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Development of a new Near-wall
Reynolds Stress Turbulence Model for
Jet Impingement Heat Transfer
Prediction

The newly proposed Reynolds-stress turbulence model (second moment
closure) was created by transforming the “standard” high-Reynolds
Isotropisation-of-Production turbulence model into its low-Reynolds version

and by introducing a new additional wall-reflection term *R,c[{,-}w.

Transformation from high- to low-Reynolds turbulence model was carried out
by including the previously neglected influence of molecular diffusion i.e. by
introducing the appropriate terms and functions into Reynolds stress and
turbulent dissipation rate transport equation. The new additional “rapid”

. * o I, W
wall-reflection term "R, ;"

physical situation, encompassed the “atypical” so-called pressure-echo
effect, i.e. the “atypical” redistribution of turbulent stress in the vicinity of the
stagnation point of an impinging jet.

In contrast to “standard” linear near-wall two-equation turbulence models,
the newly proposed Reynolds-stress turbulence model gives essentially better
predictions of turbulent kinetic energy field and considerably better
predictions of local Nusselt number. Compared with the “standard” high-
Reynolds turbulence stress models, the proposed turbulence model
demonstrates considerably better prediction of turbulent stress field in the
vicinity of impinging jet stagnation point, slightly better prediction of mean

that was modeled in accordance to the real

velocity field, and also enables prediction of local Nusselt number.

Keywords: Impinging jet, Low-Reynolds-stress turbulence model,
redistribution of turbulent stress, local Nusselt number.

1. INTRODUCTION

The high heat transfer rates that can occur in the
stagnation region of impinging jets have induced their
use in a wide variety of applications. These include
cooling gas turbine components and the outer wall of
combustors, cooling electronic equipment, annealing
metal and plastic sheets, tempering glass and freezing
tissue in cryosurgery.

The impinging jet flow, despite its relatively simple
geometry,  exhibits  extremely complex flow
characteristics. Among others, the flow around the
stagnation point is nearly irrotational and there is a large
total strain along the streamline (Fig. 1). Away from the
core of the jet there is a substantial curvature of the
streamline. Also, the laminar boundary layer that exists
in the vicinity of the stagnation point is transforming to
turbulent and outside the stagnation region, along the
plate, flow forms a wall jet boundary layer.
Simultaneous effect of a large number of parameters,
makes very difficult accurate prediction of flow and
corresponding heat transfer in classical, dimensionless
number correlations, based way. The overall heat
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transfer performance of jet impingement configuration
has been examined in numerous experiments, many of
which have been cited by Viskanta (1993) and Holger
1977).
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Figure 1. Flow field of impinging flow (schematic)

The impinging turbulent jet is also an interesting
flow from another, rather different standpoint. Namely,
almost the all turbulent models were developed for
shear turbulent flows, with reference to flows parallel to
wall. By using some of these turbulence models it is
possible to get very correct prediction of flow
characteristics for different configurations and a very
wide range of turbulent flows. These models, which
show high level of “universality” and which are
colloquially called “standard” or “common”, are very
often built in every commercial CFD software. But, it
also turned out that numerical calculation carried out by
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using these “standard” turbulence models for impinging
jet flow simulation showed significant disagreement
with relevant experimental data particularly for the local
heat transfer coefficient. This disagreement is especially
large in the stagnation region. In Fig. 2 we are compared
the experimental results of Baughun (1992) for heat
transfer along the plate and results of own numerical
simulation for four different “standard” low Reynolds
two-equations turbulence models.

0,4

m  Experimental data
of Baughn et al. (1989)

Figure 2. Variation of scaled Nusselt number with radius
for Low Reynolds Number Models (Z/D =2,
Rep =23000):

1. Basic k —¢ Launder-Spalding model;

2. Basick —® Wilcox model;

3. Lam-Bremhorst k —< model;

4. Chen-Kim Modified k —& model.

In this work, with intention to overcome
shortcomings of those “standard” turbulence models, a
new Reynolds-stress turbulence model is proposed.
After carrying out a detailed analysis and because of the
basic weakness of the Boussinesq’s eddy-viscosity
stress-strain relation, an idea that any corrections of any
two-equation turbulence models can lead to better
prediction was abandoned. The new model was created
by transforming the “standard” Launder, Reece and
Rodi (1975) high-Reynolds Isotropisation-of-Production
turbulence Model (IP). IP model was chosen for
transformation, as a model which still exist in
commercial CFD software PHOENICS and as a model
which can represent the most superior group of models -
Reynolds-stress turbulence models (RSTM).

