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Temperature and Stress Fields in Thin
Metallic Partially Fixed Plate Induced
by Harmonic Electromagnetic Wave

In the paper the behavior of thin elastic metallic plate influenced by the
harmonic electromagnetic plane wave is considered. The plate is simply
supported along three edges and fixed along the fourth one. As a result of
time-varying electromagnetic field the conducting currents appear in the
plate. Distribution of eddy-currents and hysterisis power losses across the
plate thickness are obtained by use of complex analysis. There after, by
treating this power stemming from a volume heat source, differential
equations governing distribution of the temperature field are formulated
and solved by using integral-transform technique. The influence of the
plate thickness, wave frequency and hysterisis factor on the temperature
field are considered, as well. Strain and stress fields are obtained by

using finite element method (FEM) and integral- transform technique.
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1. INTRODUCTION

Electro-magneto-thermoelasticity investigates the
interaction between temperature, strain, stress and
electromagnetic fields in a solid elastic body. On
metallic deformable solids subjected to electromagnetic
fields two types of forces are reacted [1]. Forces of the
first type are between the stationary magnetic field and
the magnetized material and the second type are volume
dynamic forces on the conducting currents, which
appear in electric conductors as a result of their motion
or a time change of the magnetic field. The elastic field
influences the magnetic field through the modified
Ohm’s law [2].

In the paper is assumed that the plates material is
elastic, isotropic, soft ferromagnetic, possessing a good
electric conductivity. Many nickel-iron alloys used for
building the magnetic circuits of motors, generators,
inductors, transformers are of this type.

The vibrations of the thin metallic plates from soft
ferromagnetic materials are described using four
coupled systems of differential equations based on the
classical theory of thin plates and linear theory of
thermoelasticity [3].

The first system is a system of Maxwell’s equations
relating to slowly moving media and the modified
Ohm’s low [2]:
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where the following notation is applied: H — intensity of
magnetic field, £ — intensity of electric field, B —
magnetic flux density (magnetic induction), D — electric
induction, J — current density, ¥ — deflection, py —
permeability of vacuum, o - electric conductivity, g, —
dielectric constant of vacuum, 7 —time.

The linear theory of thermoelasticity takes the
assumption that the temperature linearly changes across
the thickness of the plate. By using coordinate system
presented on Figure 1, temperature field distribution
0(x;,x5,x3,t) can be described by wusing the
temperature (1) in the middle surface of the plate and
the rate of temperature (t;) across the plate thickness
[4]:

e(xl,xZ,X3,t) =Ty (xl,xZ,t)+X3T1 (xl,XZ,t), (2(1)

where 0 [°C, K] = T-T; and T is the temperature of the
plate in its natural state.

The second system of differential equations
describes the temperature field in a thin plate. It consists
of two partial differential equations [3]:
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where « is the coefficient of thermal intensity, n" is the
coupling between the temperature and the deformation
fields, €’ is deformation in the middle surface of the
plate, & is the plate thickness, A, is heat conduction
coefficient, w is deflection of the plate in x;-direction

and V12 is Laplace operator. Quantity of heat generated

in unite volume and unit time (heat source intensity)
W(xl,xz,x3,t) consists of three parts: intensity of
external heat source Wj, hysterisis losses Wy and
Joule’s heat (eddy-current losses).

In the consideration of the plate vibrations, we shall
take the assumption that the longitudinal vibrations are
independent of the transverse vibrations.

Vibrations of the plate middle surface are defined
with equation:

A (ATF +Eho,ty)=0, (3a)
2
R=vi-L 2 =1,
C; ot

C, =NE/p(1-v?), C, =\JE/2p(1+V),

where E is modulus of elasticity, o, is coefficient of
thermal expansion, p is the plate density, v is Poisson
ratio and F is the Airy-s Stress function. Forces N; can
be expressed in tensor notation as [5]:

1 )
N =—F;+8,(V} —Féf)F (ij=12),
2

Ny =—F, +2(Vi —Lzaf)FzA%F, (3b)
| 2G5
where 0, is the time derivative.
Transverse vibrations can be obtained by using the
following differential equation [3]:
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where: D - flexural rigidity of the plate, X - mechanical
force, f- Lorenz force.

c; and T; denote mechanical and magnetic stress
tensors (c; ", T; are stress components on the upper and
c;i, T;; on the lower side of the plate).

Of course, presented system of equations has to be
accomplished with the appropriate set of boundary and
initial conditions.

2. CONDUCTING CURRENTS, JOULE’S HEAT AND
HYSTERISIS LOSSES

Electromagnetic wave with complex time- varying
fields can be represented as sum of simple plane waves.
In this paper is given the analytical solution for
harmonic plane wave with E;q and Hyy components on
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the upper surface of the plate. It is assumed that all field
components vary in time ¢ as exp(jof), where o is the
angular frequency.

