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The paper considers a case of brachistochronic motion of the mechanical
system in the field of conservative forces, subject to the action of
constraints with Coulomb friction. In the special case, an analogy is made

between Ashby’s brachistochrone and the brachistochrone of the
mechanical system with two degrees of freedom.
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1.FORMULATION OF THE PROBLEM

We are considering the motion of a mechanical system
in a stationary field of potential forces where TI(g)

=TI(g) is the system’s potential energy. Let this motion

be subject to the action of real constraints'.

The configuration of the system is defined by the set of
Lagrangian coordinates g = (61 ,62,...,(7”) , to which
correspond the generalized velocities
q= (51,62,...,5"). Lagrangian function of the system

has the form ([2])
L(7.9)=T@q.9)-T(@), (D

where T is kinetic energy of the system *
= 1 —_— — —
TZEaa/;(q)q“qﬂ~ ()

Differential equations of motions of the mechanical
system have a well-known form

d oL oL =
— Y = él_l'_ua’ (3)

where Qg; are generalized forces of Coulomb friction
and u,, are generalized control forces.

Let us assume that initial position of the system is
defined by the set of given coordinates g5 at moment
t=t,, which is a set in advance, where it was at rest
and let the final position is defined by the set of
coordinates g* at moment ¢ =¢ , which is unknown.

The time the system needs to move from initial to final
position is determined by the relation

I= tfldt @)
0

! Constraints with Coulomb friction.
’The indices take the following values: a, .y, 7 =1,2,..,n
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If we assume that the system moves from initial to final
configuration along one definite trajectory for which Eq.
(4) has a minimum value

4q
I=J.dtainf., )
0

we will consider brachistochronic motion. A problem of
brachistrochonic motion will be solved by variational
calculus.

If we now introduce Bernoulli's condition's (cf.[3]),
i.e. the conditions which do not disturb the principle of
work and energy subject to the action of control forces

in virtue of u, ¢% =0, we shall formulate variational

problem as constrained with constraint which represents
the principle of work and energy

T=P“_T1=T+01-P"=0, (6)

where power of generalized forces of Coulomb friction
has the form

P*=044", ™
so that relation (5) becomes
i

I = det —inf., (8)
0

where
F(l,§,§,§)=l+ﬂ(f+ﬁ—ﬁ"). 9)
2. GENERAL PART

Let us consider a general case of brachistochronic
motion presented in [5], in which Egs. (7) has the form

P* =(@.q)+p5@.9)4” . (10)
assuming that
7(@.9). p5@.7) € C? (1D

holds. Let us now examine a case of brachistochronic
motion in which functions (11) have the following form

V(@.0) = ~ba @ 7", Pp(@.9) = ~dap@q” . (12)
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In order to avoid second-order functional let us
introduce the following constraints in terms of
variational calculus

g% —u" =0, 2T —aggu®u” =0, (13)

and the integrand of functional (8) gets the form' (cf.(6),
(10) and (12))

F= 1+/1[7;"+6—riu“—y/—goﬂaﬂ +
q

+ 0(27—%5 u® uﬂ)ma G —u®). (14)
where
lﬁ(qéa:ua) = _ba ua, éﬂ(ﬁa:ua) = _daﬁ u®. (15)
Assuming that conditions

OF

— =0, (16)
oq”

are further satisfied, which lead to the existance of the
following conditions

agp = const, M =c, g%, ¢, = const,
b, _ 0. gy _ 0. (17)
oq” oq”

we shall apply transfomation to coordinates

g% =ky q", k; =const, (18)
where?

0

e = Ao kT KL (19)

holds. This transformation leads to a new integrand of
functional (8)

*: .k * }, * }, * V4 },
F 1+/1(T +o, @ +byco +dﬂ7w W )+

+9(2T* 8,0 w”)+a; (47 — o ) (20)
where
T*:%dyﬁa)yw”, c; :cak}?‘,
by = by k%, dyy = dop kZ kP, @

Vo= S a
¢ =", o,=0,k,.

