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Iterative Solvers in the Finite Element 
Solution of Transient Heat Conduction 
 
In this paper three-dimensional transient heat conduction in 
homogeneous materials using different iterative solvers based on the 
conjugate gradient method are studied. The methods used are 
preconditioned conjugate gradient, least square conjugate gradient, 
conjugate gradient squared, preconditioned conjugate squared, bi-
conjugate gradient, preconditioned bi-conjugate gradient, bi-conjugate 
gradient stabilized and preconditioned bi-conjugate stabilized method as 
well as a Gaussian elimination method with incomplete Cholesky 
factorisation as a comparison. Time dependence is solved using both the 
finite difference and the finite element scheme. The finite difference 
scheme includes backward and forward Euler method and θ−method 
(Crank-Nicholson). The finite element scheme includes the weighted 
residual method and the least squares method. For the analysis, in the 
aim to analyse dependence between numerical scheme and obtained 
temperatures, we use a brick that is divided into different number 8-noded 
or 20-noded hexahedral elements with Dirichlet boundary conditions. 
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1. INTRODUCTION 
        

The analysis of heat conduction (steady and 
transient) is well established, and there are several 
different approaches or techniques that can be used 
(finite difference, boundary element, finite element and 
finite volume method). 
    The finite element method has been developed in 
parallel with the introduction of powerful and fast 
computers during the last forty years. It started in the 
field of structural analysis for stress calculations mainly 
between 1940 and 1960. Later, the concept based on 
dividing a structure into small substructures of various 
shapes and re-assembled after each substructure had 
been analyzed become a very useful tool for heat 
transfer calculations, solving mechanic fluids problems, 
electro magnetic calculation etc. 
        Discretization of the relevant partial differential 
equation gives a set of linear or nonlinear algebraic 
equations. 

                     bAx =                                 (1.1) 

Generally speaking there are several families of 
methods than can be used for solving systems of 
algebraic equations, such as direct (Gauss elimination), 

multigrid and iterative methods. 
   As problem sizes grow, the storage requirement 
becomes a burden, even on a modern computer. For 
this reason, iterative methods, which require less 
memory, have been developed as alternative solution 
strategies.  
 
2.  TRANSIENT HEAT CONDUCTION AND         

FINITE ELEMENT METHOD 
 
    The principle of conservation of heat energy over a 
fixed volume, V , of a medium that is bounded by a 
closed surface S , can be used to derive the equation 
that governs heat conduction. Usually, heat transfer is 
treated in a domain Ω  bounded by a closed surfaceΓ . 
The classical statement of this can be written as: 

    ( )[ ]1 div grad
p

T k T Q
t c

∂
= +

∂ ρ
   in Ω          (2.1) 

                )(xfT =    for x  on 1Γ                      (2.2) 

( ) ( )grad Tq x k T n k
n

∂
= − ⋅ = −

∂
 for x  on 2Γ      (2.3) 

where k  is thermal conductivity and Q  is a source or 
sink of heat energy. This equation is well known as 
Fourier’s law of conduction. 
    Applying the finite element technique in which the 
Galerkin method is used for weighting functions we 
obtain following matrix equation system; 

           + =M T K T f  ,                           (2.4) 
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where M  is the capacitance (mass) matrix, K  is the 
conductance (coefficient stiffness) matrix and T  is the 
temperature differentiated with respect to time. 

2.1. Finite difference time stepping 

    There are several finite difference time stepping 
schemes, here the explicit (forward Euler) method , the 
implicit (backward Euler) method and Crank-Nicolson 
form of theθ -method are used. 

