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Cellular Neural Networks - An 
Analogous Model for Stress Analysis 
of Prismatic Bars Subjected to Torsion 

 
In the most general case finding the shear stress distribution on the cross-section 
of prismatic bar subjected to torsion presents a serious problem that can be 
solved in two steps. The first of them consists in finding the stress function, while 
the second one consists in finding the shear stress distribution by using this 
function. The stress function appears to be the solution of Poisson’s partial 
differential equation for the given conditions of unambiguity, which in the theory 
of elasticity describes torsion of prismatic bars in terms of stresses. The modeling 
by means of electric networks is one of the few possible means for finding the 
stress functions. This paper describes the method the cellular neural networks can 
successfully be applied as analogous models in finding stress functions of twisted 
prismatic bars with complex polygonal cross-sections. The stress functions 
produced in this way are straightforwardly applicable in calculation of resulting 
shear stress distributions. The effectiveness of the proposed method is 
demonstrated through the selected illustrative examples. The method is applicable 
in various branches of mechanical engineering, as well. 
 
Keywords: modeling, stress analysis, torsion, prismatic bar, cellular neural 
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1.  INTRODUCTION 
 

Various parts of machines, vehicles and general 
metal constructions can have forms of prismatic bars 
(bars with solid polygonal cross-sections), or sometimes 
the prismatic bars can be assumed as approximations of 
such parts. The prismatic bars can often be subjected to 
torsion (twisting). The torsion describes the action cau-
sing the bar to twist, as is depicted in Fig. 1. This can be 
caused by applying a torque (a couple of forces) acting 
about longitudinal axis of a bar − when the pure torsion 
occurs, or by the application of transverse loads − when 
the torsion simultaneously occurs with bending. The 
angle through which the observed end of the bar twists 
is called the twist angle and is usually small. In addition, 
the torsion can be elastic and plastic. The consideration 
developed in this paper relates only to the elastic torsion 
of prismatic bars subjected to the pure torsion.  

The usual designer’s tasks include calculations of 
allowed loads, of maximum stresses (or deformations) 
and/or of dimensions. For each of them it is necessary to 
know the relations connecting load, stress, dimensions, 
deformation and material properties. Principles used to 
set up these relations are subject of investigation of the 
theory of elasticity - a branch of mathematical physics. 
The practical part of the theory of elasticity is strength 
of materials. 

Usually, the main goal in calculations of prismatic 
bars is to find the maximum shear stresses or, generally 

speaking, the stress distribution for given loads. Only a 
small number of relatively simple problems can be sol-
ved analytically, by using formulas from the strength of 
materials. They relate either to cylindrical bars (i. e. bars 
with circular cross-sections), or to prismatic bars having 
the cross-sections in the shape of basic geometrical figu-
res. Consequently, there arises the need for development 
of a new class of indirect methods for stress analysis of 
twisted prismatic bars.  

 
Figure 1. Twisted prismatic bars of different cross-
sections. 

The complexity of the stress analysis related to torsi-
on of prismatic bars will be more obvious, if we firstly 
recall the simplest case - the elastic torsion of a solid 
cylindrical bar made from isotropic material. When the 
cylindrical bar twists it is assumed that all cross-sections 
remain plane and normal to the longitudinal axis of the 
bar (in other words, there is no warping), radial lines re-
main straight, and the deformation occurs only by one 
cross-section twisting relative to another. Thereby, in 
cross-sections occur only shear stresses. It is assumed 
that distribution of shear stress is uniform in all cross-
sections, including, also, the extreme sections of the bar. 
In conclusion, the stress analysis of twisted cylindrical 
bars is quite simple since the shear stress varies linearly 
with radius from zero - at the center of the twist (i. e. the 
center of the cross-section) to maximum value-at points 
which are mostly remote from the center of twist, that 
lie at the outer radius R (Fig. 2). 

The center of the twist is a point about which the 
whole cross-section twists when subjected to torsion. 
This is also called the shear center, since it is the point 
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of the cross-section where the transverse (shear) loads 
produce pure bending of bar, without torsion.  

