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Calculation of the Turbulent Flow in a 
Plane Diffuser by using the Integral 
Method 
 

An incompressible, turbulent flow in plane diffusers is analysed in this paper. For 
calculation we use equations of turbulent boundary layer in integral form, 
adjusted for internal flows. For closing the system of equations turbulent viscosity 
model based on the mixing length theory is used. Velocity profile in every cross-
section of the diffuser is approximated by a six-order polynomial, while the 
coefficients of the polynomial depend on three form parameters. By this 
transformation system of governing equations is reduced to three ordinary 
differential equations for form parameters, which can be relatively easily solved 
numerically. Solutions are obtained for the flow in a plane diffuser for different 
values of the Reynolds number and the diffuser angle, starting with quasi-
developed velocity profile in the inlet cross section up to the downstream cross 
section in which turbulent flow separates from the wall. The obtained results are 
in a good agreement with experiments. 

Keywords: Turbulent flow, plane diffuser, coefficient of pressure, friction factor, 
separation point. 
 

 
 
1. INTRODUCTION 

A diffuser, as an element where the stream cross 
section changes from inlet to outlet, either plane or 
axisymetrical, has a great importance as an adapter of a 
pipe-line, or in an ejector for changing velocity and 
pressure, in a chimney, as the inlet or outlet of a stream 
engine, or in a rocket engine etc. The flow structure in 
the diffuser, whether laminar or turbulent, has been the 
theme of many investigations. Part of these 
investigations show that the velocity profile at the inlet, 
which is ordinarily developed, transforms into the 
velocity profile with stream separation, which is defined 
where the value of tangential stress on the wall is equal 
to zero, then after this, the cross section stream starts to 
separate from the channel wall. In the diffuser can exist 
several regime flows, which depend on the geometry 
and Reynolds number, and which are defined by Kline’s 
diagram [1], [2] and [3] for turbulent flow and his 
appendix for laminar flow [4]. The global parameters, 
friction coefficient and pressure recovery coefficient, 
are very interesting for applying to results of 
investigations. Distributions of these variables are given 
in the experimental data [5] for pressure recovery 
coefficient in plane diffusers and [6] for friction 
coefficient in conical diffusers.  

The problem which is examined in this paper is 
stationary turbulent flow in a plane diffuser. In other 
works this problem has most often been analysed by 
experimental methods or numerical methods of fluid 

mechanics. However, very rarely is this problem solved 

by integral boundary method, as in the reference [2] 
which gives very good results. Integral equations of the 
boundary layer are applied in reference [2] for compu-
tation of the turbulent flow, where the appropriate initial 
conditions are adopted for the problem of interior flow. 
With this calculation it is necessary to make an 
approximation of the velocity profile. Very different 
approaches can be used for approximation of velocity 
profiles, as for example by the profile of velocity deficit, 
based on the transverse coordinate and the boundary 
layer displacement thickness, which is described by an 
asymptotic seventh – order series [8] or by a sinus 
function [9]. In this paper we use an approximation of 
the velocity profile by the six-ordrer polynomial based 
in the eddy turbulent viscosity. This gives the system of 
nonlinear simple differential equations, which are 
solved by classical numerical method of the Runge-
Kutte IV. Numerical solution for the turbulent flow in 
plane diffusers is obtained in this paper between the 
inlet cross section with a developed velocity profile and 
the downstream cross section with the flow separation 
from the wall.  

2.  PRESSURE COEFFICIENT AND FRICTION 
FACTOR 

 In order to have a detailed knowledge of the flow 
structure in a diffuser it is necessary to know the 
velocity field and the pressure field, which requires that 
the appropriate physical-mathematical model be solved. 
The global parameters – pressure recovery coefficient 
( pC ), friction factor (C f ) and local loss of energy are 
interesting in engineering practice, and in determining 
which we use concrete results of calculation. In this 
paper we will talk about pressure recovery coefficient 
(Cp), which represents dimensionless pressure field in a 
diffuser and it is defined by the equation: 
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where subscript m represents the mean value in the 
cross section, and friction factor: 

)(/)(2)( 2 xuxxC mwf ρτ= ,                      (2) 

where wτ  is shear stress on the wall, and the other 
values are given in the Fig. 1. The mean value of  velo-
city in the cross section at the distance x is determined 
classically: 
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Figure 1. Flow through a diffuser. 