Explicit (forward Euler) method 

    This is a first-order method and can be derived from  
a Taylor’s series expression. After applying this method 
on equation (2.4) we obtain, 

         ( )1n n nT t T t+ = − ∆ + ∆M M K f   .             (2.5) 

Implicit (backward Euler) method 

    The implicit method requires much more storage than 
the explicit method but it provides the potential 
advantage of using a large time step, which may result 
in a more efficient procedure. The matrix equation 
system (2.4) for this method becomes: 

          ( ) 1n n nt T T t++ ∆ = + ∆M K M f                (2.6) 
 

θ  (Crank-Nicolson) method 

    The Crank-Nicolson method is an implicit method 
with second-order accuracy and it is a special case of 
the θ  method. The matrix equation system (2.4) for this 
method becomes: 

( ) ( )( )1 1n n nt T t T t++ θ∆ = − − θ ∆ + ∆M K M K f   (2.7) 

   A different value of θ  defines different methods. For 
0θ = , equation (2.7) is identical to equation (2.5). 

When 1θ =  equation (2.7) is identical to equation (2.6). 
The Crank-Nicolson method is defined with 0.5θ = . 

2.2 Finite element time stepping 

    Finite element time stepping uses the same technique 
for time discretization as well as being used for the 
discretization of a domain [6]. In the text written below 
two different techniques are described: 

a) the weighted residual method; and 
b) the least squared method. 

Weighted residual method 

    After time discretization applied on equation (2.4) 
and using the weighted residual method we will have: 

     ( )1 ˆ1n nT T
t t

+   + θ = − − θ +   ∆ ∆   
M MK K f  ,      (2.8) 

where are 
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The difference between the finite element and finite 
difference approach is that θ  in the finite difference 
algorithm is completely between 0 and 1, while in the 

finite element algorithm it depends on the weighting 
function jW . This means that all methods mentioned 
earlier are just special cases of the weighted residual 
method. 

Least squared method 

    The main idea of this method is that error with 
respect to 1+nT  can be minimized to produce a least 
squares algorithms. 

( )
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(2.9) 
 
3. ITERATIVE SOLVERS 
 
3.1. Conjugate gradient method (CG) 

    This is an old and well-known non-stationary method 
discovered independently by Hestenes and Stiefel in the 
early 1950’s [1]. Also, it is the most popular iterative 
method for solving large, symmetric and positive 
definite systems of linear equations. In fact, this method 
can be used for solving these types of equations only. 
Historically speaking, the conjugate gradient method 
came after the method of steepest descent and the 
method of conjugate directions. De facto, the CG 
method is the conjugate direction method where the 
search directions are constructed by conjugation of the 
residuals. The conjugate gradient strategy is presented 
in the following pseudo code. 

1. initial guess )0(x  ( for example  0)0( =x  ) 
2. compute )0()0( Axbr −=  
3. )0()0( rp =  
do for i=1, 2, …, iterations limit 

( ) ( 1)i i−=q Ap  , 

( )
( )

( 1) ( 1)
( )

( 1) ( )

,

,

i i
i

i i

− −

−
α =

r r

p q
  , 

( ) ( 1) ( ) ( 1)i i i i− −= + αx x p   , 

( ) ( 1) ( ) ( )i i i i−= −αr r q  , 

( )
( )

( ) ( )
( )

( 1) ( 1)

,

,

i i
i

i i− −
β =

r r

r r
 , 

( ) ( ) ( ) ( 1)i i i i−= +βp r p  , 

check convergence, continue if necessary  
end 

3.2. Preconditioned Conjugate gradient method 
(PCG) 

     Increasing of the number of elements obtained after 
a discretization causes the standard CG method to 
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converge more slowly. This can be overcome by 
replacing the problem whose solution we seek by 
another one that has the same solution but which 
converges much faster. There are several different 
techniques for this type of ‘preconditioning’ three of 
which are presented here namely, splitting, left 
preconditioning and right preconditioning. The splitting 
technique includes Jacobi, Gauss-Seidel, and Successive 
Over Relaxation etc. The pseudo code for the PCG 
method, incorporating the Jacobi method for 
preconditioning, is presented below. 

