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1. INTRODUCTION

Definition of fluid flow boundaries should ensure
stable fluid flow, without undesirable flow phenomena.
This is a common problem in hydraulic engineering.
Fluid flow in curved channels, ducts, with various cross
sections is very complex and quite undiscovered
phenomenon. Precise shaping of optimal hydraulic flow
boundaries results in stable fluid flow, without
separation and secondary fluid flow, and also without
unsteady phenomena. Such problems are often solved
by performing numerous experiments, with many trials,
based on acquired experience, researcher’s knowledge
and intuition. This could lead to long lasting
experiments, sometimes without appropriate optimal
solution. This paper presents method of kinetic energy
equilibrium, theoretical approach to the problem of
optimal flow field boundary shapes. Presented method
was confirmed in many applied practical problems by
Benisek et al. [3] and [4].

2. THEORETICAL BACKGROUND FOR DETERMI-
NATION OF FLUID FLOW BOUNDARY SHAPES
BY USING THE KINETIC ENERGY EQUILIBRIUM
OF INCOMPRESSIBLE FLUID FLOW

The problem of fluid flow boundaries shaping,
which will ensure stable fluid flow with minimum
undesirable phenomena was studied by Strscheletzky
[1] and [2]. Lagrange’s principle of virtual work has
been used for defining optimum fluid flow boundary
shape, without ,,dead water” zones, usually formed if
the fluid cannot follow the rigid flow boundaries.
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Separation occurs either due to boundary layer
thickening or because of significant fluid inertia. The
former case can be avoided by boundary layer suction,
but the latter one can’t. This phenomenon was named
»inertial separation” by Strscheletzky [1].

Introducing the fact that the total energy of virtual
moving does not change, equilibrium condition is
expressed as the variation of the sum of integrals of
action.

2.1. Derivation of action integral and fluid flow
stability conditions

Navier-Stokes flow equation for viscous fluid is [5]:
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Assuming conservative volume forces (17“ =-gradU )

for elementary fluid mass (dm; = p dV;), it follows:
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2
where ¢ and p are local velocity and pressure for the
elementary volume dV;, which is a part of the fluid
volume V;. The whole flow domain contains
elementary volumes V; (i=1, 2, 3,... n), i.e.

Virtual work of forces acting on the fluid in the

volume V; at the moment ¢, for the virtual

displacement &r is:
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For the whole domain V' states:
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Since the integrals are additive and V = V; from
i=1
equation (4) it follows:
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The equation (5) states Lagrange’s principle of virtual
work — Flow equilibrium in the volume V at the
moment? , is achieved when the sum of virtual works of
the forces, acting on the fluid, equals zero.

For steady non-viscous and incompressible fluid
flow, after next transformations:
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from equation (5) it follows:
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On the basis of Strscheletzky's consideration [2] is:
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and introducing the kinetic energy: dE =% pcde,-,

from the equation (6), for two moments # and #,, it
follows that:

t 1 5 t
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The equilibrium condition (8) is expressed as the
variation of the sum of integrals of action /; formed for

characteristic flow domain zones V;

142 = VOL. 33, No 3, 2005

n n 52
3 =Y3=>3[p [¢dsdV;=0,
i=1 i=1 51 V

)

where local flow velocity, dV; - elementary volume
bounded by the inflow A4, and outflow A4,; control
surfaces (V; - fluid flow volume region), s; and s, -
representative positions of the fluid particle at the
moment # and ¢, , respectively, with ds =¢ dr.

According to the fact that during the moving total
energy remains the same, ie. it does not change,
equilibrium condition is expressed as the variation of
the sum of the action integrals, given in the equation (9).
This results in fact that optimally defined geometry of
fluid flow boundary differs from other solutions in
having the minimum value of the action integral /.

In many practical problems, the inner fluid flow
consists of only main sound flow region and one or
more closed secondary flow regions which are separated
from the main flow by the free boundaries. For the ideal
non-viscous fluid flow, these boundaries are the
discontinuity surfaces, i.e. vorticity dissipative layers in
the real fluid. In “dead water” zones, the fluid is at rest
or moves very slowly. Variation conditions could be
applied to the sound flow regions only, because the
action integral for the dead zone equals zero.

From equation (9) it follows:

52
SI=6[pcdrds.

1

(10)

Analytical solution of the equation (10) exists only
for the special cases. For that reason, grapho-analytical
or numerical solution is used. It is well known that
elliptic ~ partial differential equations  describe
equilibrium phenomena, the one is needed here. Stream
lines and the lines of the same potential are mutually
normal and they form a curvilinear grid. Considering
this, the whole computational, fluid flow domain
between two control surfaces should be divided into
finitely small volumes: AV (4P) .