A X3 wave direction

Figure 1. Coordinate system (middle surface of the plate).

In the case of the high plate conductivity, the
dielectric current can be neglected in comparation with
the conducting current. So, for the homogeneous,
isotropic and linear magnetic medium the system of
Maxwell’s equations (1) can be presented in the form
[6]: o B

rot H =cFE , divE=0,
- H - (5a)
rotE:—paa— , divH=0.
t

Using symbolic-complex representation of vectors
A= {E JH } (A= Ae’®") we obtain the equations:

rot H=cE divE=0 ,

rotE:—u(jw)ﬂ , div ﬁzO . (36)

If the direction of the wave propagation is x; -axis
(negative) and if the field components are independent
of x; and x;, then from the equations of divergence (5b)
we conclude that the components H ; and £; must be

zero. In the case of the plane wave, only normal
components of the electric and magnetic field depend of
each other [7]. So, we will make the analysis only for
one wave with components £, and H , . Let they have

next values in the plane x;=h/2:

E‘=E11Tl =E, cos(wt)fl, 6)

FI:HleZ =H0 COS((DZ)l?z . HO Z\/EE().
H

Then the Maxwell’s equations (5b) obtain the following
form:

0H , OE, .
- :6E13 _:_“.]0)&29
8x3 6x3
or
o*H 1 0H
=2 _y2H,=0, E,=———2 (7)
oxs G Ox3
where

2 . . oum
Y =jopw, y=a+jB, oc=l3=,/%-

If we want to find the solution of (7) in the case
when the skin-depth of a progressive wave is small
compared to the plate thickness, we use the basic
solution of (7) which can be represented as follows:

E =LH,. ®)

H,=Ce'™,
c
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By using the boundary condition for x; =4/2 we obtain:
C=H,e "/,

The characteristic impedance is:

_Ezl f \/7 jm/4
Zc_ﬂ . (1+]) o e (9)

and the result for the field components obtain the form:

ﬂz = H, e—(xh/Ze—th/Ze(xx3ejBx3 ,

E _HO ’ K I *(lh/Z 7][3h/2 txx3e][3x3’ (10)
(¢
or

H, =Re [Ezej‘”t] = Hye" ™™/ cos(ot + B x, —Bg)
E, —Re[ e“"t}

_ h
=H, OB polxat/2) cos(ot +Pxy — B—+£) .

c 2 4
Electromagnetic wave (10) is accompanied by the
conducting currents of density:

11 =G£1 =H, /(DMGE (¥3=h/2) o jB(xs~ h/2) . (11)

Fields and current amplitudes are the exponentially
decreasing function, along the trajectory of wave
propagation. The constant of wave penetration
correspond to the decay of one Neper (0.368) and its
value is [7]:

5 1 1 (m _2n
o JJounf’ T
Skin-depth decreases with increasing of frequency f,
conductivity and permeability. The origin for this
phenomenon is heat losses in metal.
Distribution of the Joule’s heat (P,) can to be
determined in the following way:

= 2an. (12)

1 1 _
Pv(x3)=£||1||2 =5H§wue2°‘<"3 M 13)

Distribution of the eddy-currents power (13) across the
plate thickness is

CHO

P, (xg)zéHgmue "2 efa2ono (14)
and it can be treated as a volume heat source having the
intensity P,(x3).

In the case of a nonlinear magnetic material, in the
presented analysis must be included the factor which
involves heat losses due to hysterisis. For the most of
soft ferromagnetic materials the basic curve of
magnetization is nearly linear. This fact assures that the
middle value for permeability p, can be used in
calculation [6].

In this paper will be presented one method for
analytical obtaining the influence of the hysterisis on the
temperature field in the plate.

The hysterisis losses power Py is proportional to the
square of the magnetic field amplitude and frequency f:
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Py ~Hf, Py (x3) =ky HH(%feza(xrh/z)»

which approves that the distribution of Py is the same as
distribution of the eddy-current losses. Coefficient &y is
the hysterisis factor of known material characteristics.

So, density of the power of the heat losses is
approximately given by:

ku

Gum
P(x )—lHZm . 1+—
3) =5 Mo ne T

) X3 20p.c0 (15)

Expression (15) shows that the heat source intensity
decreases exponentially with the plate thickness.
Gradient of the exponential curve increases with
increasing of the wave frequency, permeability and
electric conductivity of a material.

The phenomenon of concentration of conducting
currents on the plate surface, valid for conductors with
very high electric conductivity and magnetic
permeability subjected to high frequency wave, is
known as the skin-effect.