If the cross-section has an axis of symmetry (as, for 
example, semicircle, segment of a circle, sector, isosce-
lenes triangle, etc.), then the center of twist lies along 
that axis (whose location is calculated by means of the 
well known formulas), but it does not coincide with the 
centroid of the cross-section. If the cross-section has 
more than one axis of symmetry (as, for example, circle, 
ellipse, equilateral triangle, rectangle), then the center of 
twist lies at intersection of the axes of symmetry and it 
coincides with centroid of the cross-section. However, 
the location of the center of twist in an irregular non-
circular solid cross-section is unknown in advance, and 
cannot be calculated on some elementary way. 
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Figure 2. The distribution of the shear stress on the 
cross- section of a cylindrical bar. 

The observations made for the elastic torsion of 
cylindrical bars do not hold for those of prismatic bars. 
The theory of elasticity has been applied to finding the 
analytical solutions of torsion for the case of prismatic 
bars. Saint-Venant was the first one who accurately has 
described the shear stress distribution on the cross-
section of a non-circular bar by using the theory of 
elasticity (Barré de Saint-Venant, Mémoire sur la 
torsion des prismes, 1855).  

 
Figure 3. The warping of an equilateral triangular cross-
section (according to [1]). 

The distribution of shear stress in twisted prismatic 
bars is more complex than distribution in twisted cylin-
drical bars. There is a few reasons for this. The shear 
stress is not constant at a given distance from the center 
of twist since it depends on coordinates x and y (not on 
radius). The consequence of this is the warping of cross-
sections, as depicted in Fig. 3. Then the maximum shear 
stresses does not appear at the points most remote from 
the center of twist. In addition, the theory of elasticity 
shows that the shear stress at the corners of twisted 
polygonal cross-sections is zero. Consequently, the 
stress analysis of twisted prismatic bars is, also, more 
complex than those of cylindrical bars [1]−[3].  

The maximum shear stress on the solid cross-section 
in the shape of a non-circular geometrical figure, τmax,  
is calculated from the following expression:  

max kT / Wτ = ,                               (1) 

where T is torque (external torsional load) and Wk the 
so-called modified section modulus of cross-sectional 
area.  

The total angle of twist (in radians), ϕT, for a given 
torsional torque and length of the bar can be calculated 
by using the following expression:   

k
T IG

LT
=ϕ ,                                  (2) 

where L is the length of bar, G is the modulus of rigidity 
(shear modulus) of material, and Ik is the so-called torsi-
onal moment of the cross-sectional area. As an example, 
for steels G amounts approximately 7.8⋅105 daN/cm2 − 
8⋅105 daN/cm2. 

For the cross-sections in shape of basic non-circular 
geometrical figures, the values of Wk and Ik can be cal-
culated by means of the well known formulas. It should 
be kept in mind that the value of Ik equals to the value of 
the second polar moment of the cross−sectional area and 
the value of Wk equals the value of the section modulus 
of cross−sectional area, only for circular cross-sections.  

Let us now take, for instance, a prismatic bar with 
rectangular cross-section having sides b and h, whereby 
h/b ≥ 1. When such a bar is subjected to torsion, the 
theory of elasticity shows that the maximum shear stress 
occurs at the middle of each long side (Fig. 4). In additi-
on, the shear stresses at the corners and center of the 
cross-section equal zero, and the stress variations on the 
cross-section are primarily nonlinear. The shear stress in 
the middle of each short side can be calculated by using 
the formula τ1=k1τmax. The value of τmax is calculated by 
means of (1), whereby Wk is given by Wk=k2Fb, with 
F=bh. In a similar way, the value of ϕT is calculated by 
means of (2), whereby Ik is given by Ik=k3Fb2. In the last 
three stated formulas k1, k2 and k3 are the Saint−Venant 
coefficients whose values are known for different values 
of ratio h/b. For instance, in the case of the square cross-
section (h/b=1) it holds: k1=1, k2=0.208 and k3=0.1406.  