The first set of transformations of IP model was
refered to transformations from high-Reynolds IP model
into its low-Reynolds version (IP1 model). The second
transformation was refered to introducing a new

additional wall-reflection term *R{“”Z’J-H (IP2 model).

2. AVAILABLE EXPERIMENTAL DATA

The performance of all models has been assessed
by comparing the numerically predicted results to
corresponding experimental data of Baughun at al.
(1989) and Cooper at al. (1993). This comparison was
related onto four cases, for two and six jet diameters to
plate spacing and for two different Reynolds numbers,

Rep = 23000 and Rep = 70000 .

The most important features of experiments of
these authors was achieving the fully developed pipe
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flow at the exit and that the nozzle lip was thick and
square cut").

3. GOVERNING EQUATIONS
3.1. The basic balance equations

In accordance to real physical situation and under
adequate assumptions (air is Newtonian fluid and
turbulent flow is incompressible, stationary and with
neglected buoyancy), the governing equations of fluid
motion can be written in Cartesian tensor notation as:

- continuity equation

5Ul/axl =O, (1)
- Reynolds averaged Navier-Stokes equations
0 oP 0 ou, dU; —
—(PUU ) = ——+—— [ (—+—L) = puu ], (2
axj (p i ]) aXi aXI [uf( aXI aXi ) puzu]] ( )

and the governing equation of mean enthalpy (energy
equation) as:

o oP
— U ;H)= U;—+u¥, (U +u¥ () +
ox; 7 " ox; HE .

0 o0H —
+——(ap ———phu;) . 3
~(ap ———phu;) 3)

1 1

3.2. Basic High-Reynolds Isotropisation-of-
Production turbulence Model — transport
equations

In the case of all high-Reynolds second moment
closure approach, the unknown Reynolds stresses

(tj =—puu;) are obtained from the following
transport equation:

ot;;

U _ U U

Uk g = (D‘E,ij +@‘E,ij _ETaU +R.u~j . (4)
k

where @r”lj represents diffusive transport of t; by
velocity fluctuation and it is modelled by using the

Daly-Harlow model (1970):
0 k oty
DY =——(Cy—1py —>) . 5
T,if 6xk ( s pe ki axl ) ( )
Wherein, C, is an empirical constant, &k is the

turbulent kinetic energy and ¢ is the dissipation of £.

The stress production term (PTUU needs no
approximation and is defined by:
ou ; oU.
U _ J i
@T,if = —(‘Cim E + Tim @) . (6)

The viscous destruction correlation & ;; is modeled by

! Latter experimental results by Baughun et. all (1992) and some other
authors which were also made in an impinging air jet, but with
different imaging system (for both, temperature and velocity
measurement), confirmed their previous results. This confirmation
enabled that their experimental data become part of ERCOFTAC-
IAHR Data Base (European Research Community on Flow,
Turbulence and Combustion — International Association of
Hydraulic Research).
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assuming local isotropy (Roota, 1951):

2
Ery = —5985;',' ) (7

and the pressure-strain correlation ®; ;; is modeled as a

sum of four contributions” (Shir, 1973):
I i J I
Rejy =Rej T Rej+ Ry *Reyy - (@)

The first contribution, marked as fl{rl,i]- , represents the
so-called “slow” (or turbulent-turbulent) part of

pressure-strain correlation and term Q{,EW,-}I is its wall-

reflection correction. Q{T”y is the so-called “rapid” (or
mean-strain) part of pressure-strain correlation and
Q{Wl;[[ is its wall-reflection correction. In all models

RSTM, the wall-correction terms to the pressure strain
are the same and they have following form (Shir, 1973):

