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Temperature and Stress Fields in Thin 
Metallic Partially Fixed Plate Induced 
by  Harmonic Electromagnetic Wave 
 
In the paper the behavior of thin elastic metallic plate influenced by the 
harmonic electromagnetic plane wave is considered. The plate is simply 
supported along three edges and fixed along the fourth one. As a result of 
time-varying electromagnetic field the conducting currents appear in the 
plate. Distribution of eddy-currents and hysterisis power losses across the 
plate thickness are obtained by use of complex analysis. There after, by 
treating this power stemming from a volume heat source, differential 
equations governing distribution of the temperature field are formulated 
and solved by using integral-transform technique. The influence of the 
plate thickness, wave frequency and hysterisis factor on the temperature 
field are considered, as well. Strain and stress fields are obtained by 
using finite element method (FEM) and integral- transform technique. 
 
Keywords: electromagnetic field, temperature, plate, induction, heat, 
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1.  INTRODUCTION 
 

Electro-magneto-thermoelasticity investigates the 
interaction between temperature, strain, stress and 
electromagnetic fields in a solid elastic body. On 
metallic deformable solids subjected to electromagnetic 
fields two types of forces are reacted [1]. Forces of the 
first type are between the stationary magnetic field and 
the magnetized material and the second type are volume 
dynamic forces on the conducting currents, which 
appear in electric conductors as a result of their motion 
or a time change of the magnetic field. The elastic field 
influences the magnetic field through the modified 
Ohm’s law [2].  

In the paper is assumed that the plates material is 
elastic, isotropic, soft ferromagnetic, possessing a good 
electric conductivity. Many nickel-iron alloys used for 
building the magnetic circuits of motors, generators, 
inductors, transformers are of this type. 

The vibrations of the thin metallic plates from soft 
ferromagnetic materials are described using four 
coupled systems of differential equations based on the 
classical theory of thin plates and linear theory of 
thermoelasticity [3]. 

The first system is a system of Maxwell’s equations 
relating to slowly moving media and the modified 
Ohm’s low [2]: 

rot DH J
t

∂
= +

∂
  ,     rot BE

t
∂

= −
∂

, 

         div 0D =          ,     div 0B = , 

 

(1) 

 

( )0D E u B= ε + ×  , ( )B H u D= µ − × , 

( )J E u B= σ + × , 

where the following notation is applied: H – intensity of 
magnetic field, E – intensity of electric field, B – 
magnetic flux density (magnetic induction), D – electric 
induction, J – current density, u – deflection, µ0 – 
permeability of vacuum, σ - electric conductivity, ε0 – 
dielectric constant of vacuum, t –time. 

The linear theory of thermoelasticity takes the 
assumption that the temperature linearly changes across 
the thickness of the plate. By using coordinate system 
presented on Figure 1, temperature field distribution 
( )1 2 3, , ,x x x tθ  can be described by using the 

temperature (τ0) in the middle surface of the plate and 
the rate of temperature (τ1) across the plate thickness 
[4]: 

( ) ( ) ( )1 2 3 0 1 2 3 1 1 2, , , , , , ,x x x t x x t x x x tθ = τ + τ ,   (2a) 

where θ [°C, K] = T-T0 and T0 is the temperature of the 
plate in its natural state.  

The second system of differential equations 
describes the temperature field in a thin plate. It consists 
of two partial differential equations [3]: 
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where κ is the coefficient of thermal intensity, η* is the 
coupling between the temperature and the deformation 
fields, ε’ is deformation in the middle surface of the 
plate, h is the plate thickness, λ0 is heat conduction 
coefficient, w is deflection of the plate in x3-direction 
and 2

1∇  is Laplace operator. Quantity of heat generated 
in unite volume and unit time (heat source intensity) 

( )txxxW ,,, 321  consists of three parts: intensity of 
external heat source WE, hysterisis losses WH and 
Joule’s heat (eddy-current losses). 

In the consideration of the plate vibrations, we shall 
take the assumption that the longitudinal vibrations are 
independent of the transverse vibrations.  

