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Calculation of the Turbulent Flow in a
Plane Diffuser by using the Integral
Method

An incompressible, turbulent flow in plane diffusers is analysed in this paper. For
calculation we use equations of turbulent boundary layer in integral form,
adjusted for internal flows. For closing the system of equations turbulent viscosity
model based on the mixing length theory is used. Velocity profile in every cross-
section of the diffuser is approximated by a six-order polynomial, while the
coefficients of the polynomial depend on three form parameters. By this
transformation system of governing equations is reduced to three ordinary
differential equations for form parameters, which can be relatively easily solved
numerically. Solutions are obtained for the flow in a plane diffuser for different
values of the Reynolds number and the diffuser angle, starting with quasi-
developed velocity profile in the inlet cross section up to the downstream cross
section in which turbulent flow separates from the wall. The obtained results are
in a good agreement with experiments.

Keywords: Turbulent flow, plane diffuser, coefficient of pressure, friction factor,
separation point.

1. INTRODUCTION

A diffuser, as an element where the stream cross
section changes from inlet to outlet, either plane or
axisymetrical, has a great importance as an adapter of a
pipe-line, or in an ejector for changing velocity and
pressure, in a chimney, as the inlet or outlet of a stream
engine, or in a rocket engine etc. The flow structure in
the diffuser, whether laminar or turbulent, has been the
theme of many investigations. Part of these
investigations show that the velocity profile at the inlet,
which is ordinarily developed, transforms into the
velocity profile with stream separation, which is defined
where the value of tangential stress on the wall is equal
to zero, then after this, the cross section stream starts to
separate from the channel wall. In the diffuser can exist
several regime flows, which depend on the geometry
and Reynolds number, and which are defined by Kline’s
diagram [1], [2] and [3] for turbulent flow and his
appendix for laminar flow [4]. The global parameters,
friction coefficient and pressure recovery coefficient,
are very interesting for applying to results of
investigations. Distributions of these variables are given
in the experimental data [5] for pressure recovery
coefficient in plane diffusers and [6] for friction
coefficient in conical diffusers.

The problem which is examined in this paper is
stationary turbulent flow in a plane diffuser. In other
works this problem has most often been analysed by
experimental methods or numerical methods of fluid
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mechanics. However, very rarely is this problem solved
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by integral boundary method, as in the reference [2]
which gives very good results. Integral equations of the
boundary layer are applied in reference [2] for compu-
tation of the turbulent flow, where the appropriate initial
conditions are adopted for the problem of interior flow.
With this calculation it is necessary to make an
approximation of the velocity profile. Very different
approaches can be used for approximation of velocity
profiles, as for example by the profile of velocity deficit,
based on the transverse coordinate and the boundary
layer displacement thickness, which is described by an
asymptotic seventh — order series [8] or by a sinus
function [9]. In this paper we use an approximation of
the velocity profile by the six-ordrer polynomial based
in the eddy turbulent viscosity. This gives the system of
nonlinear simple differential equations, which are
solved by classical numerical method of the Runge-
Kutte IV. Numerical solution for the turbulent flow in
plane diffusers is obtained in this paper between the
inlet cross section with a developed velocity profile and
the downstream cross section with the flow separation
from the wall.

2. PRESSURE COEFFICIENT AND FRICTION
FACTOR

In order to have a detailed knowledge of the flow
structure in a diffuser it is necessary to know the
velocity field and the pressure field, which requires that
the appropriate physical-mathematical model be solved.
The global parameters — pressure recovery coefficient
(C,), friction factor (C f) and local loss of energy are

interesting in engineering practice, and in determining
which we use concrete results of calculation. In this
paper we will talk about pressure recovery coefficient
(Cp), which represents dimensionless pressure field in a

diffuser and it is defined by the equation:
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where subscript m represents the mean value in the
cross section, and friction factor:

Cr(x) =27, (x)/pup(x), )

where 1, is shear stress on the wall, and the other

values are given in the Fig. 1. The mean value of velo-
city in the cross section at the distance x is determined
classically:
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Figure 1. Flow through a diffuser.
3. PHYSICAL-MATHEMATICAL MODEL