N € 3 3
Reji =Cwi ;fw (T M B = Tk, _Erlg'nknz’)
(€)]
and
w, Il big 3 1 3

Reji = Cwalw R jonkMmd;j ~ 5 Rk _ERI,Unkni)
(10)
where, C,,; and C,,, are empirical constants; #;, is the
unit vector normal to wall, and £, is the wall-damping
function. The wall-damping function is computed from:

Jw =Cyl/ya,

where: y, is the normal distance from the wall;
Cy = Vnw /£ at the near-wall grid point; and /¢ is the
turbulence length scale given by:

(=Cpk’'? /e,
where, ¢, is an empirical constant. The value chosen
for c,, ensures that f, is unity in near-wall turbulence.
Also, in all RSTM? the “slow” part of pressure-

strain correlation Q{{WI/ is modeled as (Launder, 1975):

€ 2
RY; == (5 + 380 ), (11)

wherein C; is an empirical constant. Regarding to
model for “rapid” part of pressure-strain correlation
RTHU, there are three similar models: Quasi-Isotropic
Model (QI model) by Launder, Reece and Rodi (1975),
Isotropisation-of-Production Model (IPY model) of

Younis (1984) and Isotropisation-of-Production Model
(IP model) by Launder, Reece and Rodi (1975). In the

case of IP turbulence model Q{”

z,;j 1s modeled as:

1 v 1. v
Rz ,ij =—Co (B _gﬁz'j(Pr,kk)a (12)

2 Except Speziale, Sarkar and Gatski (1991) turbulent model (SSG)
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where, C, is empirical constant (Table 1).

In all high-Reynolds RSTM, the turbulence energy
dissipation rate € is computed from modeled transport
equation:

pU,.S—g:@ng@;—fa, (13)
i
where, @} represents diffusive transport, and is
modeled by:
0 k oe
Df =——— (Cep—1;; —) - 14
. 6xl-( P yaxj) (14)

Production of dissipation by vortex stretching ®; and
destruction of dissipation by viscous diffusion &, are
modeled together (Hanjali¢, 1976):

. el
@85 _ES = p;(acal@rl,]kk —Cazﬁj . (15)

In the foregoing, C,, C;; and C., are empirical
constants.

Table 1. Empirical constants of IP turbulence model

Cs G G Cai Cao

0,22 1,80 0,60 0,50 0,30
Cp =(C,Cp)"7 G G | G
CuCp =0,065 0,18 1,45 1,90

3.3. Generalized gradient-diffusion hypothesis model
for turbulent energy flux —phu;

The time-averaged dissipation function ¥, (U;) and
the turbulent energy dissipation function ¥, (1) from

the equation of mean enthalpy (3) are modeled together
(Spalding, 1999) i.e. replaced with:

where S§;; is the deformation tensor:

In accordance with the generalized gradient-
diffusion hypothesis model, turbulent energy flux
—phu; is replaced with:

OH k OH

PR k_
—phul- ZCe pgull/llg:—CG—Tllg (17)

J & J
3.4. Equation of state

Under the assumption that fluid has constant thermo-
physical properties (molecular viscosity py, thermal

conductivity Ay and c, specific heat capacity at

p
constant pressure), the three conservation equations (1-
3), two transport equation (4, 13), two hypotheses (16,
17) and equation of state for ideal-gas:

p=P/RT, H=c,T, (18), (19)

create a mathematically closed system.
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4. LOW-REYNOLDS VERSION OF THE
ISOTROPISATION-OF PRODUCTION
TURBULENCE MODEL (IP1)

In order to acquiring reliable numerical data inside
the velocity as well as the temperature boundary layer, it
was necessary to include in transport equations (4, 13)
the previously neglected influence of molecular
viscosity. After numerous attempts, by using the well-
known models for corresponding terms, IP model
widened and corrected in the way demonstrated below,
has given acceptable results.

The Reynolds stress transport equation was corrected
in two terms:

a‘fi'
ij U
k3 =Dt DYy A Py— By ARy (20)
X — [
New term Corrected term
The term @) jj » that describe molecular diffusion of
Reynolds stress was added in its non-modeled form:
Fl OT:+
vi=— (=D, @1
B o ox
k k

and dissipation rate tensor £ ; was corrected with

damping function f; (Hanjali¢, 1976):

2 Tjj
Eey =A5pe(=/)8; —fse— -1, (22)
where function factor f; is:

fi=(1+Re, /10)7",

and Reynolds turbulent number Re; is defined as:

Re, =k* /(ve).

