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On the Effect of Gas Injection/Suction 
Through a Porous Wall on the Flow in 
a Gas Lubricating Slider Bearing 

 
Compressible, isothermal, low Mach number, viscosity dominated flow in a gas 
lubricating slider bearing is considered in the paper under the assumption of 
continues gas injection/suction through the bearing. Two characteristic cases are 
encountered at that: (a) forced injection/suction at a constant rate, and (b) 
natural injection/suction due to the pressure difference on both sides of the 
bearing. In the latter case ambient pressure is supposed constant and the flow 
through relatively long slits isothermal and slow. It is shown that the injection of 
the gas, even at relatively small rates, highly increases the pressure in the 
bearing, thus increasing the slider bearing load too, while the suction affects the 
pressure distribution conversely. The results obtained can be applied in the design 
of externally pressurized gas bearings. 
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1. Introduction 
 
 Due to both its theoretical attraction and practical 
importance compressible gas flow in micro-channels 
has been paid much attention in the literature recently. 
Since micro-channels have extremely small widths, 
measured in microns, only moderately high values of 
the Reynolds number can be attained in a micro-channel 
flow, with the consequence that the effect of viscosity is 
spread over the whole cross-section of the channel. 
Thus, it either competes inertia for high subsonic or 
supersonic flow, like in the classical boundary layer 
theory, or dominates over it for low Mach number 
subsonic flow, like in the hydrodynamic lubrication 
theory. Pressure-driven micro-channel flow find very 
useful applications in problems of integrated cooling of 
electronic circuits and superconducting magnets, in  
cryo-coolers for infra-red detectors and diode lasers, in 
high-frequency fluidic control elements, etc. The results 
obtained in [1], [2], [3] and [4] show how the effect of 
viscosity extended over the whole cross-section of the 
channel may dramatically alter the flow characteristics 
of a pressure-driven flow, in comparison with more 
conventional high Reynolds number flows. This applies 
not only for non-isothermal flows, but also, and a little 
bit surprisingly, to low Mach number isothermal flows 
too, which are usually (and erroneously!) treated in 
engineering applications as incompressible ones. Shear-
driven flows in micro-channels occur in externally 
pressurized thrust bearings and micro-motors. Thus, 
both pressure-driven and shear-driven micro-channel 
flows represent an important constituent part of what is 

on this theme by Beskok et al. [5], and by Ho and Tai 
[6]). The results obtained in [7] show that gas injection 
into the slider bearing through a porous wall, even at 
small rates, considerably improves the load 
characteristics of the bearing, so that this effect can be 
very usefully employed in the design of these slider 
bearings. 
 In this paper we treat the classical problem of the 
shear-driven gas flow in a slider bearing, with the 
addition of the effect of gas injection/suction through 
the bearing pad. The flow is supposed to be a low Mach 
number, isothermal flow, and for simplicity the gas 
injection/suction through the pad is supposed to be 
continuous. At that we treat two possible cases of wall 
porosity, which affect the obtained results via the 
boundary conditions on the pad. In the first case a 
forced injection/suction at a constants rate is due on the 
pad. In the second one we suppose that the bearing pad 
is made of a porous material, such as sintered metal, in 
which the flow is subjected to the well known Darcy's 
law. The flow in the pad is also compressible, slow and 
isothermal. It is affected by the difference between the 
outer pressure which is assumed constant and the 
variable pressure inside the slider bearing, and by the 
pad geometry. We also consider injection/suction of the 
gas through a series of narrow slits in the pad, and show 
the existence of a full analogy between this case  and 
the previous one, provided the friction factor for the 
flow through slits is inversely proportional to the local 
value of the Reynolds number, so that an equivalent 
value of the permeability coefficient can be found. Our 
aim is to study the effect of various kinds of the gas 
injection/suction through the pad upon the flow 
characteristics, in particular upon the pressure 
distribution inside the bearing. 
 We show that gas injection into the bearing, even 
with the rates much smaller than the speed of the 
runner, greatly improves the performance of the bearing. 
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now called Micro- Electro - Mechanical - Systems 
(MEMS) technology (see two excellent review papers 