1. initial guess )0(x  ( for example 0)0( =x ) 
2. compute )0()0( Axbr −=  
3. )0(1)0()0( rMdp −==  
do for i=1, 2, …, iterations limit 

( ) ( 1)i i−=q Ap , 

( )
( )

( 1) ( 1)
( )

( 1) ( )

,

,

i i
i

i i

− −

−
α =

d r

p q
, 

( ) ( 1) ( ) ( 1)i i i i− −= + αx x p , 

( ) ( 1) ( ) ( )i i i i−= −αr r q , 

)(1)( ii rMd −= , 

( )
( )

( ) ( )
( )

( 1) ( 1)

,

,

i i
i

i i− −
β =

q r

q r
, 

( ) ( ) ( ) ( 1)i i i i−= +βp d p , 

check convergence, continue if necessary  
end 

The matrix M  is the preconditioning matrix. 

3.3. Least squared conjugate gradient method 
(LSCG) 

    In the case that matrix A  is non symmetric we 
cannot apply the CG method. Multiplying both sides of 
the equation (1.1) by TA  yields: 

         T T T= −A r A A A x                       (3.1) 

The new matrix AAT  is always symmetric. The 
pseudo code for LSCG is: 

1. initial guess )0(x  ( for example  0)0( =x ) 
2. compute )0()0( Axbr −=  
3. )0()0()0( rAsp T==  
do for i=1, 2, …, iterations limit 

( ) ( 1)i i−=q Ap , 

( )
( )
( 1) ( 1)

( )
( ) ( )

,

,

i i
i

i i

− −

α =
s s

q q
, 

( ) ( 1) ( ) ( 1)i i i i− −= + αx x p , 

( ) ( 1) ( ) ( )i i i i−= −αr r q , 

)()( iTi rAs = , 

( )
( )

( ) ( )
( )

( 1) ( 1)

,

,

i i
i

i i− −
β =

s s

s s
, 

( ) ( ) ( ) ( 1)i i i i−= +βp s p , 
check convergence, continue if necessary 
end 

3.4. Bi-conjugate gradient method (BCG) 

    Instead of solving the system of equations (1.1), in 
this method we are going to solve the following system 
of equations,: 

                   
,

,T

=

=

A x b

A x b
                               (3.2) 

where two sequences of residuals are updated,: 

                 
( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

i i i i

i i i T i

−

−

= −α

= −α

r r Ap

r r A p
                  (3.3) 

and two sequences of search directions: 

                 
( ) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( 1)

i i i i

i i i i

− − −

− − −

= +β

= +β

p r p

p r p
                  (3.4) 

The pseudo code is given in the following text: 

1. initial guess )0(x  ( for example 0)0( =x   ) 

2. compute )0()0( Axbr −=  

3. choose  )0(~r  (for example )0()0(~ rr = ) 

4. (0) 1.ρ =  
do for i=1, 2, …, iterations limit 

( )( ) ( 1) ( 1),i i i− −ρ = r r , 

( )
( )

( 1)

i
i

i−
ρ

β =
ρ

, 

( 1) ( )i i−ρ = ρ , 

( ) ( ) ( ) ( 1)i i i i−= +βp r p , 

( ) ( ) ( ) ( 1)i i i i−= +βp r p , 

( )( ) ( ) ( ),i i iσ = p Ap , 

( )
( )

( )

i
i

i
ρ

α =
σ

, 

( ) ( 1) ( ) ( )i i i i−= −αr r Ap , 

( ) ( 1) ( ) ( )i i i T i−= −αr r A p , 

( ) ( 1) ( ) ( )i i i i−= + αx x p , 
check convergence, continue if necessary 
end 
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3.5. Preconditioned Bi-conjugate gradient method 
(PBCG) 

    The difference between this method and the BCG 
method is two more steps that involve preconditioning. 