 
Figure 4. Classical presentation of distribution of shear 
stresses on the cross-section of a twisted prismatic bar 
with rectangular cross section (according to [3]). 

However, for an arbitrary solid cross-section, say in 
the shape of an irregular polygonal geometrical figure, 
neither the values of Ik and Wk, nor the values of  maxi-
mum shear stress and angle of twist can be calculated on 
an elementary way. Therefore, in such cases, the shear 
stress distribution is to be be found directly, by using 
experiments, or indirectly, by solving the general partial 
differential equation describing the torsion of prismatic 
bars in the theory of elasticity.  
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The methods of experimental stress analysis include 
electrical resistive strain gauges, photo elasticity, brittle 
coatings, laser speckle interferometry, etc. [4]. Today, 
mainly the strain gauges are used. However, each of the 
mentioned methods requires the surface treatments and/ 
or modifications that can change mechanical properties 
on the local level, or requires the complex, intensive and 
expensive preparation and equipment. Furthermore, the 
experiments can take a lot of time and valuable develop-
ment time can be lost if they have to be repeated after 
each improvement of design. That is why the detection 
of weak points in the design can significantly reduce the 
development and testing time. Since detection of weak 
points in an early stage of design is quite limited with 
traditional measuring techniques, any method to find the 
shear stress distribution by solving formerly mentioned 
partial differential equation of the torsion is preferred 
from the designer’s point of view.  

The previously mentioned general equation can be 
solved either numerically, or by means of the analogous 
models. Today, it is usually solved numerically, by me-
ans of fast general-purpose digital computers. In spite of  
the many well known advantages, the numeric methods 
sometimes require a lot of time, since they are based on 
iterative solving procedures. However, solving the same 
equation by means of analogous models is very efficient 
and accurate method frequently used in research practi-
ce. In this case, the modeling can be carried out by me-
ans of the structure-continual models (mechanical or 
hydro-mechanical models) or by means of the structure-
discrete models (electrical networks).  

Almost a hundred years ago, Prandtl has published 
his famous membrane (or the so-called hydro-mechanic) 
analogy of the torsion problem (Ludwig Prandtl, 
Zeitschrift für Physik, Vol. 4, 1903), where he showed 
that by using a flexible membrane (or the so-called soap 
film method) the stress distribution in torsion could be 
obtained experimentally. However, because of simple 
physical realization and data acquisition, the modeling 
by means of electric networks is more convenient than  
modeling by means of mechanical models. In the past, 
various space and space-time problems were modeled 
and solved by means of electric R- or RC-networks [5], 
[6]. Nowadays, the cellular neural networks (CNNs) [7], 
[8], as their variants also, are mostly used for the same 
purpose. The CNNs are proved to be very convenient 
and successful means in solving problems related to the 
mechanical vibrating systems [9]−[11], heat transfer 
[12]−[14], fluid flow [15], and other similar subjects. 

This paper aims to present the way the CNNs can be 
successfully applied as analogous models in the first 
step of finding the shear stress distribution in the twisted 
prismatic bars. The mathematical definition of problem 
is given in the second section of the paper. This is then 
followed by discretization of problem in the third secti-
on. The architecture of CNN which serves as analogous 
model and original−model analogy are briefly described 
in the fourth section, while the results of modeling of 
the three selected problems and relevant comments are 
given in the fifth section of paper. Finally, the conclusi-
ons are drawn out in the sixth section of paper. 

 

2.  DEFINITION OF PROBLEM 
 
From the theory of elasticity, it is well known that 

the torsion of prismatic bars is described in terms of 
stresses, by Poisson’s partial differential equation of the 
second order: 
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where Φ is continual function called the stress function, 
and ϕ is the angle of twist per unit length (ϕ=ϕT/L). It 
can be shown that when the solid cross-section of bar 
(without inner cavities) is bounded by a closed contour, 
the finding of stress-function is reduced to the classical 
problem of integrating  (3) with the boundary condition:  

Φ|b=0.                                    (4) 
The solution of (3) is stress function Φ(x,y) which iden-
tically satisfies the same equation and (4). The physical 
essence of this function is easily explainable by using 
Prandtl’s membrane analogy. 