3. TEMPERATURE FIELD

Let the rectangular plate dimensions axbxh be
isolated on the upper and the lower surface and the
temperature along the lateral sides is equal to initial
temperature 7 (0=7-7(=0). The initial and the boundary
conditions have the form:

0,6, o, =0, 2 =0.

e|t':0 =0, e|x1:0,a = x,=0,b ’ ox
3

=

X3 =i5

(16)
By using (15) the power of the heat source can be
expressed as function of time ¢ as follows:

W (x;,t)=Pe*“H(t) ,
a7)
kH)

_h sum
leHgmpe (1+
2 T

Subjected to the boundary conditions (16) the equation
(2) can be solved by using the integral-transform
technique. Applying double Fourier finite-sine
transform (signed as nm) and Laplace transform (signed
by *, t—p) [4, 5] we arrive to the transform functions of
temperature field:

E 4BF Cyx 1
knm = >
" }"Ohanam P[P + K(Bk + Amn):'

where
Lz[ahch(och)—sh(och)], k=1
20
P h(an), k=0
o
A, =02 +a2 =(nn/a)* +(mn/b).
The inverse Laplace transform gives:

o e
7\'OhOLnOLm (Bk +Amn)

H(t). (18)

Tknm =
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The solution to the temperature field now obtains its
final form by using inverse double Fourier finite-sine
transform:

4 & L 4pkc
wE— > e X
ab m=1,3,..n=1,3,... }"Oh Oy, Oy (Amn + Bk )

x[l e } sina,x; sina,,x, H(t). (19)

Now, a numerical example will be given for the steel
rectangular plate having dimensions =50 cm, =30 cm.
Material constants are: A,=0.5 W/cmK, 6=7.710% S/m
and p~=1000. Electromagnetic field parameters are:
Hy=2000A/m and /=0.5+2.5 MHz. The appropriate skin-
depth (12) is in range 1.16 to 2.56 pm.

T [°C]
\
50 | h=1mm
40 L
30
h=2mm
20 + h=3mm
0 h=4mm
h=5mm
0 1 1 1
0 1000 2000 3000  t[s]

Figure 2. Temperature in the middle point as function of
time and plate thickness ( /=2 MHz, k;~=1).
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Figure 3. Temperature in the middle point as function of
time and wave frequency ( /=1mm, k;=1).
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Figure 4. Temperature in the middle point as function of
time and hysterisis factor (A=1mm, ~2MHz).
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Figure 5. Isotherm lines in the middle surface of plate

1,=0+50.7 (step 5 °C).

In figures 2 to 4 the temperature in the middle point
of the plate is presented as a function of time, plate
thickness, wave frequency and hysterisis factor. Figure
5 shows distribution of the isotherm lines in the middle
surface for the stationary state of plate.

4. VIBRATIONS. STRESS FIELD
4.1. Transversal vibrations
Let the plate be simply supported along the three

edges (x;=a, x,=0, b) and fixed along the fourth edge
(x1=0) (Fig. 6). The boundary conditions have the form

wlxlzo,u = 0 ’ wle:O,b = 0 B}
Pw  w
M11|x1:u = _ax% +V_8x% +(1+v)a,ty |D =0,
x;=a
2 2
Myl,, o5 = Va Z;'Fa—Zng(l-Irv)ocfr1 D =0
S ox; 0x5 -0
0w /0%, =0. (20)
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Figure 6. Boundary conditions.

Initial conditions are responsible for the natural
undeformed state:

wl,_, =0, dw/ot],_,=0. Q1)

Problem with nonhomogeneous boundary conditions
is not very suitable for obtaining the solution in
analytical form. So, in this section of the paper one way
for soluting the problem by using only simple integral
transformations will be presented. Differential equation
describing transverse vibrations (4) is adapted to form
which enabling very easy simulation of the bending
moments along the fixed edges.

Using equation (4) we can form the appropriate
equation for stationary problem (+—o0) by simulating
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the moment along the edge x;=0 through the stress o3
in the following way

h 0
Viw+(1+v)a, Vit =——[013(x2)8(x1)] , (22)
D 0x4

where d(x,) is Dirac delta-function.
By using (18), double Fourier finite-sine transform
and the relation for the first derivative of & function:

]l' 08(x1)

——=sin(a,x;)dx; =—a,,,

0 0x

the solution for transversal vibrations can be represented
in form:

4 & . .
w(xl,xz,t)z—b Z anm sina,x; sina,,x, ,
a m=1,3,..n=1

(23)

o (1+v)ty,, h oa,
nm — A _BAZ

mn mn

S13m -

Using the boundary condition for the edge x;=0 we can
calculate the “moment stress” G 3(x»):

i Oy (1+V)T1nman
A
O13m = o= h e n(;nz >
n
72 2 24
Dn:l Amn ( )

00
o153 (%) = % Z O3 SIN O, X5 -
m=1,3,...