1. initial guess )0(x  ( for example 0)0( =x ) 
2. compute )0()0( Axbr −=  
3. choose  )0(~r  (for example )0()0(~ rr = ) 
4. (0) 1.ρ =  
do for i=1, 2, …, iterations limit 

solve   )1()1( −− = ii rMz  

solve  )1()1( ~~ −− = iiT rzM  

( )( ) ( 1) ( 1),i i i− −ρ = z r , 
( )

( )
( 1)

i
i

i−
ρ

β =
ρ

, 

( 1) ( )i i−ρ = ρ , 
( ) ( ) ( ) ( 1)i i i i−= +βp z p , 
( ) ( ) ( ) ( 1)i i i i−= +βp z p , 

( )( ) ( ) ( ),i i iσ = p Ap , 
( )

( )
( )

i
i

i
ρ

α =
σ

, 

( ) ( 1) ( ) ( )i i i i−= −αr r Ap , 
( ) ( 1) ( ) ( )i i i T i−= −αr r A p , 
( ) ( 1) ( ) ( )i i i i−= + αx x p , 

check convergence, continue if necessary 
end 

3.6. Conjugate gradient squared method (CGS) 

    Developed by Sonneveld [3] this method has been 
derived from BCG method, where using the transpose 
of A  is avoided and thereby faster convergence for 
roughly the same computation cost is obtained. 
The pseudo code is given in the following text: 

1. initial guess )0(x  ( for example 0)0( =x ) 

2. compute )0()0( Axbr −=  

3. choose  )0(~r  (for example )0()0(~ rr = ) 

4. .0)0()0( == pq  

5. (0) 1.ρ =  
do for i=1, 2, …,i terations limit 

( )( ) ( 1) ( 1),i i i− −ρ = r r , 

( )
( )

( 1)

i
i

i−
ρ

β =
ρ

, 

( 1) ( )i i−ρ = ρ , 

( ) ( 1) ( ) ( 1)i i i i− −= +βz r q , 

( )( ) ( ) ( ) ( 1) ( ) ( 1)i i i i i i− −= +β +βp z q p , 

)()( ii Apv = , 

( )( ) ( ) ( ),i i iσ = r v , 

( )
( )

( )

i
i

i
ρ

α =
σ

, 

( ) ( ) ( ) ( )i i i i= −αq z Av , 

( )( ) ( 1) ( ) ( ) ( )i i i i i−= −α +r r A z q , 

( )( ) ( 1) ( ) ( ) ( )i i i i i−= + α +x x z q , 

check convergence, continue if necessary 
end 

3.7. Preconditioned conjugate gradient squared  
method (PCGS) 

    The pseudo code is given in the text that follows 
without any theoretical explanation. 

1. initial guess )0(x  (for example 0)0( =x ) 

2. compute )0()0( Axbr −=  

3. choose  )0(~r  (for example )0()0(~ rr = ) 

4. .0)0()0( == pq  

5. (0) 1.ρ =  
do for i=1, 2, …, iterations limit 

( )( ) ( 1) ( 1),i i i− −ρ = r r , 

( )
( )

( 1)

i
i

i−
ρ

β =
ρ

, 

( 1) ( )i i−ρ = ρ , 

( ) ( 1) ( ) ( 1)i i i i− −= +βz r q , 

( )( ) ( ) ( ) ( 1) ( ) ( 1)i i i i i i− −= +β +βp z q p , 

solve ( ) ( )ˆ i i=M p p  

)()( ˆˆ ii pAv = , 

( )( ) ( ) ( )ˆ,i i iσ = r v , 

( )
( )

( )

i
i

i
ρ

α =
σ

, 

( ) ( ) ( ) ( )ˆi i i i= −αq z A v , 

solve ( ) ( ) ( )ˆ i i i= +M z z q  

( ) ( 1) ( ) ( )ˆi i i i−= + αx x z , 

)()( ˆˆ ii zAq = , 

( ) ( 1) ( ) ( )ˆi i i i−= −αr r q , 
check convergence, continue if necessary 
end 
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3.8. Bi-conjugate gradient stabilized method 
(BCGSTAB) 

    This method was developed by Van der Vorst [4] and 
it presents a modification of the CGS method. 
The pseudo code is given in the following text: 

1. initial guess )0(x  ( for example 0)0( =x ) 
2. compute )0()0( Axbr −=  
3. )0()0( rp =  

4. .0)0()0( == vq  

5. (0) (0) (0)ˆ 1.ω = β = α =  
do for i=1, 2, …, iterations limit 

( )( ) ( 1) ( 1)ˆ ,i i i− −β = p r , 

( ) ( 1)
( )