3. PHYSICAL-MATHEMATICAL MODEL 

 Two dimensional stationary turbulent flow in the 
diffuser, shown in Fig. 1, is described by Reynolds 
equations and equation of continuity, which are written 
in common notation: 
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According to equation (3), through quantity νt , (intro-
duced by Boussinesq) in the present paper turbulent 
stresses are determined by turbulent viscosity. Equati-
ons (3)-(5) are applied from the diffuser inlet 0-0, to the 
cross section S-S where the boundary layer started to 
separate from the channel wall ( 0)/( =∂∂ρν−=τ yw yu  

0= ). These equations are solved by satisfying the 
boundary conditions: 

y = 0 , )()0,( xuxu e=  , ∂ ∂u y/ = 0 ;        (6.1) 

y = δ , 0),( =δxu  , v( , )x y = 0 ,           (6.2) 
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The boundary conditions (6.4) was obtained by satisfy-
ing the momentum equation (3) for the axis (subscript e) 
and for channel wall (subscript δ), whereby the con-
dition for turbulent stress on the axis 0)/( =∂∂ρν et yu  
has been employed. If we apply classical procedure for 
transition on integral equations then partial differential 
equations (3)-(5) will take the form: 
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where (7) represents momentum equation and (8) 
represents mechanical energy equation, where total 
sheаr stress τ is identified as: 

τ ρ ν ν
∂
∂= +( )t
u
y  ,                            (9) 

variable eu '  represents the derivative ' d / de eu u x= , on 
the end the variables: δ1, δ2  and δ3 displacement 
thickness, momentum thickness and energy thickness 
respectively, are defined in the classical way: 
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With the aim of solving equations (7)-(8) we predicted 
that velocity profile is the six-order polynomial: 

642
)()()()(),( ++++ +++= yxdyxcyxbxayxu .  (11) 

The velocity profile has to be symmetrical in relation to 
the axis of the channel and for this reason we only 
applied even numbers in the power ratios, and )(xa , 

)(xb , )(xc  and )(xd  denote the coefficient of the 
polynomial. Analysis of turbulent flow shows that it is 
useful if we introduce: a coordinate measured positive 
from the wall: η δ= − y , friction velocity 

ρτ= /)()(* xxu w   and dimensionless variables: 
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If we use velocity profile (11) and satisfy boundary 
conditions (6) we will determine polynomial coef-
ficients:  
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in which: Re /= 2δ νue  is the Reynolds number, and 
parametrical forms: 
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If we use formula (14) we find a relationship between 
the parametrical forms: 

q q q' ( ' )= ++1 3 2
δ λδ δ  .                  (15) 

For closing the physical-mathematical model which 
describes turbulent flow for eddy viscosity we used 
mixing length model where ν ηt l u= 2d d/ , where 
mixing length )(ηl  is defined by Michel’s model [7]: 

)
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where κ = 0,4 . For simplicity, the expression (16) is 
represented in the form of the fourth-order polynomial: 
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By linearization the expression (17) is not reduced on 
the well know Prandtl's expression for the mixing 
length: yl κ= , but in spite of that it approximates the 
function (16) very well in the whole cross section. 
Velocity profile (11) is defined by formula (13) as a 
function of parametrical forms, as u u q= +( , , )λ δ . After 
a huge mathematical process, which is dictated by 
equations (7) and (8), and by formula (10), a system of 
three simple differential equations are obtained: 
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The functions which depend on the longitudinal 
coordinate and parametrical forms: f x q( , , , )λ δ+ , 
g x q( , , , )λ δ+  and h x q( , , , )λ δ+ , and which are in the 
system of differential equations (18), are given in the 
Appendix. 
 Initial conditions of the parametrical forms are 
firstly defined by the prediction that in the diffuser inlet 
exists fully developed turbulent velocity profile, where 

′ =ue (0) 0 from where it follows that: λ(0) 0= . 
However, experimental results, as in reference [3] show 
that the fluid stream adapts before entering the diffuser 
inlet and follows the geometry of the diffuser, the 
outcome of which is: 

