

Mile R. Vuji~i}
PhD student

Steve G.R. Brown

Senior Lecturer

Materials Research Centre
 School of Engineering

University of Wales Swansea
Swansea SA2 8PP,

Wales, UK

Iterative Solvers in the Finite Element
Solution of Transient Heat Conduction

In this paper three-dimensional transient heat conduction in
homogeneous materials using different iterative solvers based on the
conjugate gradient method are studied. The methods used are
preconditioned conjugate gradient, least square conjugate gradient,
conjugate gradient squared, preconditioned conjugate squared, bi-
conjugate gradient, preconditioned bi-conjugate gradient, bi-conjugate
gradient stabilized and preconditioned bi-conjugate stabilized method as
well as a Gaussian elimination method with incomplete Cholesky
factorisation as a comparison. Time dependence is solved using both the
finite difference and the finite element scheme. The finite difference
scheme includes backward and forward Euler method and θ−method
(Crank-Nicholson). The finite element scheme includes the weighted
residual method and the least squares method. For the analysis, in the
aim to analyse dependence between numerical scheme and obtained
temperatures, we use a brick that is divided into different number 8-noded
or 20-noded hexahedral elements with Dirichlet boundary conditions.

Keywords: transient heat conduction, time stepping, iterative solvers,
residual, inner iterations

1. INTRODUCTION

The analysis of heat conduction (steady and
transient) is well established, and there are several
different approaches or techniques that can be used
(finite difference, boundary element, finite element and
finite volume method).
 The finite element method has been developed in
parallel with the introduction of powerful and fast
computers during the last forty years. It started in the
field of structural analysis for stress calculations mainly
between 1940 and 1960. Later, the concept based on
dividing a structure into small substructures of various
shapes and re-assembled after each substructure had
been analyzed become a very useful tool for heat
transfer calculations, solving mechanic fluids problems,
electro magnetic calculation etc.
 Discretization of the relevant partial differential
equation gives a set of linear or nonlinear algebraic
equations.

 bAx = (1.1)

Generally speaking there are several families of
methods than can be used for solving systems of
algebraic equations, such as direct (Gauss elimination),

multigrid and iterative methods.
 As problem sizes grow, the storage requirement
becomes a burden, even on a modern computer. For
this reason, iterative methods, which require less
memory, have been developed as alternative solution
strategies.

2. TRANSIENT HEAT CONDUCTION AND

FINITE ELEMENT METHOD

 The principle of conservation of heat energy over a
fixed volume, V , of a medium that is bounded by a
closed surface S , can be used to derive the equation
that governs heat conduction. Usually, heat transfer is
treated in a domain Ω bounded by a closed surfaceΓ .
The classical statement of this can be written as:

 ()[]1 div grad
p

T k T Q
t c

∂
= +

∂ ρ
 in Ω (2.1)

)(xfT = for x on 1Γ (2.2)

() ()grad Tq x k T n k
n

∂
= − ⋅ = −

∂
 for x on 2Γ (2.3)

where k is thermal conductivity and Q is a source or
sink of heat energy. This equation is well known as
Fourier’s law of conduction.
 Applying the finite element technique in which the
Galerkin method is used for weighting functions we
obtain following matrix equation system;

 + =M T K T f , (2.4)
Received: September 2004, accepted: November 2004
Correspondence to: Mile Vujičić,
Materials Research Centre, School of Engineering,
University of Wales Swansea, Swansea
Singleton Park SA2 8PP, Wales, UK
E-mail:293097@swansea.ac.uk
© Faculty of Mechanical Engineering, Belgrade. All rights reserved. FME Transactions (2004) 32, 61-68 61

62 ▪ Vol. 32, No 2, 2004 FME Transactions

where M is the capacitance (mass) matrix, K is the
conductance (coefficient stiffness) matrix and T is the
temperature differentiated with respect to time.

2.1. Finite difference time stepping

 There are several finite difference time stepping
schemes, here the explicit (forward Euler) method , the
implicit (backward Euler) method and Crank-Nicolson
form of theθ -method are used.