Two dimensional stationary turbulent flow in the
diffuser, shown in Fig. 1, is described by Reynolds
equations and equation of continuity, which are written
in common notation:

0w, som_ 1, fory
u6x+vay— p8x+6y{(v+vt)8y}’ 3)
op
== 4
0=3 “)
ou , Ov _
6x+6y_0' 5)

According to equation (3), through quantity v,, (intro-
duced by Boussinesq) in the present paper turbulent
stresses are determined by turbulent viscosity. Equati-
ons (3)-(5) are applied from the diffuser inlet 0-0, to the
cross section S-S where the boundary layer started to
separate from the channel wall (t,, = —pv(0u / Oy) y=0

=0). These equations are solved by satisfying the
boundary conditions:

y=0, @(x0)=u,(x) ,0u/dy=0; (6.1
y=08,u(x,6)=0,0(x,y)=0, (6.2)

. d
V= 2]0 i dy = const.; (6.3)
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The boundary conditions (6.4) was obtained by satisfy-
ing the momentum equation (3) for the axis (subscript e)
and for channel wall (subscript 3), whereby the con-
dition for turbulent stress on the axis (pv,0u/0dy), =0
has been employed. If we apply classical procedure for
transition on integral equations then partial differential
equations (3)-(5) will take the form:

d8 bl 2_
22 (28, +8,) =< = Twz +V—S 8_;:
dx U pu? ul

e » (D

_ 8
dd, u' i |vd &%, 9, 1
2435, =2 =2| XL | (T, - L () |dy (8)
dx Su, z‘)‘ue L—,e2 vt ¢ pgg Y

where (7) represents momentum equation and (8)
represents mechanical energy equation, where total
shear stress 7 is identified as:

ou
T=P(V+Vt)5, )

variable ', represents the derivative u', =du,/dx, on

the end the variables: §;, 8, and &5 displacement

thickness, momentum thickness and energy thickness
respectively, are defined in the classical way:

u
=—)dy ,

3 _ S _
5 =la-Lydy . 5, =] L=
R A (10)

o _ _
85 =£§—e[1—<§—6)2]dy

With the aim of solving equations (7)-(8) we predicted
that velocity profile is the six-order polynomial:

ut(x,y) = a(x)+ b(x)yJr2 + c(x)yJr4 + d()c)yJr6 . (1D

The velocity profile has to be symmetrical in relation to
the axis of the channel and for this reason we only
applied even numbers in the power ratios, and a(x),

b(x), c(x) and d(x) denote the coefficient of the

polynomial. Analysis of turbulent flow shows that it is
useful if we introduce: a coordinate measured positive
from the wall: mn=06-y, friction velocity

u*(x) =41,,(x)/p and dimensionless variables:

— *
u+=L* ; y+=yu =5 -n",

+_nu* 6+_8u*

n - v El - v

If we use velocity profile (11) and satisfy boundary
conditions (6) we will determine polynomial coef-
ficients:

a(x)=u, , (13.1)
—8¢+525Re—0.033315"
b(x) = e (13.2)
70g —52.5Re+0.667 15"
o(x) = ppe , (13.3)
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d(x) = ~ ;

(13.4)

in which: Re=206u, /v is the Reynolds number, and
parametrical forms:

—— —g2 +
_ueuev_ue8 Ue _qt—+
AMx) = 3 T v g q(x)=06"u, . (14)

If we use formula (14) we find a relationship between
the parametrical forms:

NS PN S Y
q—Sq(KS +q°%") . (15)

For closing the physical-mathematical model which
describes turbulent flow for eddy viscosity we used

mixing length model where v, = 1*dii / dn, where
mixing length /(n) is defined by Michel’s model [7]:

() K M
- = h - 1
5 0,085 tan (0,085 8) , (16)
where «=0,4. For simplicity, the expression (16) is
represented in the form of the fourth-order polynomial:

[ _ n M2 M43 N\4
5° 0,472§ - 0.98(3) + 0.894(3) - 0.301(3) .7
By linearization the expression (17) is not reduced on
the well know Prandtl's expression for the mixing
length: /=xy, but in spite of that it approximates the
function (16) very well in the whole cross section.
Velocity profile (11) is defined by formula (13) as a
function of parametrical forms, as u = ﬁ(k,q,8+). After
a huge mathematical process, which is dictated by
equations (7) and (8), and by formula (10), a system of
three simple differential equations are obtained:

a
o= (had)

dg

a=g(x,7»,q,5+) ; (18)
+

D hrg.) .