Vibrations of the plate middle surface are defined 
with equation: 

( )2 2
2 1 0 0tF E h∆ ∆ + α τ = ,  (3a) 

2

2

2
2
1

2 1
tCi

i
∂

∂
−∇≡∆ ,  (i=1,2), 

2
1 (1 )C E= ρ −ν ,    ( )2 2 1C E= ρ + ν , 

where E is modulus of elasticity, αt is coefficient of 
thermal expansion, ρ is the plate density, ν is Poisson 
ratio and F is the Airy-s Stress function. Forces Nij can 
be expressed in tensor notation as [5]: 

2 2
, 1 2

2

1( )
2ij ij ij tN F F
C

= − + δ ∇ − ∂      (i,j=1,2), 

2 2 2
, 1 22

2

12( )
2kk kk tN F F F
C

= − + ∇ − ∂ = ∆ ,      (3b) 

where ∂t is the time derivative. 
Transverse vibrations can be obtained by using the 

following differential equation [3]: 
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(i=1,2),  (4) 
where: D - flexural rigidity of the plate, X - mechanical 
force, f - Lorenz force.  

σij and Tij denote mechanical and magnetic stress 
tensors (σij

+, Tij
+ are stress components on the upper and 

σij
-, Tij

- on the lower side of the plate).  
Of course, presented system of equations has to be 

accomplished with the appropriate set of boundary and 
initial conditions.  
 
2. CONDUCTING CURRENTS, JOULE’S HEAT AND 

HYSTERISIS LOSSES 
 

Electromagnetic wave with complex time- varying 
fields can be represented as sum of simple plane waves. 
In this paper is given the analytical solution for 
harmonic plane wave with E10 and H20 components on 

the upper surface of the plate. It is assumed that all field 
components vary in time t as exp(jωt), where ω is the 
angular frequency.  

h / 2 

xi 

x3 

h / 2 

wave direction 

 
Figure 1. Coordinate system (middle surface of the plate). 

In the case of the high plate conductivity, the 
dielectric current can be neglected in comparation with 
the conducting current. So, for the homogeneous, 
isotropic and linear magnetic medium the system of 
Maxwell’s equations (1) can be presented in the form 
[6]: 
             rot H E= σ       ,    div 0=E  , 

             rot HE
t

∂
= −µ

∂
 ,    div 0H = . 

 
(5a) 

Using symbolic-complex representation of vectors 

{ },  A E H=  ( j tA Ae ω= ) we obtain the equations: 

          = σrot H E      ,        div 0E =   , 

          ( )jrot E H= −µ ω   , div 0H =  . 

 
(5b)

If the direction of the wave propagation is x3 -axis 
(negative) and if the field components are independent 
of x1 and x2, then from the equations of divergence (5b) 
we conclude that the components 3H  and 3E  must be 
zero. In the case of the plane wave, only normal 
components of the electric and magnetic field depend of 
each other [7]. So, we will make the analysis only for 
one wave with components 1E  and 2H . Let they have 
next values in the plane  x3=h/2:  

( ) 1011 cos iiE   tEE ω== ,          (6) 

( ) 2022 cos iiH   tHH ω==   ,   00 EH
µ
ε

= . 

Then the Maxwell’s equations (5b) obtain the following 
form: 
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where  

σµωγ j=2 ,   βαγ j+= ,   
2

σµω
βα == . 

If we want to find the solution of (7) in the case 
when the skin-depth of a progressive wave is small 
compared to the plate thickness, we use the basic 
solution of (7) which can be represented as follows: 

3
2

xH C eγ= , 21 HE
σ
γ

= .          (8) 
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By using the boundary condition for x3 =h/2 we obtain: 
/2

0
hC H e−γ= .  

The characteristic impedance is: 

( ) /41
2

j
c

EZ j e
H

πγ µω ωµ
= = = + =

σ σ σ
 (9) 

and the result for the field components obtain the form: 

332/2/
02

xjxhjh eeeeHH βαβα −−= ,       

3 3/2 /24
01

j h j h x j xE H e e e e e
π

−α − β α βωµ
=

σ
,    (10) 

or 
3( /2)

2 0 32Re cos( )
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Electromagnetic wave (10) is accompanied by the 
conducting currents of density: 

33 ( /2)( /2) 4
011

jj x hx hJ E H e e e
π

β −α −= σ = ωµσ .   (11) 

Fields and current amplitudes are the exponentially 
decreasing function, along the trajectory of wave 
propagation. The constant of wave penetration 
correspond to the decay of one Neper (0.368) and its 
value is [7]: 

1 1
f

δ = =
α σµπ

,      2 2 f
T
π ω = = π 

 
.  (12) 

Skin-depth decreases with increasing of frequency f, 
conductivity and permeability. The origin for this 
phenomenon is heat losses in metal.  