Explicit (forward Euler) method

 This is a first-order method and can be derived from
a Taylor’s series expression. After applying this method
on equation (2.4) we obtain,

 ()1n n nT t T t+ = − ∆ + ∆M M K f . (2.5)

Implicit (backward Euler) method

 The implicit method requires much more storage than
the explicit method but it provides the potential
advantage of using a large time step, which may result
in a more efficient procedure. The matrix equation
system (2.4) for this method becomes:

 () 1n n nt T T t++ ∆ = + ∆M K M f (2.6)

θ (Crank-Nicolson) method

 The Crank-Nicolson method is an implicit method
with second-order accuracy and it is a special case of
the θ method. The matrix equation system (2.4) for this
method becomes:

() ()()1 1n n nt T t T t++ θ∆ = − − θ ∆ + ∆M K M K f (2.7)

 A different value of θ defines different methods. For
0θ = , equation (2.7) is identical to equation (2.5).

When 1θ = equation (2.7) is identical to equation (2.6).
The Crank-Nicolson method is defined with 0.5θ = .

2.2 Finite element time stepping

 Finite element time stepping uses the same technique
for time discretization as well as being used for the
discretization of a domain [6]. In the text written below
two different techniques are described:

a) the weighted residual method; and
b) the least squared method.

Weighted residual method

 After time discretization applied on equation (2.4)
and using the weighted residual method we will have:

 ()1 ˆ1n nT T
t t

+   + θ = − − θ +   ∆ ∆   
M MK K f , (2.8)

where are

1

0
1

0

d

d

j

j

W

W

ξ ξ
θ =

ξ

∫

∫
 and

1

0
1

0

d
ˆ

d

j

j

W

W

ξ
=

ξ

∫

∫

f
f .

The difference between the finite element and finite
difference approach is that θ in the finite difference
algorithm is completely between 0 and 1, while in the

finite element algorithm it depends on the weighting
function jW . This means that all methods mentioned
earlier are just special cases of the weighted residual
method.

Least squared method

 The main idea of this method is that error with
respect to 1+nT can be minimized to produce a least
squares algorithms.

()

()

1

1

0

2 3

d
2 6

T TT
T n

T TT
T n T

t T
t

t T f
t t

+
 + ∆ + + =

∆  
 − ∆ ξ + − − ξ

∆ ∆  
∫

Κ M M KM M K K

K M M KM M K K K

(2.9)

3. ITERATIVE SOLVERS

3.1. Conjugate gradient method (CG)

 This is an old and well-known non-stationary method
discovered independently by Hestenes and Stiefel in the
early 1950’s [1]. Also, it is the most popular iterative
method for solving large, symmetric and positive
definite systems of linear equations. In fact, this method
can be used for solving these types of equations only.
Historically speaking, the conjugate gradient method
came after the method of steepest descent and the
method of conjugate directions. De facto, the CG
method is the conjugate direction method where the
search directions are constructed by conjugation of the
residuals. The conjugate gradient strategy is presented
in the following pseudo code.

1. initial guess)0(x (for example 0)0(=x)
2. compute)0()0(Axbr −=
3.)0()0(rp =
do for i=1, 2, …, iterations limit

() (1)i i−=q Ap ,

()
()

(1) (1)
()

(1) ()

,

,

i i
i

i i

− −

−
α =

r r

p q
 ,

() (1) () (1)i i i i− −= + αx x p ,

() (1) () ()i i i i−= −αr r q ,

()
()

() ()
()

(1) (1)

,

,

i i
i

i i− −
β =

r r

r r
 ,

() () () (1)i i i i−= +βp r p ,

check convergence, continue if necessary
end

3.2. Preconditioned Conjugate gradient method
(PCG)

 Increasing of the number of elements obtained after
a discretization causes the standard CG method to

FME Transactions Vol. 32, No 2, 2004 ▪ 63

converge more slowly. This can be overcome by
replacing the problem whose solution we seek by
another one that has the same solution but which
converges much faster. There are several different
techniques for this type of ‘preconditioning’ three of
which are presented here namely, splitting, left
preconditioning and right preconditioning. The splitting
technique includes Jacobi, Gauss-Seidel, and Successive
Over Relaxation etc. The pseudo code for the PCG
method, incorporating the Jacobi method for
preconditioning, is presented below.