The transport equation for the turbulence energy
dissipation rate € was corrected in three terms:

. U Q
PUZ-5=@:+ O +B+ B L+ @

&
! Added term Added term Added term

The term @} , that represents molecular diffusion of
¢ was added in its non-modeled form:
o’

oY =p—
2
6xk

€

(23)

and added term GPSU, which represents the production

of dissipation by mean strains was modeled together
with the production of dissipation by vortex stretching

term @ and term , that represents the destruction of
dissipation by viscous diffusion (Hanjali¢, 1976):

el A
G)SU + (@ss _Ea) = p;(zcsl@tl,]qq - C2£.f;°,8) - (24

In the foregoing equation f, is the Patel’s damping
function (Patel, 1985):

2 2
1. =1—§exp[(—Ret/2) } (25)
and € the isotropic part of dissipation rate of turbulent
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kinetic energy:

E=g-2v¢ (ak(”5 /o, ) . (26)
The “standard” model for non-homogeneous production
of & , term @S (Hanjali¢, 1976):

Q
P" =pupCoy—u i —t,
¢ red g Tk Ox ;Ox; Ox).0x;

27

in keeping with suggestion of Craft’s (Craft, 1991), was
replaced with Yap’s corrections:

¢ A
Q _ .
®." —> Syy, =max| 0; 0’83‘{[__1)[/_] yak (28)

e ‘e

where /, =Cpy,/x.

In this way, high-Reynolds IP model was
successfully transformed into its Low-Reynolds version.

5. BOUNDARY CONDITIONS

The boundary conditions and the solution domain are
summarized in Fig. 3 and Fig. 4.. At the jet discharge,
the flow is fully developed and isothermal. The inlet
condition is obtained by the preceding, separate
computation of fully developed pipe flow. For boundary
conditions near the wall the corresponding “wall-
functions” were used. In the case of simulation with IP
model, the non-dimensional distance of the near-wall

node from the wall was 6 < y§, <11,63 and in the case

of IP1 model yy, <1.

Jet - all profiles prescribed via
separate computation

Entrainment boundary: entering

3

fluid zero turbulance

|
\ Zero gradient conditions I
|

applied to outflowing fluid |

(constant pressure \

boundary conditions) |

p/2
25D

Symmetry axis  x

(=]
=

Wall boundary - uniform heat flux 10D 2

Figure 3. Summary of boundary conditions
6. NUMERICAL PROCEDURE

Computations were done with PHOENICS computer
program. This solver is based on finite volume solution
of elliptic mean momentum, energy and turbulent
transport equations. It uses a staggered mesh and the
Patankar’s SIMPLE algorithm for successively
correcting the pressure and field to secure compliance
with continuity.

Cyclic bounday
conditions

Figure 4. Solution domain and disposition of cells for the
Z/D=2, Rep =23000 case
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7. NUMERICAL RESULTS

Comparison of certain characteristic experimental
data for velocity profiles, turbulence intensity and
Nusselt number and corresponding data obtained by

numerical computation for the ﬁl) =23000 and

Z /D =2 regime, are shown in Figures 5 to 8. The rest
of results and the results for other flow regimes of
streaming are presented in (Banjac, 2004).

It is easy to observe good agreement between
experimental and numerical data for velocity profiles at
all radial positions, as well as unsatisfactory agreement
for turbulent velocity profiles and local Nusselt number
in radial position near the stagnation point. IP and IP1
turbulence models gave especially wrong bad
predictions for Reynolds stress normal to the wall, again
in the vicinity of symmetry axis.