 
2. Problem statement and the derivation of the 
pressure governing equation 
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 We consider the problem depicted in Fig. 1 in 
which the injection/suction of the gas through the 
bearing pad is allowed in order to improve the 
performance of the bearing. The flow in the bearing will 
be supposed to be a steady, 2-D, isothermal, 
compressible flow of a perfect gas. As well known, 
isothermal gas flow cannot be consistent with the full 
system of governing equations, which includes the 
energy equation too. However, several gas flows in  
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Figure 1. Slider bearing with gas injection/suction through 
the bearing pad. 

techniques proceed with very small temperature 
variations, so that they can be treated as nearly 
isothermal. In such a case the energy equation is 
uncoupled from the others and serves only for the 
determination of heat, which is spontaneously 
exchanged with the environment in this case. Thus, the 
system of equations governing the flow in the problem 
considered will consist of the equation of continuity, the 
momentum equations in x and y direction (s. Fig. 1), and 
the equation of state. They will be written in 
nondimensional form by using the following scales (s. 
Fig. 1) : δ0 for all lengths, speed of the runner u0 for all 
velocities, and pressure and density at the entrance into 
the bearing, p0 and ρ0 , respectively, for pressure and 
density. 
 In order to simplify this system of equations, even 
before we write then down, we will now make the 
following assumption, which can be always accepted in 
the theory of lubrication. Let the maximum angle of  
inclination of the pad contour toward the x-axis, α max  
(s. Fig. 1), be small enough, so that it can serve as a 
small parameter ε : α εmax = . In this case the local 
thickness of the gas film δ( )x  will be a slowly varying 
function of x, and all physical quantities, like both 
velocity components, pressure and density will be also 
slowly varying functions of x. To make these slow 
variations explicit, we will introduce the following slow 
coordinate ξ ε= x , instead of x. Also, since the 
inclination of the pad contour actually determines the 
ratio between velocity components u and v in x and y 
direction, respectively, v will be much less then u 
throughout the bearing, so that we can write: 

),(),( yVyxv ξε= , where ),( yV ξ  is an order one 
transverse velocity component. Further, we will assume 
that γ λεM0

2 / Re = , λ = O( )1 , where γ is the ratio of 
specific heats, M0  is the reference Mach number 

defined as: M u p0 0 0 0= / /γ ρ , and Re is the 
reference Reynolds number: Re /= ρ δ µ0 0 0u  (µ is 
constant viscosity).  
 Simplified governing equations in nondimentional 
form will now read (some of denotations used for 
dimensional quantities in Fig. 1 are retained for 
simplicity!): 
- continuity equation in which equation of state for 
isothermal flow in the form: p = ρ is used, 

∂
∂ξ

∂
∂

( ) ( )pu pV
y+ = 0  ,                   (1)  

- momentum equation in x-direction, 

γ
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- momentum equation in y-direction, 

   
∂
∂

ε
p
y O= ( )2  .                           (3) 

Obviously, for high subsonic and supersonic flow 
inertia term in (2) is of the same order of magnitude as 
the dominant viscous term, and the problem is one of  
boundary layer type. However, for low subsonic Mach 
numbers inertia term can be neglected, and the flow is 
viscosity dominated. This case is particularly simple 
because equation (2), taking into account (3), can be 
easily integrated. Employment of boundary conditions: 
for y = 0 , u = 1, and for  y = δ ξ( ) , u = 0, then yields: 

u
p y p y

= − + +1 1 2 2

2 2 2

2(
'

)
'δ

λ δ
δ
λ δ

   ,               (4) 

where p p' /= d dξ is gradient of the pressure. 
Since we are primarily interested in the derivation 

of an equation for the pressure distribution inside the 
bearing, we will now circumvent the determination of V 
from (1). We will simply integrate (1) in y from 0 to 
δ ξ( ) , apply the boundary conditions: y = 0 , 0=V , and 
for y = δ ξ( ) , )(0 ξ= VV , and Leibnitz's formula to get: 

)(d
d
d

00
ξ−=

ξ∫
δ

Vpyup  . 

