can be satisfied by selecting x;i'=P-L.. It is shown thus-
with that if det P(s) has at least P-x;’=P-(¢"+¢) distinct,
real zeros, the regular A-matrix P(s) can be represented
as product of regular A-matrices P;(s) and P,(s), having
degrees p1=xl-,-0=P-Lg and p,=L., respectively. We must
recall that x,—,-O > P-L.-1 is only a sufficient condition (and

not necessary one) for factorization of P(s).

e Since Y;(s)=[x;]pr/q must have strictly DMCSFE, it
follows that is also necessary to be x;(0) = 0 (=1, 2,

, P). Otherwise, the strict dominancy of MCSFE
of ¥;;(0) may be violated.
Now we formulate steps of realization algorithm:

(@) Select Y,,(s)=[x;]p p/q With strictly dominant MCSFE.
Y11(s) must be realizable by a BRCT, network. Zeros
of x;(s) (i=1, 2,..., P) should be selected real, simple
and distinct from zeros of polynomials D(s) and g(s).
All polynomials x;(s) may have the same degree and
in addition, x;0) # 0 (i=1, 2,... , P). These diagonal
entries possibly should be multiplied by sufficiently
great real p > 0 in order to assure that the A-matrix
P(s)y=[D-x;-q-N;j]pp be regular and to have at least
Px;° real, simple and distinct zeros.

(b) Let L;=max [DO, max N,-jo)—s]|,- j=1,2, ..., p- Then, reali-
ze the factorization P(s)=P,(s)-P,(s), where degrees
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of regular A-matrices P)(s) and P,(s) are p1=x,-,-°=P-L€
and p,=L., respectively.

(c) Select the real-valued voltage-amplifier gains A4; as
|4, > 1 (i=1, 2,..., P). Then apply the identification
procedure, either of the Case 10, or of the Case 2° to
produce necessary block-matrices of ¥*(s), which is
realizable by pasive BRCT, network. Realization of
Y* is simple and straighforward [2]. And finally, by
interconnection of VCVS and previously produced
BRCT,, 3P-port network Np the balanced, active, P-
port, transformerless, RC network which realizes the
admittance matrix ¥(s) is finally constructed.

5. A NUMERICAL EXAMPLE

By using the procedure proposed let us realize 2 x 2
admittance matrix:
[Ny ] 1 |:2s +1 S

Y(s)=

s 2s—1

Dls) ~ 5+l },D(s)—s+l. (43)

Although ¥(s) is symmetric, it can not be realized by
passive RLCT network, since the entry y,,(s)=N,»5)/D(s)
=(2s-1)/(s+1) is not the input-admittance of RC network
[2, 6]. Then, the passive network realization (RLCT or
RLCT,) of Y(s) simply does not exist. According to the
algorithm, we must first arbitrarily select ¥7,(s):

eyl [3s+1 0 ] [1 O
Y“(S)_W‘m[ 0 25+1]_[0 JJF

2 0] g B
+[0 1}m,q(s)—s—i-l, 44)

which is realizable by parallel connection of two BRCT

two-ports. Nodes (1, 1) of port 1 and (2, 2") of port 2 are

not mutually interconnected. Then, we obtain for P(s):
—s

PO =1Dx-gNyha =60 Y S| o
det P(s)=-s(s—2)(s+1), P=L=2,K=3.

Since the sufficient condition of Theorem 1 [K > (P-1)-L
+p,-1] is satisfied with p,=2, we infer that extraction of
linear matrix factor from P(s) is possible. So, we get:

0 s+1 I |0 s-2 46
“s+1) —sanf PO » (49)

Pl(s):|:

where P(s)=P,(s)-P,(s). Let us assume c,=c,=c (<> r=1)
and A=diag (-2 2) (& 4;= -2 A A>=2). According to
(30) and (31) we obtain:

P 0 s]|_

_E_c(s+l)[s—2 —s}_

_1[0 0}_1[0 1} s
cl-2 0| c¢|3 -1|s+1

(P-PHA 1 0 17_
cq(s) _Zc(s-i-l)[Zs—l —J—

110 1 110 —-17] ¢
‘2c[—1 —1}+2c[3 1L+1' “7)

The first two rows of coefficient-matrices in ¥* are do-
minant if the same holds for submatrix:

Y,

Yi3(s) =
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1 ==

1 0 0 O ZL
: : = c
[Yi1 i ¥pp @ ¥i3] . ) L1
c 2c¢ 2¢
200 1 o —2i S
c c .
* S N s R
o1 2 = = =
c c 2c 2¢
Symmetric real matrix Z=[z;]p pis said to be dominant if
Vi=1, 2, ..., P its diagonal entry z; is not less than the

sum of moduli of entries in the same row (column), i. e.
Zii 2 |z Flzalt. Azl Hz el Hzpl [2]. Since each
row of matrix (48) must be dominant, thereof we obtain
that ¢ > 6. According to (30) and by algorithm we have:

1
Y22 +Y23'A=—2'U2, DO :do'Uz, Dl =d1'U2 N (49)
C

where d, d; > 0. Then, ¥, and Y>3 can be identified as:

1
do +c—2 0 dl 0 s
Yy (s) = LT

0 d0+—2 0 dl s+1
C
50
d oy, (50)
) 2 S
Yy3(s) = + —
23() 0 _d_O 0 _d_O arl
2 2

The third and the forth row of coefficient-matrices in ¥*
are dominant if the same holds for submatrix [¥}," | ¥», |
¥23]. One can easily show that the desired dominancy
can be realized through selection ¢y=6, d;=2 and d,=1.
Dominancy of the fifth and the sixth row of ¥*(s) can
be readily acchieved by selecting ¥3; as diagonal matrix,
as for example:
13/12 o 3/4 0 s
Y33(s):[ 0 7/6}{ 0 2/3]'m' (1)
Herewith, we completely accomplished construction of
the seeked matrix ¥*, which can be realized straightfor-
wardly (almost by inspection), by a passive, balanced,
transformerless, RC, six-port network:

1 0 0 0 0 L
12
o 1 Lo, .1 1
3 12 12
0 LB 0 1 0
y* = 30036 +
0 0 0 NES 0 -1
36
0 - 1 1 0 B 0
12 12
L Ly 4 0 I
L12 12 6
- | . (52)
2 0 o - 0 -—
6 12
o 4 L o111
2 6 4 12
0 1 1 0 1 0
+ 2 2 S
L B o e
6 6 2
o 1 1 9 2
4 2 4
L 2
L 12 12 2 3
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Realization details of dominant matrices are duscussed
elsewhere [2]. Network realizations of this class of ma-
trices are established exclusively from half-lattices with
only serial, or crossed arms (pair of branches), inserted
between each pair of nodes (i. e. network ports). By use
of (52) we find, for example, that the network fragment
between ports 2 and 3 looks like as is depicted in Fig 3.
Thereon are denoted the dimensionless values of con-
ductances (G,) and capacitances (C,), normalized with
respect to assumed values of angular frequency (w,) and
the impedance level (Ry). Physical parameter values of
these elements are obtained by denormalization process:
the values of conductances are calculated as G=G,/R,,
whereas the values of capacitances are obtained as C=
=C,/(Ry- ).

N2 23 3.7
A
Iy
-2
m .
////2:\\\ _ /,//3:\\\ .
- \ ———— .
* TTTse
. -
N7 5
. ]
- ~
- ~
. SN
AN
> '
—— ~. 5
e D
®

Figure 3. The fragment of active BRCT, network which
realizes the admittance matrix (43)

6. CONCLUSIONS

In paper is presented a new proof of fundamental theo-
rem in network synthesis of admittance matrices of real,
rational functons in complex frequency by active, multi-
port, transformerless, balanced RC networks. It has been
shown that the neccessary condition for network exis-
tence is also a sufficient one if active elements used are
balanced voltage-amplifiers. A new procedure for reali-
zation of RRF admittance matrices is given also by use
of minimum number of balanced V'CVS. The procedure
proposed relies on a new theorem on representation of
regular, polynomial matrix as product of two
polynomial matrices with selected degrees. The
obtained results are the most general in nature and can
easily be applied in transformerless, multiport, RC
active network synthesis.
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®YHOAMEHTAJIHA TEOPEMA Y CUHTE3U
AKTUBHUX BAJNTAHCHUX RC MPEXXA U JEOAH
HOB NMOCTYMNAK PEAJIU3ALNJE

Oparan KaHguh

VY pamy ce nmaje jenaH HOB JOKa3 (DyHIAMEHTAIHE TEO-
peMe n3 akTUBHE cuHTe3e OanmaHcHHX RC Mpexa ca BH-
me mpucrtyma, 6e3 Tpanchopmaropa. Mana Ta TeopeMa
Jaje caMo TOTpeOHE yCIIOBE 3a Er3UCTCHIIN]Y MpEke, Y
pany je Imoka3aHo Aa Cy TH yCJOBHU yjeJHO M JOBOJbHU
3a peann3alyjy MpOU3BOJFHE CTAOMIIHE MATpHIE peall-
HUX palMoHaHUX (yHKIMja KOMIUIEKCHE (peKBeHIIH]e,
Kao aJMHUTaHCHE MaTpHIle MpeXe MOMEHyTe Kiace, Y
cllydyajy KaJa ce Kao aKTHBHU eJIEMEHTH Kopucre Oa-
JAaHCHHM HANOHCKM II0jayaBayd, KOHAYHOI MJIM OecKo-
HayHOT Nojayama. Takohe, AaT je U mocrynak peannsa-
[Mje Mpexa ca MHHHMaJIHUM OpOjeM TakBHX I10jadyaBa-
ya. [TocTymak ce 3acHMBa Ha IPUMEHH HOBE TEOpPEME O
(haxTOpM3aNMjU HECHHTYIAPHUX MTOJMHOMHHUX MaTpHIIa,
Koja je y panmy QopMmynucana W AokazaHa. M3moskeHH
pe3ysTaTi Cy TEHEpaHOT KapakTepa, alli Ce MCTOBpe-
MEHO OHHM MOT'Y KOPUCTHUTH U 32 MPAKTUYHY CHHTE3Y aK-
TUBHUX, OanaHcHUX RC Mpexa ca BHIIE MPUCTYyIa, 0e3
Tpanchopmaropa.
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