( 1) ( 1)

ˆ ˆi i
i

i i

−

− −
β ω

ω = ×
β α

, 

( 1) ( )ˆi i−β = β , 

( )( ) ( 1) ( ) ( 1) ( 1) ( 1)ˆi i i i i i− − − −= +ω −αq r q v , 

( ) ( )i i=v Aq , 

( )
( )

( )
( ) ( )

ˆ
ˆ

,

i
i

i i
β

ω =
p v

, 

( ) ( 1) ( ) ( )ˆi i i i−= −ωs r v , 
( ) ( )i i=t As , 

( )
( )

( ) ( )
( )

( ) ( )

,

,

i i
i

i iα =
t s

t t
, 

( ) ( 1) ( ) ( ) ( ) ( )ˆi i i i i i−= +ω +αx x q s , 

( ) ( ) ( ) ( )i i i i= −αr s t , 
check convergence, continue if necessary 
end 

3.9. Preconditioned bi-conjugate gradient stabilized 
method (PBCGSTAB) 

1. initial guess )0(x  ( for example 0)0( =x ) 
2. compute )0()0( Axbr −=  
3. )0()0( rp =  

4. .0)0()0( == vq  

5. (0) (0) (0)ˆ 1.ω = β = α =  
do for i=1, 2, …, iterations limit 

( )( ) ( 1) ( 1)ˆ ,i i i− −β = p r , 

( ) ( 1)
( )

( 1) ( 1)

ˆ ˆi i
i

i i

−

− −
β ω

ω = ×
β α

, 

( 1) ( )ˆi i−β = β , 

( )( ) ( 1) ( ) ( 1) ( 1) ( 1)ˆi i i i i i− − − −= +ω −αq r q v , 

solve ( ) ( )ˆ i i=M q q  

)()( ˆ ii qAv = , 

( )
( )

( )
( ) ( )

ˆ
ˆ

,

i
i

i i
β

ω =
p v

, 

( ) ( 1) ( ) ( )ˆi i i i−= −ωs r v , 

solve ( ) ( )ˆ i i=M s s  

)()( ˆ ii sAt = , 

( )
( )

( ) ( )
( )

( ) ( )

,

,

i i
i

i iα =
t s

t t
, 

( ) ( 1) ( ) ( ) ( ) ( )ˆi i i i i i−= +ω +αx x q s , 

( ) ( ) ( ) ( )i i i i= −αr s t , 
check convergence, continue if necessary 
end 
 

4.  NUMERICAL RESULTS AND DISCUSSION 
 

    The analysis, as mentioned earlier, considers the 
brick (Fig. 1) that is divided into 1000, 8000, 27000, 
64000 and 125000 hexahedral elements. The back face 
of the brick is kept at 0 C°  while the initial temperature 
was100 C° . 

 
Figure 1. Geometry with boundary conditions 

 

The analysis considers a several comparisons, in the 
following order: type of finite element, time stepping 
and iterative solvers. Also, the analysis considers 
temperature dependence on different meshes for the 
chosen time stepping (Crank-Nicolson). 

Fig. 2 presents transient temperature through the 
brick for 8 noded and 20 noded hexahedron elements. 
From the Fig. 2 we can see that 8-noded elements give 
better results than 20-noded elements. 

Fig. 3 presents results using different methods for 
time stepping.  
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To make our comparison between different time 
stepping schemes clearer temperature changes occurring 
at node 1 are shown in Fig. 4. 

At the same time few different meshes were studied 
for the chosen time stepping (Crank-Nicolson). 
Obtained temperatures at node 1 are presented in Fig. 5.  

 

 
Figure 2. Transient temperature for 8 and 20 node 
elements 

 

 
Figure 3. Transient temperatures for different time 
stepping 

 

 
Figure 4. Transient temperatures at node 1 
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Figure 5. Transient temperatures at node 1 

    In the following figures (Fig. 6, Fig. 7 and Fig. 8) the 
decreasing trend of the absolute values of the residuals 
(a characteristic of iterative solvers) is shown. 
    