Distribution of the Joule’s heat (Pv) can to be 
determined in the following way: 

32 ( /2)22
3 0

1 1( )
2 2

x h
vP x J H e α −= = ωµ

σ
.        (13) 

Distribution of the eddy-currents power (13) across the 
plate thickness is   

( ) 3 22 2
3 0

1
2

h x
vP x H e e

σµω
− σµω= ωµ ,   (14) 

and it can be treated as a volume heat source having the 
intensity Pv(x3). 

In the case of a nonlinear magnetic material, in the 
presented analysis must be included the factor which 
involves heat losses due to hysterisis. For the most of 
soft ferromagnetic materials the basic curve of 
magnetization is nearly linear. This fact assures that the 
middle value for permeability µsr can be used in 
calculation [6]. 

In this paper will be presented one method for 
analytical obtaining the influence of the hysterisis on the 
temperature field in the plate.  

The hysterisis losses power PH is proportional to the 
square of the magnetic field amplitude and frequency f: 

fHPH
2≈ ,   ( ) 32 ( /2)2

3 0
x h

H HP x k H f e α −= µ ,     

which approves that the distribution of PH is the same as 
distribution of the eddy-current losses. Coefficient kH  is 
the hysterisis factor of known material characteristics. 

So, density of the power of the heat losses is 
approximately given by: 

( ) 3 22 2
3 0

1 1
2

h xHkP x H e e
σµω

− σµω = ωµ + π 
.   (15) 

Expression (15) shows that the heat source intensity 
decreases exponentially with the plate thickness. 
Gradient of the exponential curve increases with 
increasing of the wave frequency, permeability and 
electric conductivity of a material.  

The phenomenon of concentration of conducting 
currents on the plate surface, valid for conductors with 
very high electric conductivity and magnetic 
permeability subjected to high frequency wave, is 
known as the skin-effect. 
 
3. TEMPERATURE FIELD 
 

Let the rectangular plate dimensions a×b×h be 
isolated on the upper and the lower surface and the 
temperature along the lateral sides is equal to initial 
temperature T0 (θ=T-T0=0). The initial and the boundary 
conditions have the form:  

0 0t=θ = ,  
1 0, 0x a=θ = , 

2 0, 0x b=θ = , 
33

2

0
hxx =±

∂θ
=

∂
.  

  (16) 
By using (15) the power of the heat source can be 
expressed as function of time t as follows:  

( ) 32
3 , ( )xW x t P e H tα=  , 

2 2
0

1 1
2

h HkP H e
σµω

−  = ωµ + π 
 

 

(17)

Subjected to the boundary conditions (16) the equation 
(2) can be solved by using the integral-transform 
technique. Applying double Fourier finite-sine 
transform (signed as nm) and Laplace transform (signed 
by *, t→p) [4, 5] we arrive to the transform functions of 
temperature field:    

β κ
τ =

λ α α  + κ β + ∆ 

*

0

4 1
( )

k
k k

knm
n m k mn

C
h p p

, 

where 

( ) ( )[ ]

( )

2 ch sh ,     1
2

sh ,                                 0
k

P h h h k
C

P h k

 α α − α = α= 
 α = α

  

( ) ( )2 22 2 / /mn n m n a m b∆ = α +α = π + π . 

The inverse Laplace transform gives:  

( )
( )

0

4 1
( )

k mn tk
k k

knm
n m k mn

C e H t
h

−κ β +∆β −
τ =

λ α α β + ∆
.   (18) 
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The solution to the temperature field now obtains its 
final form by using inverse double Fourier finite-sine 
transform: 

   
01,3,... 1,3,...