λ(0) 0≠  ,                              (19) 

but which is very near zero. Secondly, from the 
definition of the parametrical form q follows the 
equation: ( / ) Re/2e mq u u= ⋅ , in which Re /= 2δ νum  

Reynolds number and um mean velocity in the cross 
section of the channel, and to use a well known relation 
between velocities: u u Cm f* / /= 2  where C f  is 
friction coefficient, we obtain the initial condition: 

)2/)0(75,31(
2

Re)0( fCq +=  .          (20) 

The third initial condition follows from the definition 
(12) where the variable δ+  is defined as: 

2/)0(
2

Re)0( fC=δ+  .              (21) 

Finally, if we want to find solutions it is necessary to 
solve a system of simple differential equations (18) by 
satisfying initial conditions (19)-(21). This system of 
differential equations is solved by the application of the 
Runge-Kutte IV method. Numerical calculations are 
stopped in the downstream cross section in which the 
flow separates from the wall of the diffuser, that is when 
on a distance x shear stress becomes 0)( =τ sw x . In this 
regard, an appropriate computer program was organised. 

4.  NUMERICAL RESULTS AND DISCUSSION 

 In order to have concrete numerical results we 
have to define the geometry of the diffuser and the value 
of the Reynolds number at the diffuser inlet.  In this 
paper the geometry of the diffuser (see Fig. 1) is defined 
as a straight walled slope of half-angle θ, and the cross 
section change is defined by the linear function: 
δ δ θ( )x tg x= + ⋅0 .  
 Fig. 2 and Fig. 3 show the results of the 
development of velocity profile, defined in relation to 
the maximal velocity of the inlet cross section, for the 
value of Reynolds number Re=50000 and half-angles of 
the diffuser θ = °15  (Fig. 2) and θ = °30  (Fig. 3). From 
these diagrams can clearly be seen, the development of 
the inlet velocity profile to the velocity profile at the 
separation point of the boundary layer. It is seen in these 
Figures that velocity profile in the inlet cross section 
deviates from the fully developed one for appr. 5% - the 
discrepancy being the consequence of the inlet 
boundary condition (19): 0)0( ≠λ , that is due to the 
adjustment of the flow in the channel with parallel walls 
in front of the diffuser variable geometry. 
 After the separation point in the diffuser, a different 
type of turbulent flow begins, which cannot be 
described using the applied model.  If we compare 
velocity profiles for half-angles θ = °15  with 

445,1/ =δosx  and θ = °30  with 66,0/ =δosx , using 
a constant Reynolds number, then we can see that the 
position of the separation point moves nearer the 
diffuser inlet as the half-angle increases.   
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Figure 2. Velocity profiles in a diffuser at 50000Re =  

and for  θ = °15 , 445,1/ =δosx . 
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Figure 3. Velocity profiles in a diffuser at 50000Re =  

and for θ = °30 , 66,0/ =δosx . 
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Figure 4. Pressure recovery coefficient in a diffuser at 

50000Re =  and for different values of θ.  

Fig. 4 shows the details of pressure recovery 
coefficient distribution along the length of the diffuser 
determined by expression (1). From Fig. 4 we can see 
that the value of the pressure increases along the length 
of the diffuser and it’s change is identified by the 
pressure recovery coefficient, with more intensity for a 
diffuser with a greater angle.  
 Fig. 5 illustrates a comparison between the results 
obtained for pressure recovery coefficient, for a half-
angle of the diffuser θ = °4 , with the results from 
reference [5], in which the problem of turbulent flow in 
a plane diffuser is solved by the application of k − ε 
model of turbulence and Prandtl’s mixing length model, 

with uniform distribution in some parts of the cross 
section. From this figure we can see that both models 
defined by Prandtl’s mixing length gave similar results, 
but, that after all, a difference does exist which is 
probably a consequence of the uniform distribution of 
mixing length accepted in reference [5]. And here, as in 
reference [5], exists a difference in values of pressure 
recovery coefficient which are obtained in k − ε model 
of turbulence and Prandtl’s mixing length model. 
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Figure 5. Comparison of results with reference [5] for 
θ = °4 . 