1. initial guess)0(x (for example 0)0(=x)
2. compute)0()0(Axbr −=
3.)0(1)0()0(rMdp −==
do for i=1, 2, …, iterations limit

() (1)i i−=q Ap ,

()
()

(1) (1)
()

(1) ()

,

,

i i
i

i i

− −

−
α =

d r

p q
,

() (1) () (1)i i i i− −= + αx x p ,

() (1) () ()i i i i−= −αr r q ,

)(1)(ii rMd −= ,

()
()

() ()
()

(1) (1)

,

,

i i
i

i i− −
β =

q r

q r
,

() () () (1)i i i i−= +βp d p ,

check convergence, continue if necessary
end

The matrix M is the preconditioning matrix.

3.3. Least squared conjugate gradient method
(LSCG)

 In the case that matrix A is non symmetric we
cannot apply the CG method. Multiplying both sides of
the equation (1.1) by TA yields:

 T T T= −A r A A A x (3.1)

The new matrix AAT is always symmetric. The
pseudo code for LSCG is:

1. initial guess)0(x (for example 0)0(=x)
2. compute)0()0(Axbr −=
3.)0()0()0(rAsp T==
do for i=1, 2, …, iterations limit

() (1)i i−=q Ap ,

()
()
(1) (1)

()
() ()

,

,

i i
i

i i

− −

α =
s s

q q
,

() (1) () (1)i i i i− −= + αx x p ,

() (1) () ()i i i i−= −αr r q ,

)()(iTi rAs = ,

()
()

() ()
()

(1) (1)

,

,

i i
i

i i− −
β =

s s

s s
,

() () () (1)i i i i−= +βp s p ,
check convergence, continue if necessary
end

3.4. Bi-conjugate gradient method (BCG)

 Instead of solving the system of equations (1.1), in
this method we are going to solve the following system
of equations,:

,

,T

=

=

A x b

A x b
 (3.2)

where two sequences of residuals are updated,:

() (1) () ()

() (1) () ()

i i i i

i i i T i

−

−

= −α

= −α

r r Ap

r r A p
 (3.3)

and two sequences of search directions:

() (1) (1) (1)

() (1) (1) (1)

i i i i

i i i i

− − −

− − −

= +β

= +β

p r p

p r p
 (3.4)

The pseudo code is given in the following text:

1. initial guess)0(x (for example 0)0(=x)

2. compute)0()0(Axbr −=

3. choose)0(~r (for example)0()0(~ rr =)

4. (0) 1.ρ =
do for i=1, 2, …, iterations limit

()() (1) (1),i i i− −ρ = r r ,

()
()

(1)

i
i

i−
ρ

β =
ρ

,

(1) ()i i−ρ = ρ ,

() () () (1)i i i i−= +βp r p ,

() () () (1)i i i i−= +βp r p ,

()() () (),i i iσ = p Ap ,

()
()

()

i
i

i
ρ

α =
σ

,

() (1) () ()i i i i−= −αr r Ap ,

() (1) () ()i i i T i−= −αr r A p ,

() (1) () ()i i i i−= + αx x p ,
check convergence, continue if necessary
end

64 ▪ Vol. 32, No 2, 2004 FME Transactions

3.5. Preconditioned Bi-conjugate gradient method
(PBCG)

 The difference between this method and the BCG
method is two more steps that involve preconditioning.

1. initial guess)0(x (for example 0)0(=x)
2. compute)0()0(Axbr −=
3. choose)0(~r (for example)0()0(~ rr =)
4. (0) 1.ρ =
do for i=1, 2, …, iterations limit

solve)1()1(−− = ii rMz

solve)1()1(~~ −− = iiT rzM

()() (1) (1),i i i− −ρ = z r ,
()

()
(1)

i
i

i−
ρ

β =
ρ

,

(1) ()i i−ρ = ρ ,
() () () (1)i i i i−= +βp z p ,
() () () (1)i i i i−= +βp z p ,

()() () (),i i iσ = p Ap ,
()

()
()

i
i

i
ρ

α =
σ

,

() (1) () ()i i i i−= −αr r Ap ,
() (1) () ()i i i T i−= −αr r A p ,
() (1) () ()i i i i−= + αx x p ,

check convergence, continue if necessary
end

3.6. Conjugate gradient squared method (CGS)

 Developed by Sonneveld [3] this method has been
derived from BCG method, where using the transpose
of A is avoided and thereby faster convergence for
roughly the same computation cost is obtained.
The pseudo code is given in the following text:

1. initial guess)0(x (for example 0)0(=x)

2. compute)0()0(Axbr −=

3. choose)0(~r (for example)0()0(~ rr =)