44
( )

k
k k

k
n m mn km n

C
ab h

∞ ∞

= =

β
τ = ×

λ α α ∆ +β∑ ∑   

( ) ( )1 21 sin sink mn t
n me x x H t−κ β +∆ × − α α  

.   (19) 

Now, a numerical example will be given for the steel 
rectangular plate having dimensions a=50 cm, b=30 cm. 
Material constants are: λo=0.5 W/cmK, σ=7.7108 S/m 
and µr=1000. Electromagnetic field parameters are: 
H0=2000A/m and f=0.5÷2.5 MHz. The appropriate skin-
depth (12) is in range 1.16 to 2.56 µm.  

h=1mm

h=2mm
h=3mm
h=4mm
h=5mm

τo [°C]

t [s]1000 2000

50

40

30

20

10

 0
 0 3000  

Figure 2. Temperature in the middle point as function of 
time and plate thickness ( f=2 MHz, kH=1). 
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Figure 3. Temperature in the middle point as function of 
time and wave frequency ( h=1mm, kH=1). 
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Figure 4. Temperature in the middle point as function of 
time and hysterisis factor (h=1mm, f=2MHz). 

 

Figure 5. Isotherm lines in the middle surface of plate 

τo=0÷50.7 (step 5 °C). 

In figures 2 to 4 the temperature in the middle point 
of the plate is presented as a function of time, plate 
thickness, wave frequency and hysterisis factor. Figure 
5 shows distribution of the isotherm lines in the middle 
surface for the stationary state of plate.  
 
4.  VIBRATIONS. STRESS FIELD 
 
4.1. Transversal vibrations 
 

Let the plate be simply supported along the three 
edges (x1=a, x2=0, b) and fixed along the fourth edge 
(x1=0) (Fig. 6). The boundary conditions have the form 

1 0, 0x aw = = , 
2 0, 0x bw = = ,   

( )
1

1

2 2

11 12 2
1 2

1 0tx a
x a

w wM D
x x=

=

 ∂ ∂
= + ν + + ν α τ = 

∂ ∂ 
, 

( )
2

2

2 2

22 10, 2 2
1 2 0,

1 0tx b
x b

w wM D
x x=

=

 ∂ ∂
= ν + + + ν α τ = 

∂ ∂ 

11 0/ 0xw x =∂ ∂ = .      (20) 

x1 

x2 

a 

b

 
Figure 6. Boundary conditions. 

Initial conditions are responsible for the natural 
undeformed state: 

0 0tw = =  ,  0/ 0tw t =∂ ∂ = .             (21) 

Problem with nonhomogeneous boundary conditions 
is not very suitable for obtaining the solution in 
analytical form. So, in this section of the paper one way 
for soluting the problem by using only simple integral 
transformations will be presented. Differential equation 
describing transverse vibrations (4) is adapted  to form 
which enabling very easy simulation of the bending 
moments along the fixed edges. 

Using equation (4) we can form the appropriate 
equation for stationary problem (t→∞) by simulating 
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the moment along the edge x1=0 through the stress σ13 
in the following way 

( )4 2
1 1 1 13 2 1

1
1 ( ) ( )t

hw x x
D x

∂  ∇ + + ν α ∇ τ = σ δ ∂
 ,   (22) 

where δ(x1) is Dirac delta-function. 
By using (18), double Fourier finite-sine transform 

and the relation for the first derivative of δ function: 

1
1 1

10

( ) sin( )d
a

n n
x x x
x

∂δ
α = −α

∂∫ ,   

the solution for transversal vibrations can be represented 
in form: 

( )
1,3,...

1 2 1 2
1

4, , sin sin
m

nm n m
n

w x x t w x x
ab =

∞ ∞

=
= α α∑ ∑  , 

   (23) 
( ) 1

132
1t nm n

nm m
mn mn

hw
D

α + ν τ α
= − σ

∆ ∆
.  

Using the boundary condition for the edge x1=0 we can 
calculate the “moment stress” σ13(x2):  

( ) 1

1
13 2

2
1

1t nm n

mnn
m

n

n mn

h
D

∞

=
∞

=

α + ν τ α
∆

σ =
α
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∑

∑
, 

( )13 2 13 2
1,3,...

2 sinm m
m

x x
b

∞

=

σ = σ α∑ . 

 

 

(24) 

Presented method is very suitable for obtaining 
analytical solutions for problems with moving boundary 
conditions. 