The functions which depend on the longitudinal
coordinate and parametrical forms: f(x,A,q,8"),

g(x,%,q,8") and h(x,1,q,8"), and which are in the
system of differential equations (18), are given in the
Appendix.

Initial conditions of the parametrical forms are
firstly defined by the prediction that in the diffuser inlet
exists fully developed turbulent velocity profile, where
u,(0)=0 from where it follows that: A(0)=0.
However, experimental results, as in reference [3] show
that the fluid stream adapts before entering the diffuser
inlet and follows the geometry of the diffuser, the
outcome of which is:

AM0)#£0 , (19)

but which is very near zero. Secondly, from the
definition of the parametrical form ¢ follows the
equation: ¢ = (u, /u,,)-Re/2, in which Re=2du,, /v
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Reynolds number and u,, mean velocity in the cross
section of the channel, and to use a well known relation
between velocities: u*/u,, =vCy /2 where Cp is

friction coefficient, we obtain the initial condition:
Re
q(0) :7(1+3,75 Cf 0)/2) . (20)

The third initial condition follows from the definition
(12) where the variable 5" is defined as:

8+(O):%,/Cf(0)/2 . (21)

Finally, if we want to find solutions it is necessary to
solve a system of simple differential equations (18) by
satisfying initial conditions (19)-(21). This system of
differential equations is solved by the application of the
Runge-Kutte IV method. Numerical calculations are
stopped in the downstream cross section in which the
flow separates from the wall of the diffuser, that is when
on a distance x shear stress becomes t,,(x;) =0 . In this

regard, an appropriate computer program was organised.
4, NUMERICAL RESULTS AND DISCUSSION

In order to have concrete numerical results we
have to define the geometry of the diffuser and the value
of the Reynolds number at the diffuser inlet. In this
paper the geometry of the diffuser (see Fig. 1) is defined
as a straight walled slope of half-angle 0, and the cross
section change is defined by the linear function:
d(x) =98y +1g0-x.

Fig. 2 and Fig. 3 show the results of the
development of velocity profile, defined in relation to
the maximal velocity of the inlet cross section, for the
value of Reynolds number Re=50000 and half-angles of
the diffuser 6 =15° (Fig. 2) and 6=30° (Fig. 3). From
these diagrams can clearly be seen, the development of
the inlet velocity profile to the velocity profile at the
separation point of the boundary layer. It is seen in these
Figures that velocity profile in the inlet cross section
deviates from the fully developed one for appr. 5% - the
discrepancy being the consequence of the inlet
boundary condition (19): A(0) =0, that is due to the

adjustment of the flow in the channel with parallel walls
in front of the diffuser variable geometry.

After the separation point in the diffuser, a different
type of turbulent flow begins, which cannot be
described using the applied model. If we compare
velocity profiles for half-angles 6=15° with
x,/8, =1445 and 6=30° with x,/3, = 0,66, using

a constant Reynolds number, then we can see that the
position of the separation point moves nearer the
diffuser inlet as the half-angle increases.
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Figure 2. Velocity profiles in a diffuser at Re = 50000
and for 0=15° x,/06, =1445,
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Figure 3. Velocity profiles in a diffuser at Re = 50000
and for 0=30°, x, /8, =0,66.
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Figure 4. Pressure recovery coefficient in a diffuser at
Re = 50000 and for different values of 0.

Fig. 4 shows the details of pressure recovery
coefficient distribution along the length of the diffuser
determined by expression (1). From Fig. 4 we can see
that the value of the pressure increases along the length
of the diffuser and it’s change is identified by the
pressure recovery coefficient, with more intensity for a
diffuser with a greater angle.