4. .0)0()0(== pq

5. (0) 1.ρ =
do for i=1, 2, …,i terations limit

()() (1) (1),i i i− −ρ = r r ,

()
()

(1)

i
i

i−
ρ

β =
ρ

,

(1) ()i i−ρ = ρ ,

() (1) () (1)i i i i− −= +βz r q ,

()() () () (1) () (1)i i i i i i− −= +β +βp z q p ,

)()(ii Apv = ,

()() () (),i i iσ = r v ,

()
()

()

i
i

i
ρ

α =
σ

,

() () () ()i i i i= −αq z Av ,

()() (1) () () ()i i i i i−= −α +r r A z q ,

()() (1) () () ()i i i i i−= + α +x x z q ,

check convergence, continue if necessary
end

3.7. Preconditioned conjugate gradient squared
method (PCGS)

 The pseudo code is given in the text that follows
without any theoretical explanation.

1. initial guess)0(x (for example 0)0(=x)

2. compute)0()0(Axbr −=

3. choose)0(~r (for example)0()0(~ rr =)

4. .0)0()0(== pq

5. (0) 1.ρ =
do for i=1, 2, …, iterations limit

()() (1) (1),i i i− −ρ = r r ,

()
()

(1)

i
i

i−
ρ

β =
ρ

,

(1) ()i i−ρ = ρ ,

() (1) () (1)i i i i− −= +βz r q ,

()() () () (1) () (1)i i i i i i− −= +β +βp z q p ,

solve () ()ˆ i i=M p p

)()(ˆˆ ii pAv = ,

()() () ()ˆ,i i iσ = r v ,

()
()

()

i
i

i
ρ

α =
σ

,

() () () ()ˆi i i i= −αq z A v ,

solve () () ()ˆ i i i= +M z z q

() (1) () ()ˆi i i i−= + αx x z ,

)()(ˆˆ ii zAq = ,

() (1) () ()ˆi i i i−= −αr r q ,
check convergence, continue if necessary
end

FME Transactions Vol. 32, No 2, 2004 ▪ 65

3.8. Bi-conjugate gradient stabilized method
(BCGSTAB)

 This method was developed by Van der Vorst [4] and
it presents a modification of the CGS method.
The pseudo code is given in the following text:

1. initial guess)0(x (for example 0)0(=x)
2. compute)0()0(Axbr −=
3.)0()0(rp =

4. .0)0()0(== vq

5. (0) (0) (0)ˆ 1.ω = β = α =
do for i=1, 2, …, iterations limit

()() (1) (1)ˆ ,i i i− −β = p r ,

() (1)
()

(1) (1)

ˆ ˆi i
i

i i

−

− −
β ω

ω = ×
β α

,

(1) ()ˆi i−β = β ,

()() (1) () (1) (1) (1)ˆi i i i i i− − − −= +ω −αq r q v ,

() ()i i=v Aq ,

()
()

()
() ()

ˆ
ˆ

,

i
i

i i
β

ω =
p v

,

() (1) () ()ˆi i i i−= −ωs r v ,
() ()i i=t As ,

()
()

() ()
()

() ()

,

,

i i
i

i iα =
t s

t t
,

() (1) () () () ()ˆi i i i i i−= +ω +αx x q s ,

() () () ()i i i i= −αr s t ,
check convergence, continue if necessary
end

3.9. Preconditioned bi-conjugate gradient stabilized
method (PBCGSTAB)

1. initial guess)0(x (for example 0)0(=x)
2. compute)0()0(Axbr −=
3.)0()0(rp =

4. .0)0()0(== vq

5. (0) (0) (0)ˆ 1.ω = β = α =
do for i=1, 2, …, iterations limit

()() (1) (1)ˆ ,i i i− −β = p r ,

() (1)
()

(1) (1)

ˆ ˆi i
i

i i

−

− −
β ω

ω = ×
β α

,

(1) ()ˆi i−β = β ,

()() (1) () (1) (1) (1)ˆi i i i i i− − − −= +ω −αq r q v ,

solve () ()ˆ i i=M q q

)()(ˆ ii qAv = ,

()
()

()
() ()

ˆ
ˆ

,

i
i

i i
β

ω =
p v

,

() (1) () ()ˆi i i i−= −ωs r v ,

solve () ()ˆ i i=M s s

)()(ˆ ii sAt = ,

()
()

() ()
()

() ()

,

,

i i
i

i iα =
t s

t t
,

() (1) () () () ()ˆi i i i i i−= +ω +αx x q s ,

() () () ()i i i i= −αr s t ,
check convergence, continue if necessary
end

4. NUMERICAL RESULTS AND DISCUSSION

 The analysis, as mentioned earlier, considers the
brick (Fig. 1) that is divided into 1000, 8000, 27000,
64000 and 125000 hexahedral elements. The back face
of the brick is kept at 0 C° while the initial temperature
was100 C° .