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1
0 5 10 15 20 25 30 35 40

inner iterations

Lo
g 

(A
bs

 [r
es

id
ua

l])

cg=bcg
pcg
lscg
cgs
pcgs
pbcg
bcgstab
pbcgstab

 
Figure 6. Residuals at time t=0.1 for node 1 
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Figure 7. Residuals at time t=0.5 for node 1 
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Figure 8. Residuals at time t=1.0 for node 1 
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Figure 9. Residuals of the last iterations in time 

    Finally, in the Fig. 9 we gave the absolute value of 
the residuals at last iteration during time. 
    From the diagrams it can be seen that the least 
squared conjugate gradient method (LSCG) has a 
monotonically decreasing residual where convergence is 
the slowest of all the methods presented in this paper. 
    The number of inner iterations is a very useful 
parameter for our comparison. According to the number 
of inner iterations, as seen in Fig. 10, it can be seen that 
the LSCG method requires the highest number of inner 
iterations while the preconditioned conjugate gradient 
method requires the least. 
     

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

time

in
ne

r i
te

ra
tio

ns

cg=bcg pcg

lscg cgs

pcgs pbcg

bcgstab pbcgstab

 
Figure 10. Number of inner iterations in time 

 
    Sometimes, taking the number of inner iterations as 
the main assessment criteria can lead to incorrect 
conclusions. For example, computational time (CPU) 
required to solve the problem using BCG method is 
twice that spent using the CG method although there are 
the same number of inner iterations for both. So, 
computational time becomes a very important parameter 
in any analysis of iterative solvers. In the table 
presented below CPU times for the solvers are shown. 
All these results are for the numerical scheme that 
includes 1000 elements with 10x10x10 divisions. 
Table 1. CPU time for chosen solvers 

solvers CPU[s] 
CG 11.4064 

PCG 3.264694 
LSCG 55.61998 

solvers CPU[s] 
CGS 15.87282 

PCGS 6.409216 
BCG 26.48809 

PBCG 14.30056 
BCGSTAB 34.90018 

PBCGSTAB 6.970022 
Gauss 6.569446 

Table 2. CPU time for different mesh 

mesh PCG Gauss 
20x20x20 62.44 177.92 
30x30x30 303.81 1998.08 
40x40x40 927.02 No point to 

run 
50x50x50 2159.42 No point to 

run 
 
    The last method is method based on Gauss 
elimination method with preconditioning. For 
preconditioning is used incomplete Cholesky 
factorization. An increase of number of elements will 
effect that CPU time will increase rapidly. In the 
following table we present CPU time for the PCG and 
Gauss method. 
   An analysis of the selected solvers shows that the 
most time-consuming operation is MATMUL. During 
our calculation this operation is used at least two times. 
The results presented in the previous table are obtained 
using MATMUL operation as matrix-vector product.   
Instead of using matrix-vector product we can use 
matrix-matrix product and accelerate our calculation by 
almost three times. For the example, we have that CPU 
time for the PCG method is 1.09157 [s] and for BCG 
method is 9.253305 [s]. 
 

5. CONCLUSION 

 
    Iterative solvers have great advantages over direct 
solvers [5] when one has to solve industrial problems 
with possibly hundreds of thousands elements or more.  
One of the parameters such as CPU time where we 
needed 2159.42[s] to solve our problem applying 
slower version of PCG method (faster one will give 
CPU=712[s]) while there wasn’t any point to apply the 
Gauss method, was shown.  
   Also, when solving symmetric positive definite 
matrix systems, the PCG method appears to be the 
fastest. Unfortunately, not all industrially relevant 
partial differential equations are Laplace or Poisson 
equations. In the case that we have to deal with non 
symmetric matrix system (the finite element 
discretization of Navier-Stokes equations) other 
conjugate gradient methods such as BCG, BCGSTAB, 
CGS and LSCG appear very useful tool for solving 
these equations. 
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