8. ANALYSIS

The pressure-strain correlation:

Rt,l'j :—p(@ul /5xj+auj /axl)

that, as its name suggests, is the time-averaged product
of the turbulent kinematics pressure and strain rate,
plays a crucial role in the budget of Reynolds stress
tensor t; . Since in incompressible flow, its trace is

zero, it describes redistribution of turbulent energy
among the normal stresses and diminishing the
correlation between off-diagonal components. There are
two contributions to this process, one associated with a

nonlinear interaction RTIU — the “slow” part of ®; i
(11), and the second involving mean strains, Qr[,[i/ the

“rapid” part of ®; ; (12).

In the “standard” second-moment closures for
turbulent stress field, so in IP and IP1 model as well, a

w, Il

wall-reflection correction: RTW,-j :R{W;/-[ +Re G, s

added to the model of pressure-strain correlation Ry ;

in computing flow near the walls. Its role is to describe
process of reducing the level of turbulent velocity
fluctuations normal to the wall and, through the strong
intercoupling among the Reynolds stress components, to
reduce generally level of turbulent mixing.

In all cases of shear flows (directed parallel to the
wall) previously mentioned RSTM showed excellent
prediction. When however, the scheme of those models,
so that IP and IP1 model as well, was applied to the
axisymmetric impinging jet, it led to wrong, too
excessive predictions of levels of the normal-to-wall
turbulent stresses in the vicinity of the stagnation point
(Fig. 7). This different behavior can be explained by
examining the “contribution” that the term makes in two
different cases — channel flow (a represent ant of shear
flow — Fig. 9) and impinging flow (Fig. 1).

In channel flow, where velocity gradient 0U, /0x,
is dominant, production of normal Reynolds stresses in

direction of flow prevail (0U,/0x, —>Q’Tl’]22 -1,

FME Transactions

Tab. 2). Terms for redistribution of energy (11, 12), that
describe processes of redistribution of turbulent energy

to other two directions, that is, terms Q{TIU and RT[’[,]»

are modeled to diminish the effective generation of
normal stress (15, ) by redistributing it equally to the

other two directions (T, — 1y7and 15, — 133, Tab. 2).

Near the wall, where the process of redistribution of
turbulent velocity fluctuations normal to the wall to
other directions goes on, both wall-corrections term

Q{,CIZ;V , Q{,CHZ}-W (9, 10), become “active”, and in

accordance to real physical situation describe
redistribution of turbulent energy normal to the wall
(133 ) to other two directions (133 — 1;; and 133 — 1) ).
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Figure 5. Mean velocity profiles in radial wall jet
Z/D=2, Rep =23000
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Figure 6. Profiles of r.m.s. turbulent velocity in radial wall
jet — component parallel to wall, Z/D =2,
Rep =23000

In this case of impinging flow (Fig. 1) turbulent
kinetic energy generation arises mainly from velocity

gradient 0Us/dx3 (0U3/dx3 — B33 — 133, Tab. 3).

Hence term (Iirlfzz, in redistributing this production,
“acts” to decrease the stress normal to the wall
(Tt33 = T2, T33 = 711, Tab. 3). It therefore follows that

II,w

the form of ®; i in equations (10) acts to reverse this

Q{THU effect and hence increase the production of the

stress normal to the wall t35. These physically non-

existing increasing components of Reynolds stress
normal to the wall in the vicinity of the stagnation point
leads to wrong, too excessive predictions of local
Nusselt number (Fig. 8).
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Figure 8. Variation of scaled Nusselt number with radius,

Z/D=2, Rep =23000

The adverse effect that standard form of

RTH&W exerts to predictions of the velocity and

temperature characteristics of the impinging jet is thus
seen to be intrinsic. That indicates necessity for
different formulation of the wall-reflection model which
should be sought that will damp the stress normal to the
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wall irrespective of the main strain field.