From the theory of elasticity, it is also well known 
that the surface of a deflected flexible, inextensible 
membrane is described by Poisson’s equation:  
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where z is the ordinate of the surface of membrane, p is 
the uniform pressure (continually distributed external 
load) to the membrane, and Q is the magnitude of the 
constant tension of membrane per unit length of section 
of the membrane. There is no need to explain that the 
boundary condition should read:   

z|b=0.                                     (6) 

By comparing (3) with (5), as also (4) with (6), it is 
easy to observe their isomorphism. Therefore, if values 
of p and Q in (5) are selected so that the value of ratio 
p/Q is proportional to the value of product 2Gϕ in (3), 
then it is obvious that the value of z is proportional to Φ. 
In other words, the surface described by function Φ will 
have the shape of deflected membrane which is clamped 
over the frame with the same contour as cross-section of 
the bar and is exposed to the same load.  

The shape of the deflected membrane helps in visua-
lization of stress distribution in the twisted bar. Lines of 
equal deflection on the membrane correspond to shear 
stress lines of the twisted bar. The direction of a parti-
cular shear stress resultant at a point is at right angle to 
the maximum slope of the membrane at the same point. 
The slope of the deflected membrane at any point with 
respect to the plane x0y is proportional in magnitude to 
the shear stress at the corresponding point on the cross- 
section of the bar. Since the slope is zero at the very top 
of the membrane, the shear stress is zero at the same lo-
cation on the-cross section of the bar (i. e. the center of 
the twist).  

Consequently, the function Φ has two important fea-
tures. The first one is that its partial derivatives with re-
spect to coordinates y and x represent components of the 
shear stress τ:  
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where τx is the shear stress component in direction of x-
axis and τy is the shear stress component in direction of 
y-axis. The second feature is that the torque T is equal to 
the twice of volume bounded by surface described by  
function Φ and the cross-section area in the x0y plane: 
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The proof of the last two statements will not be given 
here because of complexity and since it can be found in 
textbooks on the theory of elasticity (for instance, in [1], 
or elsewhere). 

In conclusion, to find the shear stress distribution in 
the cross-section of the twisted prismatic bar, that is the 
function τ(x,y), firstly the stress function Φ has to be 
determined. This function can be found if (3) is modeled 
and solved, for instance, by means of a CNN. When the 
numeric values of the stress function are obtained then 
the stress components τx and τy should be calculated nu-
merically by using (7) and finally the resultant shear 
stress τ can be determined through the simple arithmetic 
operations. 
 
3.  DISCRETIZATION OF PROBLEM  

 
The necessary condition to model and solve the pro-

posed problem by means of a CNN (or by a traditional 
electric network) is spatial discretization and suitable 
approximation of (3). Usual way to achieve this goal is 
the well-known finite difference method. Very effective 
and efficient discretization and approximation is achie-
ved by finite differences scheme depicted in Fig. 5. If 
the partial derivatives on left side of (3) are replaced by 
approximations of the second order derived by using the 
mentioned scheme, the following set of linear algebraic 
equations is obtained:  
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In (9) Φi,j is the approximation of continuous function 
Φ(x, y) in node (i,j), a is the step of the square grid (that 
is, the distance between the central node (i,j) and the 
neighbour node (k,l) in corresponding direction 0x or 
0y), while W denotes a finite set of grid nodes bounded 
by the contour of the bar cross-section.  
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Figure 5. The finite differences scheme ″4+1″.  