For the numerical example presented in section 3, 
deformation calculated from (23) and (24) is nearly    
10-5cm due to the small temperature gradient across the 
plate thickness. 

For geometrically more complex problems and 
nonlinear temperature distribution across the plate 
thickness, finite element method has to be involved in 
analysis. The stiffness matrix and the load matrix for the 
plate element can be formed by using the analogy with 
the finite element of the composite plate. Corresponding 
values for deflection obtained from the analytical 
solution and the numerical solution are the same, but 
there is a large discrepancy between the stress 
distributions based on the real and the reduced FEM 
model [8].  
 
4.2. Deformation of the middle surface. Stress field 

 
Vibrations and stress in the middle surface of the 

plate are calculated by using the program package 
KOMIPS [9], based on the finite element method. Input 
file was done on the analytical solution (19).  

Deformation in the middle surface of the plate is 
depicled in Fig. 7. Maximal deformation is calculated to 
be 0.171cm.  

Figure 8 shows the appropriate stress field. Maximal 
temperature in the middle point is θ=50.7 K and 

maximal stress value calculated by the finite element 
method (FEM) is 7.524 kN/cm2 (on the edges x2=0, b). 

 
Figure 7.  Deformation (middle surface) fmax=0.171cm. 

 
Figure 8. Stress field, σ = 0÷7.524/0.5 kN/cm2 

 

5. CONCLUSION 
 

The magneto-thermoelasticity has received the 
considerable attention in recent years because of the 
possibility for application in detection of flaws in 
ferrous metals, optical acoustics, levitation by 
superconductors, magnetic fusion and many other 
electro-mechanical devices. 

The problem of the thin metallic plate subjected to 
transversal line propagation of simple harmonic 
electromagnetic wave can be described through four 
systems of differential equations. In this case the most 
influence on the stress field has the increasing of 
temperature. This is the result of the time- varying 
electromagnetic field that is accompanied with the 
appearance of eddy-current and hysterisis losses. 
Intensity of the losses decreases exponentially with the 
plate thickness. As it is shown in paper, temperature in 
the plate increases with increasing of the wave 
frequency, increasing of the hysterisis factor and 
decreasing of the plate thickness. When the frequency 
and conductivity are very high, the problem can be 
treated as a thermal shock problem because of the small 
skin-effect depth.  

Very suitable method for solving the considered 
problem in analytical form, as has been shown in the 
paper, is the integral-transform technique. But, for 
dynamic and geometrically more complex problems 
with non-homogeneous boundary conditions it is very 
difficult to find vibrations and stress in analytical form. 
Then, the finite element method has to been involved in 
calculation.  
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ТЕМПЕРАТУРСКО И НАПОНСКО ПОЉЕ  

ТАНКЕ МЕТАЛНЕ ДЕЛИМИЧНО 
УКЛЕШТЕНЕ  ПЛОЧЕ  ИНДУКОВАНО 

ХАРМОНИЈСКИМ ЕЛЕКТРОМАГНЕТСКИМ 
ТАЛАСОМ  

 
Весна Милошевић-Митић 

 
У раду се разматра понашање танке еластичне 
металне плоче изазвано хармонијским електро-
магнетским раванским таласом. Плоча је слободно 
ослоњена дуж три ивице и уклештена дуж четврте. 
Као резултат дејства временски променљивог 
електро-магнетског поља појављују се кондукционе 
струје у плочи. Расподела снаге кондукционих и 
хистерезисних губитака по дебљини плоче одређена 
је применом комплексног рачуна. У даљем прора-
чуну та снага је третирана као запремински извор 
топлоте. Диференцијалне једначине поља темпера-
туре решене су методом интегралних трансформа-
ција. Разматран је и утицај дебљине плоче, фрекве-
нције таласа и фактора хистерезисних губитака на 
температурно поље. Поља напона и деформације 
одређена су применом методе коначних елемената и 
методе интегралних трансформација.   
 

 


	Electro-magneto-thermoelasticity investigates the interaction between temperature, strain, stress and electromagnetic fields in a solid elastic body. On metallic deformable solids subjected to electromagnetic fields two types of forces are reacted (1(.
	So, density of the power of the heat losses is approximately given by:
	
	4.  VIBRATIONS. STRESS FIELD


	Initial conditions are responsible for the natural undeformed state:
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