Finally, utilizing (4) the following equation governing 
the pressure is obtained: 

δ δ δ δδ λ λ δ3 3 2
03 2 6 2 0p p p p p V p" ' ( ' ) ' ( ' )+ + − − + =  , 

with boundary conditions: for ξ = 0 , p = 1, and for 
ξ = L , p = 1, where L l= ε δ/ 0 (s. Fig. 1). Since 

),(),( yVyxv ξε= , as stated earlier, note that the 
injection/suction velocity must be much smaller then the 
runner velocity in order for this theory to be applicable. 
For convenience of numerical integration of this 
equation we will introduce X L= ξ /  instead of ξ, and 
get: 
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with boundary conditions: for X = 0  and 1=X , p = 1. 
Two qualitative conclusions can now be drawn from 
(5). 
 a) Even if δ = 1 (Couette - like flow) some non-
trivial pressure distribution inside the slider bearing can 
be induced by injection/suction of the fluid. At that, if 

0)(0 >XV  the pressure curve is concave at the point of 
pressure extremum, indicating that p < 1 inside the 
bearing. If 0)(0 <XV  the pressure curve is convex at 
the point of pressure extremum, indicating that p > 1 
inside the bearing, so that Couette-like flow with 
injection can still be used for lubricating purposes. Since 
for δ = 1, αmax = 0, the definition of small parameter ε 
should be changed. It can be redefined to be: 
ε γ= M0

2 / Re , i.e. by chosing λ = 1. For λ = 1, 
L l u l p= =ε δ µ δ/ /0 0 0 0

2  and plays the role of the 
bearing number Λ, s. [8] (Λ = 6L) in this problem. 

 b) If the injection/suction velocity distribution 

)(0 XV  is chosen to be: 
XL

XV
d
d

2
1)(0

δ−= , the last 

term in (5) disappears, and pressure extremum and 
inflexion points overlap, which is not feasible if both of 
boundary conditions for pressure have to be satisfied - 
the only solution of (5) for such an injection/suction 
velocity distribution being the trivial one: p = 1. In what 
follows we will call this velocity the critical 
injection/suction velocity. 
 
3. Injection/suction velocity distribution 
 
 As announced in the Introduction we will consider 
two possible cases of the gas injection/suction through 
the bearing pad, referred to in what follows as Case A 
and Case B. 
 In Case A we assume the velocity )(0 XV  can be 
chosen at will, without going into the problem of 
feasibility of such a velocity distribution. For 
convenience, in our numerical examples we will take 

.)(0 constXV =  
 In Case B we assume the pad is made of a porous 
material with given permeability coefficient α. The 
nondimensional pressure outside the pad is p consta = . 
so that the flow through the pad proceeds under the 
pressure difference p p xa − ( ) . The flow is supposed to 
be, lake inside the bearing, steady, 2-D, isothermal, 
compressible flow of a perfect gas, and is subjected to 
Darcy's law. Equations governing such a flow, if written 
in nondimensioal form by using the same scales, used 
already in the normalization of equations governing the 
flow inside the bearing, read: 
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where ~p , ~u  and ~v  are pressure and velocity compon-
ents in the bearing pad respectively, and 
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where α is the permeability coefficient of the bearing 
pad.Since both transverse velocity components in the 
pad and in the bearing must be of the same order of 
magnitude, ~v can be presented as Vv ~~ ε= , )1(~ OV = . 
Then, from the second of equations (6) it follows that k 
must be of the order ε−1, so that the order of α δ/ 0

2  is ε2 . 
This determines the order of permeability coefficient for 
which the theory presented here is valid. 
 Further, we will introduce the slow coordinate 
ξ ε= x  instead of x for the same reason as before, and 

conclude that ~u  is of the order 3ε  in the pad and is 
much smaller then ~v . Thus, the first order equations 
governing the flow in the pad are: 