Formulating Euler's equations for (20) we get (cf. (21))
A-20=0,
0'; = C;, C; = const.,
. * (22)
4(% +d,[},)w” +

+(dyy — i )7 =) ~b;1+.C) = 0.

VA=), 0=06@), o, = o0,(t) are Lagrange's
multipliers.

z 5775 is Kroneker delta symbol.
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3. MECHANICAL SYSTEM WITH TWO DEGREES OF
FREEDOM

Let us consider a special case of motion of mechanical
system with two degrees of freedom. Assuming that
condition (17) is further satisfied and having in mind
(19) relations (18) get the form

—1 1 1 1 2 =2 2 1 2 2
g =kiqg +kyq, ¢ =k q +tkiq", (23)
Where

M= k=

-
-

2 _ 41 2 _ 1
kl —kl, k2 —Skz, (24)
- ) __atap
a=at+zapptay, S=———,
app +an

b= apg +2SG]2 +S2 ay, a;p +ay #0.

Taking into account (23), kinetic energy of the system
considered (cf. (2)) can be written in the form

1 2.
T:EVZ, vi=gt+43. (25)
Potential energy (cf. (17)) gets the form
' =c¢ ¢+ 4%, (26)
where (cf. (21), (24))

ES 1 * 1
q :ﬁ(cﬁcz)a 02:ﬁ(01+302)~ @7

Power of generalized forces of Coulomb friction (cf.
(10) obtain the form (cf. (23))

P dy =12 (28)
where (cf. (21))

1 * 1
=—=(b+b), by =—=(b +sby),

"7 %
1

dy) :;(du +diy +dy +dp),

1

Jab

* 1
dy1 =—==ldi +dip +s(dy +dn)],

Jab

* 1
dy = Z[dll +5(dyy +dy))+5% dyy .

dyy = [dy1 +dy1 +5(dig +dap)], (29)

Let us introduce natural parameter ¢ = &(¢) (cf. [1] and
[4]) by substitution

q‘ =V cose, q2 =Vsing. (30)

Eliminating the velocities q‘ i qz by (30), the principle
of work and energy (6) has the form
vV +pVe=0, 3D

wherefrom integrand (9) gets the folowing form
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F:1+ﬂ(y/+(pV+pVg')+

+ o-l*(ql—Vcoss)+ O'Z(qz—Vsins) 32)
where

W =1 cosE+nsing,

= 1+d22 +1y (cosg) +3 5 3 sin2e,

p = —d21 +73 (cosa) ) sm2g (33)
n=bte, n=bta,
ry = dyy +dyy, 1y =dyy—dy.

Formulating Euler's equations for (32) in relation to ¢,

4,V i¢e,weget(cf. (21))

o"l* :0—>o{ :Cl* = const.,
o"; = ()—)a; = C; = const.,
S+ (@'~ p)ré+pi=0,
G —p DV +AV (¢~ p)+y'1=0,

where (cf. (33))°

(34

4 = Cl* sing—C; cos¢,

& = Cl* cosg+C; sing,

w'=nr cose—nsing, (35)
@' =r;3c082¢ —ry sin 2,
p'=—-rycos2e—rysin2e.

The condition of transversality at the right end-point
gets the form

[1—192V+ﬂ,l//](t:tl):0. (36)
Taking into consideration that V' and & is not

prescribed in the final position of the system, we have
also the end-conditions

OF OF

[ﬁ](;:ﬁ) =0, [ ](l‘ tl) =0, (37)

wherefrom we get

Ay =4 =0, (38)

As the integrand F does not contain ¢ explicitely,
Euler's equations (34) have the first integral

1-$V+Ay =C, C=const. 39)

Eliminating ¥ by (31), Euler's equation (cf. (34)) in
relation to & gets the form