Fig. 5 illustrates a comparison between the results
obtained for pressure recovery coefficient, for a half-
angle of the diffuser 6=4°, with the results from
reference [5], in which the problem of turbulent flow in
a plane diffuser is solved by the application of k—¢
model of turbulence and Prandtl’s mixing length model,
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with uniform distribution in some parts of the cross
section. From this figure we can see that both models
defined by Prandtl’s mixing length gave similar results,
but, that after all, a difference does exist which is
probably a consequence of the uniform distribution of
mixing length accepted in reference [5]. And here, as in
reference [5], exists a difference in values of pressure
recovery coefficient which are obtained in k —& model
of turbulence and Prandtl’s mixing length model.

0.8

-
\ —
/
e

N N
0.4 mixing lenght

0.3 ; / eq. (17)

0.2 —

C

mixing lenght [5]
P o7

k—& model
0.6 —

01 —
0.0 — 71 T T ' 1T ' T °

10 x/8,

gigure 5. Comparison of results with reference [5] for
=4°,

By using the results for the calculation of velocity
field, and expressions (2) and (9), the friction factor can
be determined. In Fig. 6 the dependence of the friction
factor on the angle 0 is shown, for Re =10000. Typical
drop of the friction factor from the initial value Cr 0)

to the value: C'r(x;) =0 in the separation cross section

is clearly noticed, whereby it is obvious that the drop is
more intense in the diffusers with larger angles.

Figure 6. Friction factor in a diffuser at Re =10000 and
for different values of 0.

Comparison of our results obtained for a plane
diffuser at Re=6000 and ©0=5° with the
corresponding experimental results for a conical
diffuser, stated in [2], are shown in Fig. 7, in
nondimensional form. At that the value of the Reynolds
number from [2] of 4335, defined by means of the
maximum velocity in the inlet cross section, was
redefined to the value of 6000 by using the average
velocity. The Figure shows very good agreement
between numerical and experimented results.
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Figure 8. Velocity profiles in the cross section with
separation flow for Re =15600 and 0 =14°.
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Figure 9. Velocity profiles in the cross section with
separation flow for Re = 69000 and 6= 4°.

The comparison of velocity profiles in the separation
cross section between plate and conical diffusers is
shown in Fig. 8 and 9 — for Re=15600 and
0=14°([10]) in Fig. 8, and for Re=69000 6=4°
([8]) in Fig. 9. These diagrams show that separation
velocity profiles in plane and conical diffusers are very
similar and that they differ up to 8%, whereby the
difference decreases with the Reynolds number.

5. CONCLUSION

It is shown in the paper that the method of integral
equations of the boundary layer theory, suitably
adjusted for the calculation of turbulent flow in plane
diffusers. The results obtained by our calculations
contain the development of wvelocity profiles and
changes of pressure coefficient and friction factor from
the inlet cross section of the diffuser up to the separation
cross section. These quantities are functions of the
Reynolds number and the diffuser angle, and their
changes are more intense in the diffusers with greater
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angles. For the fixed value of the Reynolds number the
position of the separation cross section is postponed for
smaller diffuser angles. Comparison of our calculations
for plane diffusers with the experimental results for
conical diffusers shows that between both of them very
good agreement exists in all relevant flow quantities,
and that the deviations between these two types of
diffusers are relatively small.

In this paper the method of integral equations of
boundary layer is used for calculation of flow in plane
diffuser with different angle, and it gives very good
results for relatively small angles of diffuser. For
relatively great angles of diffuser the basic hypothesis of
boundary layer theory may become invalid. This is the
reason why the proposed method for calculation of
turbulent flow in plane diffuser is not recommended for
use for relatively high angles of diffuser.

Acknowledgment

This work is supported by the Ministry of Sciences,
Technology and Development of the Republic Serbia,
Project No 1328.

REFERENCES

[1T Fox R. W., Kline S. J., Flow Regimes in Curved
Subsonic Diffusers, Journal of Basic Engineering,
Vol. 84, pp. 303-316, 1962.