 
∂
∂

~
~p
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∂
( ~ ~)p v

y = 0 , 

and can be easily solved with the boundary conditions 
(s. Fig. 1): for y b= , ~p pa=  , and y = δ ξ( ) , ~ ( )p p= ξ . 
The solutions are: 
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where β is an O( )1  coefficient. From here, for y = δ ξ( )  
we finally get the injection/suction velocity )(0 ξV : 
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VV a
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β=ξδξ=ξ    ,               (7) 

to be used in the integration of equation (5). 
 Practically, gas injection/suction through the pad 
can be maintained by a number of narrow slits, 
perpendicular to x - axis. If the flow in each of them is 
steady, 1-D, compressible, low Mach number flow, it is 
well known that the momentum equation for such a 
flow will be (in dimensional form): 

d
d
~p
y d

w= −
4τ

   ,                           (8) 

where d is diameter of the slit, τ w  is the local value of 
the wall shear stress: τ ρw f v= ~ ~ /2 2 , and f is the 
friction factor. In laminar, low Mach number flows: 
f C= / Re, where C is a constant (C=16 for pipes), and 
Re ~ ~ /= ρ µv d  is the local Reynolds number. If written 
in nondimensional form, equation (8) attains now the 
form of the second of equation (6), provided 
α = d 2 32/ , which at the same time yields the estimate 
d O/ ( )δ ε0 = , as a necessary condition for the validity of 
theory. The same holds for continuity equation for 1-D, 
isothermal flow, which is as well known: ~ ~ .p v const=  
Thus, the two problems are fully equivalent, and there is 
no need to treat injection/suction through slits 
separately. 
 
4. Numerical results and discussion 
 
 We assume to have the simplest pad geometry in 
the form: δ δ= − −1 1( )e X , where δ δ δe = 1 0/  (s. Fig. 1). 
In this particular case ε δ δ= −0 1( ) /e l , so that 
L e= −1 δ , and cannot be chosen arbitrarily, except in 
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Couette-like flow in which the definition of ε was 
changed. The critical velocity is constant in this case 
and equal to 0.5. 

4.1. Case A 

 We first present the results of numerical 
calculations of in  Case A, when the injection/suction 
velocity is: .)(0 constXV = . 
 In Fig. 2 we present the results obtained by 
numerical integration of (5) for a Couette-like flow. It is 
clearly seen that this flow with gas injection ( 00 <V ) 
can serve for lubricating purposes because large gauge 
pressures inside the bearing can be generated even with 
relatively small injection rates. 
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Figure 2. Couette-like flow with injection/suction, as a 
slider bearing. 

 In Fig. 3 we present the results obtained by 
numerical integration of (5) for the classical form of the 
pad and (a) δe = 05. , and (b) δe = 0 2. . In both cases the 
performance of the bearing can be greatly improved by 
injection of the gas through the pad. This effect is 
especially pronounced for relatively small exit cross 
section of the bearing (s. Fig. 3a). With decreasing of δe  
maximums of the pressure distribution are apparently 
shifted to the right, yielding very large pressure drops 
near the exit. It is also seen that the gauge pressure 
inside the bearing is maintained even if gas is 
withdrawn, up to the critical velocity of 0.5 for which 
the pressure distribution is uniform p ≡ 1. 
 In Fig. 4 the pressure extremum value is shown as 
a function of oV , for 1=L  and λ = 1, and for different 
values of δe . It can be noticed that for a fixed value of  

oV  the pressure extremum decreases with δe , this effect 
being much more pronounced for the gas injection than 
for the gas suction.      
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Figure 3. Pressure distribution inside a slider bearing with 
gas injection/suction, for (a) δe = 05. , and (b) δe = 0 2.  
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Figure 4. Pressure extremum value in the bearing as a 

function of oV .  