Vo(d-pAi)+ ALy +V pé)(p—¢)+oy'1=0, (40)

wherefrom we get

3 Cl* and C; are Lagrange’s multipliers corresponding to the

constraints (30).
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*—{31 +Vi¢ (w+Vpé)(p—9)+ow'l}. (41

If we now eliminate A in Euler's equation (cf. (34)) in
relation to ¥ by (41) we shall get

_ v(p-9)+oy'
Qov+K[(2p-0)v+oy]

> (42)

wherefrom in a case that the system in the start position
has a velocity of known intensity V' (¢#y) = 0 we shall get
(cf. (33)) a value of the natural parameter at moment
t= to

sy (1+diy )+ 3,

rydyy —ﬁ(“d;z)

I (43)

&y = arctan[

If we apply the same procedure to (39), having in mind
(42), we shall get the Lagrange's multiplier

_ Sp+9e (44)
oy +%[2p—¢ W +ov']
wherefrom taking into account (38), we obtain
C* C* p(gl)+(p(81)tan€1 *dl*Z +K‘1(1+d;2) (45)

pleN—pleNtans,  1+d)) +dyyx

In order to obtain the equations of motion of the system
considered (cf. (33), (35)) taking into account (45) and

" — s U=2 !, " — _2 /’
l//’ 4 (f’ P> P P (46)
'91 = ‘92 ’ '92 = _'91 >
the differential equations (30) can be written in the form
1 ~
di: L—(Vp+(pV)cosg
de  (C)v
) (47
di: L—(Vp+(pV)smg
de (v
where (cf. (35), (42), (45))
- y(p-9)+oy 3)

Koy + 4 2py —yo'+oy’)
= {y/93 {l//[2(p -0 - g+ p’)} -
py'3p—2¢" } +
Y {[w(p+p)+vplwp' - py') -
2v12pl//(¢7—p’)}}
(Sov + S lwCo-e)+ov']| S, (49

ple) +p(e)tang _
ple) —p(e)tan g

dip +x(1+dy)

% =sing—cose

=sing—cose —
1+d11 +d21K'1
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ple) +pe)tang _
ple)—p(e) tang

diy + K (1+dy)

94 =cose—sing

=cose—sing (50)

1+d 1* 1 +d ; 1K1
The solutions of the differential equations (47) has the
form

¢ =K(@-), ¢’ =K(¥-¥p). (D
where (cf. (48), (49))
D(g,¢) = IK(Vp +oV")cose ds
v

Y(g,e) = Ii(l;p+(pl7’) sing ds 52)

Oy =D(e1,6), Yo ="Y(e1,%),
B 1
@)?

Taking into account that at final position the following
relations (cf. [6])

Ale) =¢' (¥ =W)—¢' (@1 -D) =0, (53)
holds where (cf. (52))
Y =Y(e,e=¢6), @ =0(5,6=4) (54)

we get a value of the natural parameter ¢ at moment
t,, constant K from

K= q1 _ q? , (55)
O -9y ¥ -%

C} (cf. (52)) and C5 (cf. (45)).

EXAMPLE. Let us consider motion of the mechanical
system which consists of two prismatic rigid bodies and
moves in homogeneous field of gravity. The
configuration of the system is defined by the set of

coordinates ¢ :(171,6 2). The system starts from the
position defined by coordinates g ! t)=9q (19 and
=2 —(20
7’ (1) =g
by 47] )= 47(”) and 62 )= 6(21) . The coefficient of

Coulomb friction on the rough inclined side (at angle
o to horizontal) of prism B is g4 . The coefficient of

, where it was at rest. Final position is set

friction on rough horizontal plane is 4, , (Fig 1.).