[2] Johnston P.J., Review: Diffuser design and
performance analysis by a unified integral method
Transactions of the ASME, Journal of Fluids
Engineering, Vol. 120, pp. 6-18, 1998.

diffusers. Masters Thesis, Faculty of Mechanical
Eng., Belgrade, 2001.

[4] Crnojevi¢ C.: Détermination du point de
décollement d'un écoulement visqeux incompres-
sible dans les diffuseurs bidimensionnels. 11éme
Congrés Frangais de Mécanique, Villeneuve
d'Ascq, p.333-336, Tome II, Septembre 1993.

[5] Ganesen V. et al., Investigations of mean and
turbulent flow characteristics of a two dimensional
plan diffuser, Experiments in Fluids 10, pp. 205-
212, 1991.

[6] Rakesh K. Singh, Ram S. Azad, Structure of
Turbulence in an Incipient - Separating
Axisymmetric Flow, Transactions of the ASME,
Journal of Fluid Engineering, Vol. 117, pp. 433-
438, 1995.

[7] Cousteix J., Turbulence et couche limite. CEPAD,
Toulouse, 1989.

[8] Rakesh K. Singh, Ram S. Azad, Asymptotic
Velocity Defect Profile in a Incipient-Separating
Axisymmetric Flow, Journal AAIA, Vol. 33, No 1,
pp- 94-101, 1995.

[9] Perry A.E., Schofield W. H., Mean velocity and
shear stress distributions in turbulent boundary
layers, Physics of Fluids, Vol. 16, No 12, pp.
2068-2074, 1973.

[10] Stieglmeier M., Tropea C., Weiser N., Nitsche W.:
Experimental Investigation of the Flow Through

Vol. 31, No 2, 2003 = 73



Axisymmetric Expansions, Transactions of the
ASME, Journal of Fluid Engineering, Vol. 111,
pp. 464-471, 1989.

MPOPAYYH TYPBYJIEHTHOI' CTPYJAIbA Y
PABAHCKOM AJU®Y30PY NMPUMEHOM
WHTEIMPAJIHE METOAE

M. Byjuuuh, L. LipHojeBuh

Y papy ce aHanu3upa HECTUIBUBO TYpOYJIEHTHO
cTpyjambe ¢uyuga y paBaHCKHM Audy3opuma. 3a
mpopayyH ce KOpHCTe WHTerpajHe jeqHaunHe
TypOyJIECHTHOI TPaHUYHOI ClOja HpuiarobeHe 3a

Op3uHa y IONPEYHOM Ipeceky audy3opa ampoKcH-
MUpaH je MOJMHOMOM IIECTOT CTeNeHa, a Koeuiu-
jeHTH nonuHOMa cy (pyHKLHUje Of TpH Iapamerpa
o6nrka. OBOM anpoOKCUMaljoM MOJIa3HU CHCTEM
nudepeHIrjaTHIX jefHauYnHa TpaHC(hOPMHUIIIE ce Ha
Tpu oOOuYHe [udepeHnyjaNHe jefHAYUMHE IO
nmapamMeTpuMa OOIIMKa KOje je PEeJaTHBHO JIaKO
peIluTH HyMEPUUYKIM MOCTYIIKOM. Y pajy cy goou-
jeHa peliema 3a CTpyjalkbe y paBaHCKOM Au(dy30py
MpW pa3InuuTAM BpefHOocTIMa PejromnicoBor 6poja
¥ yrila mpemha U TO Off YAa3HOT KBa3U-pa3BUjeHOT
TypOyJIeHTHOr npocduna Op3MHAa [O HUZCTPYJHOT
nmpeceka paudy3opa y KOME HacTaje OfBajame
¢ayunue cTpyje ca 3uga. Pesynratu npopadyHa cy y

VHyTpallllha CTpyjama. 3a 3aTBapame CHCTEMa foOpoj  car;macHOCTH — ca  CKCHePUMEHTATHAM
jemHaunHa KOPUCTHU ce Mofes TypOyJeHTHE BHCKO- oranuMa u3 JINTepaType.
3HOCTH Oas3WpaH Ha IyTamH Memama. [Ipodun
APPENDIX
3
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