Before attempting to formulate a wall-reflection
term that gives the correct behaviour in an impinging
flow, it was considered what constraints and guiding
principles can be applied.

e ="
x2

Figure 9. Flow field of channel flow (schematic)

0,20
—e— Expe. data Re =23000, ZD =6
= = =P2 model Re/)= 23000, ZD=6
0,151 —m— Expe. data Re,= 70000, ZD = 6
5. —-=-1P2 model Re =70000, 2D =6
| gy N D
£ 0,10-
=
Z
0,05+
0,00 T T T
0 1 2 3 4

x,/D
Figure 10. Variation of scaled Nusselt number with radius,
Z/D=6, Rep =23000 and Rep = 70000

Obviously, the model for that new term R,[”i}.w

be redistributed amongst the normal stresses, so

R,[Wkg =0, and it should be such that the stress normal

must

to the wall is always damped. Also, as the wall-
reflection process is mainly due to mean-strain
influences, and it thus makes sence to require that the
new terms would be products of mean velocity gradients
and Reynolds stresses. In attempting to find the
appropriate term, and as some of the previously cited
characteristics possess mainly wall-reflection terms, the
solution was carried out analyzing the known
“nonstandard” rapid wall-reflection terms.

As only the term proposed by Craft (1991) was
possessed desired characteristic, this term was accepted
as the new wall-reflection term. In that way, the new
model for pressure-strain correlation has form:

N/ 17
Re = Ri g+ Ry + R+ kN + @M (29)

11w

where Q{,r is modeled as:

1
nlnm(n 3n n 81]) 30)

m

w, Il _
R'ry - W2fw

and where empirical constant Cy, has value

Cy» = 0,3. This new model was marked as IP2 model.

Subsequent numerical simulation derived by using
that new IP2 model showed significant improvements in
predicting normal Reynolds stresses field as well as
local Nusselt number (Fig. 5, 6, 7 and 8). Similar
numerical results were obtained by calculation with this
IP2 model in cases of all other different regimes of flow
(Fig 10).
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9. CONCLUSION

The impinging jet calculations have highlighted a
serious failure of standard wall-reflection model which
can actually lead to “increase” of the stress normal to
the wall in an impinging flow. This deficiency has been
overcome by using a new, additional wall-reflection
term "R, that gives the required behavior in an
impinging flow and does not violate the more
conventional situation where the mean flow is parallel
to the wall. With the addition of this term, the new
model shows significant improvements in velocity,
stress and heat-transfer predictions.
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NOMENCLATURE

ag  thermal diffusivity for fluid, ag=A¢/(pc »)

specific heat capacity at constant volume

3}

P

D jet pipe diameter

hy local heat transfer coefficient

H mean specific enthalpy

k turbulent kinetic energy

n component of unit vector normal to wall
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Nu. local Nusselt number,
Nu, =QDD/[)“f (T = Tomb )] =hD/\¢
Pr¢ Prandtl number
Rep Reynolds number based on bulk velocity and
pipe diameter, Rep = DUp /vy

7;1mb ambiance-jet air temperature

T, wall surface temperature

U; mean velocity components

u fluctuating velocity components

Ut friction velocity U, =+/t,,/p
Up jet bulk velocity
Z jet-to-plate distance

X» radial distance or coordinate parallel to impingement
plate

Xy axial distance or coordinate normal to impingement

plate
yJr non-dimensional distance, yJr =U,y,/v¢
Greek symbols
51.]. Kronecker delta
€ dissipation rate of turbulent kinetic energy
g isotropic dissipation rate of turbulent kinetic energy

Ag thermal conductivity for fluid
2 kinematic viscosity for fluid

p fluid density

Tij  Reynolds or turbulent stress T;; = —pu;u ;
1, Wwall shearstress T, =p¢ (6U/6y)y:0

PA3BOJ HOBOI' HAITOHCKOI' MOJEJIA
TYPBYJIEHTHUX HAITIOHA 3A IIPEJIBUBAILE
INPOLECA ITPEJIA’KEIBA TOIIVIOTE ITPU YJIAPY
MJIA3A Y PABHY 3AT'PEJAHY IIVIOYY

Muyom bawan, borocas BacubeBuh

VY oBOM pany je HpencTaBjbeH HOB HANOHCKH MOJEN
(Momen npyror pema) TypOyneHTHHX HamoHa. OBaj HOBHU
HAIOHCKH MOJEJ HAacTao je mperBapameM “‘crangapasor” UIT
(high-Reynolds) Hamonckor Momena 'y  oarosapajyhu
HATlOHCKH MOJIeNl KOjUM je Moryhe BpIIMTH NpopavyyHe U y
obnacTuMa CTpyjama ca MajJuM BpeJHOCTUMa PejHonmcoBor
TypOynentHor Opoja (low-Reynolds model), xao u ca
MONPABKOM TOT MOJENA Yy BHAY IONMYHCKOI WIaHA Harie
npepacriozienie TypOyJeHTHUX HallOHa ycied MPUCYCTBa 3Haa