 In Fig. 5 we show the development of the 
longitudinal velocity component, determined by (4), in a 
convergent part of the bearing for: 1=L , λ = 1, 
δe = 0 5,  and 2,0−=oV . Slow variations of the velocity 
field in X-direction, as well as some acceleration of the 
fluid particules, typical of the flow in convergent 
cannels, are obvious. In the case of gas injection into the 
slider bearing the care mast be taken about possible 
combinations of the governing parameters for which a 
back flow in the bearing may occur, because in such a 
case the basic assumption concerned with the order of 
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magnitude of the velocity components is violated. Our 
calculations show that the back flow first occurs in the 
entrance cross section of channel. In order to circumvent 
this phenomemon the shear stress on the porous wall in 
this cross section must be positive, which leads: 

′ ≤p ( )0 2 λ . 
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Figure 5. Longitudinal velocity field in the bearing for 

λ = 1, δe = 0 5,  and 2,0−=oV . 

 
4.2. Case B 

 In this case the flow through the porous wall of the 
bearing is caused by the local pressure difference 

)(xppa − . In Fig. 6 and Fig. 7 pressure distribution in 
the bearing is presented for different values of 
parameters oa pp / , λ and eδ . We also plot there the 
referential pressure distribution for 0=oV . Obviously, 
the pressure distribution in the bearing is severely 
influenced by the injection/suction through the porous 
wall, particulary for high values of the parameter 

oa pp / , for  which one can expect that gas injection 
into the bearing takes place. Consequently, the load 
characteristics of the bearing are considerably improved 
for these values of oa pp / . 
 In Fig. 8 we show the distribution of the injection/ 
/suction velocity )(XVo  in the bearing for various 
values of the governing parameters. Naturally, for small 
values of oa pp /  we have suction all over the bearing 
surface, while for relabively large values of oa pp /  
injection takes place, improving the load char-
acteristics. For intermediate values for oa pp / , )(XVo  
may change sign in the bearing. For example, for 

10.1/ =oa pp  we have injection for ∧∈ )30,0;0(X  
)0,1;94,0(∧  and suction for ]94,0;30,0[∈X . 
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Figure 6. Pressure distribution in the porous bearing for 

75,0=δe  
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Figure 7. Pressure distribution in the porous bearing for 

5,0=δe . 
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Figure 8. Velocity of injection/suction as a function of  

oa pp / . 
5. CONCLUSIONS 
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 The theory presented in this paper can be usefully 
applied for any form )(Xδ  of the bearing, within the 
frames of validity of the theory. Numerical examples 
performed for the Couette – like flow and for the case 
for which )(Xδ  us linear function show that the 
pressure distribution in the bearing with one porous wall 
is severaly affected by the gas injection/suction through 
the wall, with the consequence that gas injection can be 
usefully employed for the improvement of bearing load 
characteristics. At that, the governing parameters: λ , 
δe , L and oa pp /  play the key role. 
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O UTICAJU UBRIZGAVAWA / ISISAVAWA GASA 
KROZ POROZNI ZID NA STRUJAWE GASA U  

KLIZNOM LE@AJU  
 

C. Crnojevi}, V. D. \or|evi} 

 U radu se tretira izotermsko, sti{qivo 
strujawe gasa u kliznom le`aju pri malim 
vrednostima Mahovog broja, pod pretpostavkom 
da se gas ubrizgava/isisava kroz porozni 
nepokretni zid le`aja. Pri tome se posmatraju 
dva karakteristi~na slu~aja: (a) prinudno 
ubrizgavawe/isisavawe gasa konstantnom 
brzinom i (b) spontano ubrizgavawe/isisavawe 
do kojeg dolazi usled razlike pritisaka sa obe 
strane le`aja. U slu~aju da je spoqa{wi 
pritisak konstantan i da je strujawe kroz 
duga~ke procepe tako|e izotermsko i sporo, 
pokazano je da ubrizgavawe gasa u le`aj, ~ak i 
pri malim brzinama, dovodi do zna~ajnog 
pove}awa pritiska u wemu, pove}avaju}i tako|e 
i wegovu nosivost. Isisavawe gasa deluje na 
raspored pritiska obrnuto. Dobijeni rezultati 
mogu biti korisno upotrebqeni u konstrukciji 
gasnih kliznih le`ajeva. 
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