The equation (10) is applied to the small, but finite
elements AV P) = AP (9P (6P @:P)) of the
g-th stream tube (¢ = 1, 2, ... n). Each AV(®P) s
divided into p (p = 1, 2, ... k) elementary volumes. The
action integral / is approximated as:

m q=k
I=p Z Z é(q, p) Ay@p) AS(Q,P)’
g=1 p=1

an

where ¢(g, p)is a local flow velocity corresponding to
the mean streamline of the g-th stream tube divided into

k parts, As‘P)is the distance between the two

respective positions s@?) and 57D along the
mean streamline of the g-th stream tube (Fig. 1).
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By varying the flow field boundaries (usually one is
moved, others remain unchanged), the action integral is
being calculated for each variation, and the one with the
minimum value of the action integral is accepted.
Herewith explained method is named the kinetic
balance method.

M (q,p)
M: (q+1, p+1)

Figure 1. Stream and potential line grid for calculating the
integral of action

2.2. Forming the optimal shape of the cross-flow
turbine semi-spiral case by using the kinetic
balance method

Method of kinetic equilibrium has been used in the
case of shaping optimal cross-flow semi-spiral case.

Fluid flow geometry of the cross-flow turbine is
consisted of three main parts: impeller, semi-spiral case
and wicket gate. Working principle, like for other action
turbines, is based on using water kinetic energy which is
directed into impeller by the wicket gate blade.

Semi-spiral case is a very important part of the
turbine. Its function is to direct water to the impeller
under defined angle, with as much as possible lower
energy losses. Wicket gate blade, built in the semi-spiral
case, regulates turbine inflow.

Besides the nozzle, from hydraulic point of view, the
most convenient construction of the wicket gate is the
hydraulically shaped blade, built in as console, rounded
at the end.

Water passage geometry of the cross-flow turbine is
given in Fig. 2. Clasping angle of the semi-spiral case
could have various values. In this paper the angle of 90°
was chosen.

By using of described grapho-analytical method in
possible geometries of semi-spiral case (intake
chamber) of this cross-flow turbine (just three possible
variations are presented), integral of action for each
possible solution has been calculated. Various
constructions are presented in Fig. 2a, with one
complete, all in one, comparable view in Fig. 2 b.
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Geometry parameters, for all three constructions, are
given in the Table 1.

a.

b. Comparable view of var. I, Il and Il

Figure 2. Various constructions |, Il and Ill of the cross-flow
turbine semi-spiral case

Table 1. Various geometry parameters-curvature radii

i R1 R2 R3 R4 RS R6 R7

- | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm]

I | 253.7 | 2353 | 227.0 | 216.1 | 202.5 | 185.7 | 167.6

II | 253.7 | 2353 | 2183 | 202.5 | 187.9 | 174.3 | 161.7

II | 253.7 | 227.3 | 205.9 | 190.5 | 175.5 | 164.1 | 157.7
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Figure 3. Values of relative action integrals /I, for various
constructions

Fig. 3 presents relative values of action integral, for
three various constructions, as the function of contour
radius »* at angle o =30° Action integral has the

minimum value 1 for the construction II (/=1).

According to the condition for fluid flow stability
(chapter 2.1), construction II has optimal shape of the
semi-spiral case.

3. CONCLUSIONS

On the basis of the results obtained in this study, the
following conclusions can be derived:

e The presented method of kinetic balance, based
on the Lagrange’s principle of virtual work is a
valuable tool for analytical determination of
optimum shape of fluid flow boundaries.

e The method is simple and requires computation
of flow field streamlines by any method for non-
viscous flow solution. The potential flow solution
is probably easiest to use.

e The number of cases, various constructions,
which should be tested in the laboratory
decreases significantly by the application of this
method.

e The influence of viscosity, which was neglected,
should be checked by laboratory measurements
for the final solution, final shape of the fluid flow
boundaries.

e The method was used for defining optimal shape
of the semi-spiral case of cross-flow turbine.

¢ By the experimental research and using the flow
visualization method, the theoretical result is
confirmed.
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NOMENCLATURE

F Sum of conservative volume forces
local velocity for the elementary

¢ volume
p local pressure for the elementary volume
¢  equipotential line

4 stream line

IMPUMEHA JIATPAHKXEOBOI' IPUHIIUIIA
BUPTYEJIHOI' PAJIA 3A OAPEBUBAIBE
OIITUMAJIHOI' OBJIUKA YBOJHE KOMOPE
BAHKHU TYPBUHE

M. benumek, C. Yanrpak, M. HeaessxoBuh, /1.
HNamh, U. boxuh, B. HanTpaxk

OnpeljuBatbe  onNTUMATHOr  OOJHMKA  CTPYjHOT
IpocTopa ca MHHHMYMOM HETaTHBHHX IoOjaBa (MpTBa
BOJIa, HECTAI[MOHAPHE TMOjaBe M [p.) je BPJIO BaKkaH
3ajlaTak MHXEHEepa XUIPOTEXHHKEe. Y OBOM paxy ce
IpHKa3yje MeToaa Koja je 3acHoBaHa Ha JlarpaHxeoBoM
OPHUHIMIY BHUPTYEITHOT pama. Merona je mpUMermeHa
npHu 00JIMKOBawky YBOIHE KoMope baHku TypOuHe.
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