After a simple rearrangement, (9) can be rewritten in 
the well-known discrete ″cellular″ form: 

0214
22

=++− ∑
∈

ϕΦΦ G
aa )j,i(N)l,k(

l,kj,i
r
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Relation (10) holds for all grid nodes lying in the cross- 
section. However, for those grid nodes lying on bounda- 
ry (contour) of the cross-section, relation (10) reduces to 
the following discretized boundary condition: 

 Φi,j|b=0,   (i, j) ∈ W.                         (11)   
 

4.  THE ARCHITECTURE OF THE CNN AND   
    ORIGINAL−MODEL ANALOGY 

The CNNs are powerful computing structures for di-
verse computing operations in discrete N-dimensional 
space. These operations are simultaneously performed 
by a huge number of locally connected artificial neurons 
called cells, placed in nodes of a regular geometric grid. 
CNNs belong to a great family of electronic structures, 
commonly called the artificial neural networks.   

The CNNs have been developed in 1988 by L. O. 
Chua and L. Yang from University of California, Berke-
ley, and primarily were intended for image processing 
and pattern recognition purposes. The paradigm of CNN 
can be assumed as product of evolution of cellular auto-
mata. In addition, CNNs are universal and equivalent to 
the Turing’s machine.  

The cells in CNNs can be ordered in a single plane 
(that is, in the nodes of a two-dimensional, orthogonal, 
triangular, or hexagonal grid), or in space (that is, in the 
nodes of a three-dimensional, orthogonal, or cylindrical 
grid). The planar (i. e. two-dimensional) CNNs are call-
ed single-layer CNNs, and spatial (three-dimensional) 
CNNs are called multi-layer CNNs. 

The cells are assumed as simple analog processors 
consisting of standard elements of electric and electro-
nic circuits. The CNNs operate iteratively and thus they 
belong to the class of recurrent networks. Main feature 
of CNNs, as well as basic difference in relation to other 
paradigms of artificial neural networks, is the local con-
nectivity of cells. Each cell in the CNN is regularly con-
nected only with the cells from a defined set that is call-
ed neighborhood and is denoted by Nr(i,j). The size of 
the neighborhood is defined by radius r, which can take 
different integer values starting from one. In special ca-
se, the radius can assume such a value so that neighbor-
hood of each cell comprises all other cells in CNN. That  
CNN becomes Hopfield’s neural network, wherein each 
neuron is connected with all others. With respect to the  
physical (i. e. electronic) implementation of a CNN, the 
most desirable dimension of radius appears to be one. 

Due to local connectivity of cells and well-defined, 
continual dynamics, the CNNs are very suitable both for 
modeling of space and space-time physical processes 
and for electronic implementation of models by means 
of discrete circuit elements, or VLSI technology. Conti-
nuous functions describing such processes are space dis-
cretized in CNN by using finite number of locally con-
nected cells, while time-continuous dynamics of CNN is 
used to simulate the dynamical behavior of continuous 
functions. Due to the collective and simultaneous activi-
ty of all cells, simulation by using analogous CNNs is 
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incomparable faster than the sequential simulation im-
plemented on the general-purpose digital computers.  

Without any loss of generality, the concept of CNNs 
can be explained by the orthogonal single−layer CNN 
with M×N cells that are placed in the nodes of square 
grid having M rows in direction of x-axis (0x) and N co-
lumns in direction of y-axis (0y) (Fig. 6). The cell in the 
i−th row and the j−th column is denoted by C(i, j). With 
respect to their position in CNN, the cells C(1,j) and 
C(M,j) (1 ≤ j ≤ N) and cells C(i,1) and C(i N), (1 ≤ i ≤ 
M) are called boundary cells and all other cells C(i,j), (1 
< i < M; 1 < j < N) are called inner cells. 

 
 
 
 
 
 
 
 
 
 
                               

N 1 
1 

i 

j 

M  
Figure 6. The single-layer orthogonal cellular neural 
network  of  dimension M × N. 