Figure 1. Geometry with boundary conditions

The analysis considers a several comparisons, in the
following order: type of finite element, time stepping
and iterative solvers. Also, the analysis considers
temperature dependence on different meshes for the
chosen time stepping (Crank-Nicolson).

Fig. 2 presents transient temperature through the
brick for 8 noded and 20 noded hexahedron elements.
From the Fig. 2 we can see that 8-noded elements give
better results than 20-noded elements.

Fig. 3 presents results using different methods for
time stepping.

66 ▪ Vol. 32, No 2, 2004 FME Transactions

To make our comparison between different time
stepping schemes clearer temperature changes occurring
at node 1 are shown in Fig. 4.

At the same time few different meshes were studied
for the chosen time stepping (Crank-Nicolson).
Obtained temperatures at node 1 are presented in Fig. 5.

Figure 2. Transient temperature for 8 and 20 node
elements

Figure 3. Transient temperatures for different time
stepping

Figure 4. Transient temperatures at node 1

�������
��
�
�����������������
��
��
���������
�
��
������
��������
�������
�
��
�����
������
���������
�
�
����������
�������������

�����������������
��
��
���

���
���
���
��
��
���
���
���
���
��
��
����
����

���
���
����
����0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

position

te
m

pe
ra

tu
re

 d
eg

re
e

C

13824elements
�������1000elements

8000elements

64000elements

27000elements

125000elements

Figure 5. Transient temperatures at node 1

 In the following figures (Fig. 6, Fig. 7 and Fig. 8) the
decreasing trend of the absolute values of the residuals
(a characteristic of iterative solvers) is shown.

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1
0 5 10 15 20 25 30 35 40

inner iterations

Lo
g

(A
bs

 [r
es

id
ua

l])

cg=bcg
pcg
lscg
cgs
pcgs
pbcg
bcgstab
pbcgstab

Figure 6. Residuals at time t=0.1 for node 1

E-11

E-10

E-09

E-08

E-07

E-06

E-05

0 5 10 15 20 25 30 35 40

inner iterations

Lo
g

(A
bs

 [r
es

id
ua

l])

cg
pcg
lscg
cgs
bcg
pbcg
pcgs
bcgstab
pbcgstab

Figure 7. Residuals at time t=0.5 for node 1

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1
0 5 10 15 20 25 30 35 40

inner iterations

Lo
g

(A
bs

 [r
es

id
ua

l])

cg
pcg
lscg
cgs
pcgs
bcg
pbcg
bcgstab
pbcgstab

Figure 8. Residuals at time t=1.0 for node 1

FME Transactions Vol. 32, No 2, 2004 ▪ 67

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

0.000001

0.00001
0 0.5 1 1.5 2 2.5 3 3.5 4

time

A
bs

 [r
es

id
ua

l]

cg
pcg
lscg
cgs
pcgs
bcg
pbcg
pbcgstab
bcgstab

Figure 9. Residuals of the last iterations in time

 Finally, in the Fig. 9 we gave the absolute value of
the residuals at last iteration during time.
 From the diagrams it can be seen that the least
squared conjugate gradient method (LSCG) has a
monotonically decreasing residual where convergence is
the slowest of all the methods presented in this paper.
 The number of inner iterations is a very useful
parameter for our comparison. According to the number
of inner iterations, as seen in Fig. 10, it can be seen that
the LSCG method requires the highest number of inner
iterations while the preconditioned conjugate gradient
method requires the least.