By using the results for the calculation of velocity 
field, and expressions (2) and (9), the friction factor can 
be determined. In Fig. 6 the dependence of the friction 
factor on the angle θ is shown, for 10000Re = . Typical 
drop of the friction factor from the initial value )0(fC  

to the value: 0)( =sf xC  in the separation cross section 
is clearly noticed, whereby it is obvious that the drop is 
more intense in the diffusers with larger angles. 
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Figure 6. Friction factor in a diffuser at 10000Re =  and 

for different values of θ.  

Comparison of our results obtained for a plane 
diffuser at 6000Re =  and °=θ 5  with the 
corresponding experimental results for a conical 
diffuser, stated in [2], are shown in Fig. 7, in 
nondimensional form. At that the value of the Reynolds 
number from [2] of 4335, defined by means of the 
maximum velocity in the inlet cross section, was 
redefined to the value of 6000 by using the average 
velocity. The Figure shows very good agreement 
between numerical and experimented results.  
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Figure 7. Friction factor in a diffuser at 6000Re =  and 

for °=θ 5 .  
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Figure 8. Velocity profiles in the cross section with 
separation flow for Re 15600=  and °=θ 14 . 
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Figure 9. Velocity profiles in the cross section with 
separation flow for 69000Re =  and θ = °4 . 

The comparison of velocity profiles in the separation 
cross section between plate and conical diffusers is 
shown in Fig. 8 and 9 – for 15600Re =  and 

°=θ 14 ([10]) in Fig. 8, and for 69000Re =  °=θ 4  
([8]) in Fig. 9. These diagrams show that separation 
velocity profiles in plane and conical diffusers are very 
similar and that they differ up to %8 , whereby the 
difference decreases with the Reynolds number. 

5. CONCLUSION 

 It is shown in the paper that the method of integral 
equations of the boundary layer theory, suitably 
adjusted for the calculation of turbulent flow in plane 
diffusers. The results obtained by our calculations 
contain the development of velocity profiles and 
changes of pressure coefficient and friction factor from 
the inlet cross section of the diffuser up to the separation 
cross section. These quantities are functions of the 
Reynolds number and the diffuser angle, and their 
changes are more intense in the diffusers with greater 

angles. For the fixed value of the Reynolds number the 
position of the separation cross section is postponed for 
smaller diffuser angles. Comparison of our calculations 
for plane diffusers with the experimental results for 
conical diffusers shows that between both of them very 
good agreement exists in all relevant flow quantities, 
and that the deviations between these two types of 
diffusers are relatively small. 

In this paper the method of integral equations of 
boundary layer is used for calculation of flow in plane 
diffuser with different angle, and it gives very good 
results for relatively small angles of diffuser. For 
relatively great angles of diffuser the basic hypothesis of 
boundary layer theory may become invalid. This is the 
reason why the proposed method for calculation of 
turbulent flow in plane diffuser is not recommended for 
use for relatively high angles of diffuser. 
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PRORA^UN TURBULENTNOG STRUJAWA U 
RAVANSKOM DIFUZORU PRIMENOM 

INTEGRALNE METODE 
 

M. Vuji~i}, C. Crnojevi}  
 

 U radu se analizira nesti{qivo turbulentno 
strujawe fluida u ravanskim difuzorima. Za 
prora~un se koriste integralne jedna~ine 
turbulentnog grani~nog sloja prilago|ene za 
unutra{wa strujawa. Za zatvarawe sistema 
jedna~ina koristi se model turbulentne visko-
znosti baziran na putawi me{awa. Profil 

brzina u popre~nom preseku difuzora aproksi-
miran je polinomom {estog stepena, a koefici-
jenti polinoma su funkcije od tri parametra 
oblika. Ovom aproksimacijom polazni sistem 
diferencijalnih jedna~ina transformi{e se na 
tri obi~ne diferencijalne jedna~ine po 
parametrima oblika koje je relativno lako 
re{iti numeri~kim postupkom. U radu su dobi-
jena re{ewa za strujawe u ravanskom difuzoru 
pri razli~itim vrednostima Rejnoldsovog broja 
i ugla {irewa i to od ulaznog kvazi-razvijenog 
turbulentnog profila brzina do nizstrujnog 
preseka difuzora u kome nastaje odvajawe 
fluidne struje sa zida. Rezultati prora~una su u 
dobroj saglasnosti sa eksperimentalnim 
podacima iz literature. 
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