The typical electric circuit of the cell C(i,j) in CNN 
is depicted in Fig. 7. The CNN state is described by the 
following set of equations of cell circuits: 
a) State equation 
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b) Equation of output 

[ ]oxijoxijyij VtvVtvtv +−−= )()(
2
1)( ,       Vo ≥ 1, 

i=1, ... , M;  j=1, ... , N;                        (12b) 

c) Equation of input 
vuij=Eij,   Eij ≥ 0,    i=1, ... , M;  j=1, ... , N.         (12c) 

 
In (12a)−(12c) C is the capacitance of linear capacitor, 
Rx is the resistance of linear resistor, A(i, j; k, l) is the 
feedback operator, B(i, j; k, l) is controlling operator, Eij 
is voltage of independent voltage source, and I is current 
of  independent current source. The voltages vxij, vyij and 
vuij are called the state, output and input, respectively. 
The output characteristic of cell vy=f(vx) is a piecewise 
linear function having the unity slope in the interval 
[−Vo, Vo], as is depicted in Fig. 8.  

In our case, we can use the same orthogonal single-
layer CNN depicted in Fig. 6 to solve discretized prob-
lem described by (10) and (11). However, to that purpo-
se the cells in CNN can only be four-connected (that is 
without the diagonal connections).   

In the stable equilibrium state of CNN, the left sides 
of (12a) must be zero. Then, under conditions [B(i, j; k, 

l)=0, Eij=0, A(i, j; i, j)=0] for ∀(i, j) and ∀(k, l), it is easy 
to observe direct analogy between mathematical models 
(10) and (12a). Thus the following proportions can be 
set up: SΦ=Φij/Vxij=Φkl/Vykl, SR=a2/(4Rx)=a2A(i, j; k, l) and 
SQ=2Gϕ/I, where Vxij and Vykl are stable state values of 
voltages vxij and vykl, respectively, while SΦ, SR and SQ 
are model scales. The physical similarity between the 
original and the model is provided if the parameters of 
the CNN cell are selected in such a way so that the 
model scales satisfies the similarity criterion SΦ/SR=SQ.  
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Figure 7. The typical cell circuit C(i,j). 
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Figure 8. The output characteristic vyij=f(vxij). 

If the CNN and the discretized cross-section of bar are 
geometrically and physically similar and if only the linear 
part of characteristic vyij=f (vxij) is used, then (10) − and 
thus with (3) − can be modeled and solved by using CNN 
defined with (12a)−(12c). 

By taking into account the established similarities of 
the mechanical and electric quantities, as well as (7), the 
numerical value of shear stress τi,j in the grid node (i, j) 
will be given by the following expression: 
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where, ∆Vyijx=Vyi(j+1)−Vyij and ∆Vyijy=Vy(i+1)j−Vyij. 
In addition, by taking into account (8), the torque T can 
be determined by using the relation:  
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Relations (13) and (14) can be used to calculate the non-
dimensional coefficient:  
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where b is characteristic dimension of the cross-section, 
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through which all other dimensions of the cross-section 
can be expressed in non-dimensional form, and n is the 
number of grid steps along dimension b (b=n⋅a). This 
coefficient is very useful, since it enables calculation of 
shear stress values at any specific point (including τmax), 
for the given torque T and geometrical parameter b, 
without any further modeling. 
 
5.  RESULTS AND COMMENTS 

 
The presented method of modeling was tested in 

solving a number of problems, but its power will be de-
monstrated here only on the following three illustrative 
examples. 

Example 1. Find the shear stress distribution in the 
steel bar (G=8⋅105 [daN/cm2]) of length L=100 [cm], 
with solid cross-section of the square shape with side 
b=7 [cm], which is twisted for the angle ϕT=1° 30′.  

The cross-section of the bar was discretized by a 
square grid with step size a=5 [mm] and in this way 225 
grid nodes was obtained, in total. The discretized cross- 
section was modeled by a CNN with dimensions M=15 
and N=15, that is by 225 cells, in total. Thus, the model 
(CNN) and the original (the discretized cross-section) 
are produced geometrically similar. The values of cell 
parameters are: A(i ,j; k, l)=200 [µS], Rx=1.25 [kΩ], I= 
=10 [mA] and C=5 [µF]. The steady−state cell outputs 
obtained through simulation process are recorded and 
later multiplied by the actual value of scale SΦ. In this 
way the numerical values of stress function approxi-
mations Φi,j are obtained and are represented in Fig. 9a 
bz a 3D plot. Therefrom it becomes obvious that the 
discretized form of continuous, smooth and symmetric 
function Φ corresponds to deflected square membrane. 
All previous facts justify the correctness of the proposed 
way of modeling and the applied simulation procedure.  