Presented method is very suitable for obtaining
analytical solutions for problems with moving boundary
conditions.

For the numerical example presented in section 3,
deformation calculated from (23) and (24) is nearly
10”cm due to the small temperature gradient across the
plate thickness.

For geometrically more complex problems and
nonlinear temperature distribution across the plate
thickness, finite element method has to be involved in
analysis. The stiffness matrix and the load matrix for the
plate element can be formed by using the analogy with
the finite element of the composite plate. Corresponding
values for deflection obtained from the analytical
solution and the numerical solution are the same, but
there is a large discrepancy between the stress
distributions based on the real and the reduced FEM
model [8].

4.2. Deformation of the middle surface. Stress field

Vibrations and stress in the middle surface of the
plate are calculated by using the program package
KOMIPS [9], based on the finite element method. Input
file was done on the analytical solution (19).

Deformation in the middle surface of the plate is
depicled in Fig. 7. Maximal deformation is calculated to
be 0.171cm.

Figure 8 shows the appropriate stress field. Maximal
temperature in the middle point is 6=50.7 K and
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maximal stress value calculated by the finite element
method (FEM) is 7.524 kN/cm? (on the edges x,=0, b).

B o i ) | T
T I
[
EEMBE D
-] HH
=] T

Figure 8. Stress field, o = 0+7.524/0.5 kN/cm’

5. CONCLUSION

The magneto-thermoelasticity has received the
considerable attention in recent years because of the
possibility for application in detection of flaws in
ferrous metals, optical acoustics, levitation by
superconductors, magnetic fusion and many other
electro-mechanical devices.

The problem of the thin metallic plate subjected to
transversal line propagation of simple harmonic
electromagnetic wave can be described through four
systems of differential equations. In this case the most
influence on the stress field has the increasing of
temperature. This is the result of the time- varying
electromagnetic field that is accompanied with the
appearance of eddy-current and hysterisis losses.
Intensity of the losses decreases exponentially with the
plate thickness. As it is shown in paper, temperature in
the plate increases with increasing of the wave
frequency, increasing of the hysterisis factor and
decreasing of the plate thickness. When the frequency
and conductivity are very high, the problem can be
treated as a thermal shock problem because of the small
skin-effect depth.

Very suitable method for solving the considered
problem in analytical form, as has been shown in the
paper, is the integral-transform technique. But, for
dynamic and geometrically more complex problems
with non-homogeneous boundary conditions it is very
difficult to find vibrations and stress in analytical form.
Then, the finite element method has to been involved in
calculation.
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TEMIIEPATYPCKO U HAIIOHCKO IIOJbE
TAHKE METAJIHE JEJIUMHUYHO
YKIIEHITEHE IINIOYE UHAYKOBAHO
XAPMOHHMNJCKHUM EJIEKTPOMAT'HETCKHUM
TAJTACOM

Becna Muaomesuh-Mutunh

VY pamy ce pa3maTpa TMOHAIIale TaHKE EIaCTUYHE
MeTajgHe IUIoYe W3a3BAHO XAPMOHHUjCKHM EJIEeKTPO-
MarHeTCKUM paBaHCKUM TayacoM. [limoya je cio6omHo
OCJIOICHA Iy TPH MBHIE M YKJICIITEHA IYX YETBPTE.
Kao pesynrar pnejcTBa BpPEMEHCKH MPOMEHIBHBOT
eNIEKTPO-MAarHeTCKOT M0Jba M0jaBJbYjy c€ KOHIYKIHOHE
cTpyje y Iuioud. Pacmonena cHare KOHIYKIMOHUX H
XHUCTEPE3UCHHUX ryOuTaKa 1o ae0spuHH iode onpelena
je TpHUMEHOM KOMIUIEKCHOT padyHa. Y JajbeM Hpopa-
YyHy Ta CHara je TpeTHpaHa Kao 3allpeMHUHCKH H3BOD
tormore. /ludepeHnrjanae jegHaunHE MOJbA TEMIIEpa-
Type pelleHe Cy METOIOM HHTeTpAIHHX TpaHcdopma-
uuja. Pasmatpan je u yruiaj nedspune mioue, Gppekse-
HIMje Tanaca U (akropa XHCTEPE3MCHHX IyOHMTaka Ha
TeMnepaTypHo mosbe. [losba HamoHa u nedopmanuje
oapeheHa cy IpMMEHOM METO/Ie KOHAYHUX eJIeMeHATa U
METO/Ie HHTEerPaHUX TpaHchopManuja.
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