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

time

in
ne

r i
te

ra
tio

ns

cg=bcg pcg

lscg cgs

pcgs pbcg

bcgstab pbcgstab

Figure 10. Number of inner iterations in time

 Sometimes, taking the number of inner iterations as
the main assessment criteria can lead to incorrect
conclusions. For example, computational time (CPU)
required to solve the problem using BCG method is
twice that spent using the CG method although there are
the same number of inner iterations for both. So,
computational time becomes a very important parameter
in any analysis of iterative solvers. In the table
presented below CPU times for the solvers are shown.
All these results are for the numerical scheme that
includes 1000 elements with 10x10x10 divisions.
Table 1. CPU time for chosen solvers

solvers CPU[s]
CG 11.4064

PCG 3.264694
LSCG 55.61998

solvers CPU[s]
CGS 15.87282

PCGS 6.409216
BCG 26.48809

PBCG 14.30056
BCGSTAB 34.90018

PBCGSTAB 6.970022
Gauss 6.569446

Table 2. CPU time for different mesh

mesh PCG Gauss
20x20x20 62.44 177.92
30x30x30 303.81 1998.08
40x40x40 927.02 No point to

run
50x50x50 2159.42 No point to

run

 The last method is method based on Gauss
elimination method with preconditioning. For
preconditioning is used incomplete Cholesky
factorization. An increase of number of elements will
effect that CPU time will increase rapidly. In the
following table we present CPU time for the PCG and
Gauss method.
 An analysis of the selected solvers shows that the
most time-consuming operation is MATMUL. During
our calculation this operation is used at least two times.
The results presented in the previous table are obtained
using MATMUL operation as matrix-vector product.
Instead of using matrix-vector product we can use
matrix-matrix product and accelerate our calculation by
almost three times. For the example, we have that CPU
time for the PCG method is 1.09157 [s] and for BCG
method is 9.253305 [s].

5. CONCLUSION

 Iterative solvers have great advantages over direct
solvers [5] when one has to solve industrial problems
with possibly hundreds of thousands elements or more.
One of the parameters such as CPU time where we
needed 2159.42[s] to solve our problem applying
slower version of PCG method (faster one will give
CPU=712[s]) while there wasn’t any point to apply the
Gauss method, was shown.
 Also, when solving symmetric positive definite
matrix systems, the PCG method appears to be the
fastest. Unfortunately, not all industrially relevant
partial differential equations are Laplace or Poisson
equations. In the case that we have to deal with non
symmetric matrix system (the finite element
discretization of Navier-Stokes equations) other
conjugate gradient methods such as BCG, BCGSTAB,
CGS and LSCG appear very useful tool for solving
these equations.

68 ▪ Vol. 32, No 2, 2004 FME Transactions

REFERENCES

[1] Hestenes M., Stiefel E.: Methods of conjugate

gradients for solving linear systems of equations,
J. Res. Nat. Bur. Stan., Vol.49, pp. 409-435, 1952.

[2] Fletcher R.: Conjugate gradient methods for
indefinite systems, Lecture Notes in Mathematics,
Springer, Berlin, pp. 73-89, 1976.

[3] Sonneveld P.: CGS, a fast Lancosz-type solver for
non-symmetric linear systems, SIAM J. Sci. Stat.
Comput., Vol. 10, pp. 36-52, 1984.

[4] Van der Vorst H., BCGSTAB: a fast and smoothly
converging variant of BCG for the solution of non-
symmetric linear systems, SIAM J.Sci. Stat.
Comp., Vol. 18, pp. 631-634, 1992.

[5] Irons B.: A frontal solution program for finite
element analysis, Int. J. Num. Meth. Eng., Vol. 10,
1970.

[6] Lewis R. W., Morgan K., Thomas H. R.,
Seetharamu K. N.: The Finite Element Method in
Heat Transfer Analysis, John Willey and Sons,
Chichester, 1996.

[7] Smith I. M., Griffiths D. V.: Programming-The
Finite Element Method, John Willey and Sons,
Chichester, 1998.

[8] Golub G., Van Loan C.: Matrix Computations,
John Hopkins University Press, 1996.

[9] Saad Y., Iterative Methods for Spars Linear
Systems, SIAM 2003 (PWS 1996), 2000 .

[10] Lavery N.P., Taylor C.: Iterative and Multigrid
Methods in the Finite Element Solution of Incom-
pressible and Turbulent Fluid Flow, International
Journal for Numerical Methods in Fluids, John
Willey and Sons, Vol. 30, No. 6, pp 609-634,
1999.

	Explicit (forward Euler) method
	Implicit (backward Euler) method
	Weighted residual method
	Least squared method
	
	
	REFERENCES