*R,[l{l}w . [IpetrBapame UII monena u3 merose high-Reynolds y
meroBy low-Reynolds Bep3ujy, M3BpIICHO je YKIbyYHBambEeM
MPETXO/HO 3aHEMapHOT yTHLAja MoJeKyinapHe nudysuje Ha

mpoliece IpeHoLIelka, Tj. ca yBohemeM oarosapajyhux

yraHoBa W (QYHKIMja y jeJHAUYMHY “TIpeHolIema’
PejHONCOBHX HAalOHA U jeHAYMHY “TpPeHOIIeHa” AUCHIALM]je
TypOyJHTHE KHHETHYKe eHepruje. HoBu, nomyHcku uiaH
Harje npepacrogelne TypOyJIeHTHHX HaIloHa ycie IPHCYCTBa

* 1, . .
3uja Rq l-jw , KOJju j€ MoAaecJupaH y CKjiaaagy ca pe€ajlHOM

¢u3uUKOM cuTyanujoM, oOyXBaTHO je HETUIIMYaH, TAKO3BaHU
edekaT exa MPHUTHCKA, Tj. HETUNHYAH IIPOIEC Ipepacroperne
TypOYJICHTHHX HaIlOHAa KOjH C€ jaBJba Y CTPYJHOM IIOJBY IIPH
ylIapy miasa o miody y OJIu3uHH 3aycTaBHe Tauke. Hacynpor
“cTaHmapJHUM” JIMHEAPHUM JBOjEIHAYMHCKAM MOJCIHMA
TypOYJICHTHHX HAIlOHA, MPEIUIOKEHH HAIOHCKU MOJEN Jaje
KBAJINTATUBHO 0O0Jba MpeiBubama Mojba KHHETHYKE SHEepruje
TypOyJeHLMje U 3Ha4yajHo Oosba mpeABUbama JOKATHUX
BpenHoctu HycenoBor Opoja. Y nopehemy ca “crangapaaum”
high-Reynolds HamoHCkHM MonenuMa, TPEUIOKCHH MOJEIT
rokasyje 3Ha4ajHo 0oJba mpensubhama TypOyJISHTHUX HAIllOHA
y 3ayCTaBHO] 30HH yjapa Mia3a, HemTo Oosba mpensubarma
MoJba OCpEeNmeHHX Op3uHa, a u omoryhaBa mpensuljame
nokaHux BpenHocTu HycenToBor 6poja.

Table 2. “Contribution” of corresponding terms to intensity of velocity fluctuations in channel flow

Normal components of Reynolds stress
Term — p— p—
U Ut usli3
-2%;/p 0 “utyuy - 0U, | 0y 0
—0oU —0oU —0oU
b/ _ 2 2 _ 2
~Rayi /P 0,4u5u5 o, 0,8u,us o, 0,4uyus -
—oU —oU. —oU.
/i _ 2 _ 2 2
*R;N,ij /p 0,12 f upu3 _6x3 0,12 f 4 upu3 _6x3 0,24 1, upus _6x3

Table 3. “Contribution” of corresponding terms to intensity of velocity fluctuations in impinging flow

Normal components of Reynolds stress
Term — p— p—
hih Uty 33
—oU U
—pY. —2usu 2 gy —3
Pl P 0 pL) % 3U3 -
_RH__ /p 0,41421/[2 0,4143143 aU3 0,81421/[2 6U2 - 0,4143143 aU3 0,4”2142 + 0,81/[31/[3 o
Y 0x3 ox 0x3 X3
RV /o | =012 f i upuy Uy 0,24 £, usu5 9Us ~0,12f,, ity U, 0,24 f uzts—= | 0,24 f ity 0,48 f, uztty —>
wY a)C2 6)63 a)C2 X3 X) X3
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