The fact that the considered problem is solvable ana-
lytically, enables a direct comparison between the ob-
tained results and exact analytical solution. The accura-
cy of the obtained values for Φi,j is assessed indirectly, 
by means of relative error of resulting torque calculated 
from (14). In that way it was found that the relative 
error of torque amounts only about 1.6 %, that is quite 
acceptable.  

Consequently, the numerical values of shear stress 
approximations τi,j were obtained and are represented in 
Fig. 9b, also by a 3D plot. In Fig. 9b it is depicted that  
the maximum shear stresses of the same magnitude oc-
cur at nodes (1,8), (8,1), (8,15) and (15,8), which co-
incide with middle points of the respective cross-section 
sides. In addition, the shear stress at corner nodes (1,1), 
(1,15), (15,1), (15,15) and the central node (8,8) ap-
pears to be zero. This result is physically correct and is 
in accordance with the presentation in Fig. 4 and results 
obtained by known formulas from strength of materials. 

However, the relative error of the shear stress is 
sligtly greater than the relative error of the stress functi-
on and it amounts to around 5 %. Of course, it can be 
reduced to the acceptable level by generating model of 
greater order than this applied. It should be kept in mind 
that the aim of this test was not to impress the people  
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Figure 9. Example 1 − The results of the modeling: (a) 
the stress function; (b) the distribution of the shear 
stress (a quarter of 3D plot is removed for the sake of  
better visibility). 
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Figure 10. Example 2−The results of the modeling: (a) the 
stress function; (b) the distribution of the shear stress. 
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with a huge CNN model having the several thousands of 
cells (demanding a powerful computer for simulation),   
but only to demonstrate the application of the proposed 
method by means of reasonable model with only a few 
hundreds of cells (this can be simulated on a usual PC). 
Since solving this problem can be understood as ″cali-
bration″ of the method, the interdependence between the 
accuracy of the obtained results and the size of model 
remains to be the subject of our further research.  

Example 2. Solve the same problem as in example 
1, assuming the square cross-section of bar is replaced 
by solid cross-section having the shape of right-angled 
triangle with sides b=h=10 [cm]. 

The cross-section of bar is modeled by a CNN with 
dimensions M=21 and N=21, having 441 cells, in total. 
However, the model itself consists of 231 active cells. 
The resulting distribution of stress function is depicted 
in Fig. 10a and the resulting distribution of the shear 
stress is depicted in Fig. 10b. 

Both distributions are obtained in the same way as 
the respective distributions in the previous example. As 
is depicted in Fig. 10b, the maximum shear stress occurs 
in node (11,11) that is in the middle point of the hypo-
tenuse, while other two peaks occur in the node (14,1), 
which lies on the first, and in node (21,8), which lies on 
the second side of the contour. The center of the twist is 
node (15,7) in which the shear stress is zero. This node 
belongs to the axis of symmetry of triangle, but obvi-
ously, it does not coincide with the centroid of triangle. 

Example 3. Solve the same problem as in Example 
1, if square cross-section of the bar is replaced by solid 
cross-section having the the shape depicted in Fig. 11. 

This problem is modeled by a CNN with dimensions 
M=18 and N=23, having 414 cells in total, but model 
itself consists of 273 active cells. The resulting distribu-
tion of the stress function is depicted in Fig. 12a and the 
resulting distribution of the shear stress is depicted in 
Fig. 12b. Both distributions are obtained in the same 
way as distributions in the formerly presented examples. 
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Figure 11. Example 3 − The cross-section of the bar (all 
measures are given in millimeters). 