9
q-

-

Figure 1
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The differential equations of motion of the system
considered (Fig. 1) have the form

=1 =2 = 51:1
19+ =Q1”—F+M1,

o (6)
ang* +ag' = 05 ——5 tuy,
oq
where
O = - (m+M)g—my” tana,
04 =—mm(g—§' tan ),
o o 7
T]ZO’ T2=C2, C) =—mgtana.
oq aq
Relation (10) in this case have the form (cf. (57))
PY =g+ + 22, (58)
where
7 ==bq' —byq’,
— =1 -2
o =dig —dng-,
— =1 -2
P =dipqg —dpq”, (59)

by =guy(m+M), by =gmpy,
diy =—mpp tana, dy =—-my tana,
If we now introduce relation (23), kinetic energy (25)

and potential energy (26) of the system have the same
form , where (cf. (27))

o gmtan o
1 :_T,
a

a=M +m(tana)2,

gmstana

5

C

N %

) ) (60)
b=M+m—-2ms+s“ml+(tanax)”,
M
§=——7.
m(tan o)
Power of the generalized force is presented by (28)
where (cf. (29) and (60))
b g(mm+mu+M )
\/; )
pr_ &lms i +mun + M)
2 «/Z s
- m(py + pp ) tan o
dll = ——a >
61
- m(s uy + iy ) tan 1)
21 \/;\/E s
g - m(w +s ) )tana
12 \/z\/g s
x ms(py + t ) tana
d22 = _f.

Taking into account (30), the relation (31) has the same
form, where (cf. (33), (60))
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+ 1y —t +M
l//:gCOSé‘m(ﬂl tp—tana)+Mpy
Ja

m(spy+ppy —stana)+M u,
N )
(g + ) (1+5s)
N

Mt
b

+gsing
¢p=1-msin2¢stan

—smtana
(62)
2 1 s
~(c0s )" m (s + ) tan e (— =),
a

(ﬂl+/llz)(1+S)Jr

Jab

p=-m(cos 5)2 tan @

(spy+ 1)

Jab

—lmsinZStana(,ul +y2)(l—£),
2 a b

+mtan o

Let m= % denote the mass of the prism A and let
20 . . .
M= Ty denote the mass of the prism P in a suitable

system of units. If o = % s My = and g = % , then

10
the relation (43) gives the value of natural parameter in
the initial position (at moment ¢ =#y), & =—0.413771.
If q1 H)=12 1 q2 () =6 (at moment ¢=¢, ), then the
relation (53) gives the value of the natural parameter in
the final position (at moment ¢ =1, ), & =0.951221.
The graph in Fig.2 is showing the brachistochrone
q2 =f (ql) of the system considered.

The changes of the power of generalized forces of
Coulomb friction with respect to & of the system
considered are shown graphically in Fig.3.

After solving for

n=[< (45)
we get the time the system needs to move from the start
to the final position, # =1.63737s .

g3

3

2.5

4 3 % 10 1z 1t

Figure 2
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Pyl

Pyl +FPpz

Figure 3

4. CONCLUSION

The mathematical model used to compute the
brachistochrone in this special case of the multibody
system with two degrees of freedom is based on
variational calculus. The problem is formulated as
constrained with the constraint which represents the
principle of work and energy (6), where power of
generalized forces of Coulomb friction has the modified
form obtained from [5]. The complete analogy is made
between solution obtained in an example considered and
a solution in relation to material point.
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BPAXUCTOXPOHO KPETAIbE MEXAHUYKOT
CHUCTEMA CA PEAJTHUM BE3AMA

Aparyrun Bypuh

V 0BOM paay pasMarpaHo je KpeTame MEXaHHYKOT
CHCTeMa y MOJbYy KOH3EPBAaTHBHHX CHJIA TIO[ JEjCTBOM
Be3a ca KymoHoBuM TpemeM. Y CIICHHjaHOM CITydajy
HampaBJbeHa je aHanoruja usMmehy Em6ujese
OpaxUCTOXpOHE 1 OPaXHUCTOXPOHE MEXAHMYKOT CHCTEMa
ca JiBa cTeleHa cio0o/e.
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