As is depicted in Fig. 12b, the maximum shear stress 
occurs in node (7,9), while other four peaks occur in  
nodes (18,14), (6,20), (12,23) and (16,1). All these  
nodes lie on the contour of the cross-section. The center 
of twist is in node (11,14).  

 
6.  CONCLUSIONS  

 
Finding of the shear stress distribution in a twisted 

prismatic bar with solid cross-section in the shape of a 
complex irregular polygon presents a serious problem as 
is well known from the theory of elasticity. The key to  
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Figure 12. Example 3 − The results of the modeling: (a) 
the stress function; (b) the distribution of the shear 
stress. 

the solution of this problem is to find the stress function. 
Consecutively, it will then serve for calculation of the 
shear stress distribution in the second step. The stress 
function appaers to be the solution of Poisson’s equation 
for given conditions of unambiguity, describing torsion 
of prismatic bars in terms of stresses. The same equation 
describes, also, the shape of the surface of a deflected 
flexible inextensible membrane exposed to uniform pre-
ssure. Modeling the problem by means of electrical net-
works is a possible way to find the stress function. The 
contemporary and effective method described in this 
paper enables determination of the stress function by 
means of original cellular neural network of Chua and 
Yang, which may serve to that purpose as very suitable 
analogous model. The predictive power of the method is 
presented by means of three illustrative examples. Their 
solutions presented here convincingly show that this 
approach can be applied straightforwardly and success-
fully in solving problems relating to twisted prismatic 
bars with complex cross-sections. The results obtained  
very well satisfy the expectations and usual provisions 
of contemporary practice. Moreover, the same method 
enables modeling and solving the Laplace equation for 
corresponding conditions of unambiguity, describing the 
torsion function of twisted prismatic bars (that is, the 
shape of warped cross-sectional surface of the bar).   
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Main benefits of the method are simple modeling and 
fast solving of problems, the possibility to achieve very 
high resolution of the model and thus very high accuracy 
of obtained results. In addition, CNNs are very suitable 
both for software implementation and simulation on PCs 
and for electronic implementation by conventional means 
(electric and electronic circuits, or VLSI technology [16], 
[17]). The application of the proposed method is expected  
in several branches of mechanical engineering. 
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CELULARNE NEURALNE MRE@E − ANALOGNI 

MODEL ZA ANALIZU NAPONA PRIZMATI^NIH 
[TAPOVA IZLO@ENIH UVIJAWU 

 
I. Krsti}, D. Kandi}, B. Reqin 

 
U najop{tijem slu~aju odre|ivawe raspodele 

napona smicawa u popre~nom preseku prizmati-
~nog {tapa izlo`enog torziji predstavqa ozbi-
qan problem koji se mo`e re{iti u dva koraka. 
Prvi se sastoji u odre|ivawu tzv. funkcije 
napona, a drugi u odre|ivawu napona smicawa 
preko pomenute funkcije. Funkcija napona 
javqa se kao re{ewe Poasonove parcijalne 
diferencijalne jedna~ine za date uslove jedno-
zna~nosti, pomo}u koje se u teoriji elasti~nos-
ti opisuje uvijawe prizmati~nih {tapova u 
funkciji napona. Modelovawe ovog problema 
pomo}u elektri~nih mre`a predstavqa samo 
jedan od nekoliko mogu}ih na~ina za odre|iva-
we funkcije napona. U radu je dat jedan origina-
lan metod primene celularnih neuralnih mre`a 
za analogno modelovawe i odre|ivawe funkcija 
napona uvijenih prizmati~nih {tapova sa punim 
poligonalnim popre~nim presecima. Tako do-
bijene funkcije direktno se mogu daqe koristi-
ti za izra~unavawe rezultuju}ih raspodela 
napona smicawa. Efekasnost formulisanog 
postupka ilustrovana je na tri primera. Pre-
dlo`eni metod se uspe{no mo`e primeniti i na 
druge oblasti ma{inske tehnike. 
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