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On Brachistochronic Motion of a 
Multibody System with Real Constraints
 
The paper considers a case of brachistochronic motion of the mechanical 
system in the field of conservative forces, subject to the action of 
constraints with Coulomb friction. In the special case, an analogy is made 
between Ashby’s brachistochrone and the brachistochrone of the 
mechanical system with two degrees of freedom. 
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1. FORMULATION OF THE PROBLEM 
 
We are considering the motion of a mechanical system 
in a stationary field of potential forces where )(qΠ  

)(= qΠ is the system’s potential energy. Let this motion 
be subject to the action of real constraints1. 
The configuration of the system is defined by the set of 
Lagrangian coordinates 1 2= ( , ,..., )nq q q q , to which 
correspond the generalized velocities 

1 2= ( , ,..., )nq q q q .  Lagrangian function of the system 
has the form ([2])  

( , ) = ( , ) ( )L q q T q q q−Π ,                        (1) 

where T  is kinetic energy of the system 2 

1= ( ) .
2

T a q q qα β
αβ                        (2) 

Differential equations of motions of the mechanical 
system have a well-known form  

d =
d

L L Q u
t q q

µ
α αα α

∂ ∂
− +

∂ ∂
,                     (3) 

where Qµ
α  are generalized forces of Coulomb friction 

and uα  are generalized control forces. 
 Let us assume that initial position of the system is 
defined by the set of given coordinates 0qα  at moment 

0=t t , which is a set in advance, where it was at rest 
and let the final position is defined by the set of 
coordinates 1qα  at moment 1=t t , which is unknown. 
The time the system needs to move from initial to final 
position is determined by the relation 

1

0
= d

t
I t∫                                         (4) 

If we assume that the system moves from initial to final 
configuration along one definite trajectory for which Eq. 
(4) has a minimum value  

1

0
= d inf .

t

I t →∫ ,                             (5) 

we will consider brachistochronic motion. A problem of 
brachistrochonic motion will be solved by variational 
calculus. 
 If we now introduce Bernoulli's condition's (cf.[3]), 
i.e. the conditions which do not disturb the principle of 
work and energy subject to the action of control forces 
in virtue of = 0u qαα , we shall formulate variational 
problem as constrained with constraint which represents 
the principle of work and energy  

= = 0T P T Pµ µ−Π⇒ +Π − ,               (6) 

where power of generalized forces of Coulomb friction 
has the form  

=P Q qµ µ α
α ,                                 (7) 

so that relation (5) becomes  

1

1
0

= d inf .
t

I F t →∫ ,                          (8) 

where 

( )( , , , ) = 1F q q q T Pµλ λ+ +Π − .              (9) 

 
2. GENERAL PART 
 
Let us consider a general case of brachistochronic 
motion presented in [5], in which Eqs. (7) has the form  

= ( , ) ( , )P q q q q qµ β
βψ ϕ+ ,                (10) 

assuming that 

2( , ),   ( , )   q q q q Cβψ ϕ ∈                      (11) 

holds. Let us now examine a case of brachistochronic 
motion in which functions (11) have the following form 

( , ) = ( ) , ( , ) = ( )q q b q q q q d q qα α
α β αβψ ϕ− − .   (12) 

  

1 Constraints with Coulomb friction. 
2The indices take the following values: , , , = 1, 2, ..., nα β γ π   
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 In order to avoid second-order functional let us 
introduce the following constraints in terms of 
variational calculus  

= 0, 2 = 0q u T a u uα α α β
αβ− − ,              (13) 

and the integrand of functional (8) gets the form1 (cf.(6), 
(10) and (12)) 

 
~ ~

= 1F T u u
q

α β
βαλ ψ ϕ

 ∂Π + + − − +
 ∂ 

 

 

( )2 ( ).T a u u q uα β α α
αβ αθ σ+ − + −  (14) 

where  

( = ) (= ,   == )q u qb u d uuα α
α α

α αα β αβψ ϕ− − . (15) 

Assuming that conditions  

0,=αq
F

∂
∂       (16) 

are further satisfied, which lead to the existance of the 
following conditions  

= const., = , = const.,

= 0, = 0,

a c q c

db
q q

α
αβ α α

βαα
γ γ

Π

∂∂

∂ ∂

 (17) 

we shall apply transfomation to coordinates  

= ,   = const.,q k q kα α γ α
γ γ                  (18) 

where2  

= ,a k kα β
γπ αβ γ πδ                                      (19) 

holds. This transformation leads to a new integrand of 
functional  (8)  

( )* * * * *= 1F T c b dγ γ π γ
γ γ πγλ ω ω ω ω+ + + + +  

( ) ( )* *2T qγ π γ γ
γπ γθ δ ω ω σ ω+ − + −    (20) 

where  
* *

* *

*

1= , = ,
2

= , = ,

= , = .

T c c k

b b k d d k k

q k

γ π α
γπ γ α γ

α α β
γ α γ πγ αβ π γ
γ γ α

γ α γ

δ ω ω

ω σ σ

              (21) 

Formulating Euler's equations for (20) we get (cf. (21)) 

( )
( )

* * *

*

* * * * *

2 = 0,

= , = const.,

[ ] = 0.

C C

d

d d w c b C

γ γ γ

π
γπ πγ

π
πγ γπ γ γ γ

λ θ

σ

λ δ ω

λ

−

+ +

+ − − − +

   (22) 

                                                            
1 = ( )tλ λ , = ( )tθ θ , = ( )tα ασ σ  are Lagrange's 
multipliers. 
2 γπδ  is Kroneker delta symbol. 

3. MECHANICAL SYSTEM WITH TWO DEGREES OF 
FREEDOM  
 

Let us consider a special case of motion of mechanical 
system with two degrees of freedom. Assuming that 
condition (17) is further satisfied and having in mind 
(19) relations (18) get the form  

1 1 1 1 2 2 2 1 2 2
1 2 1 2= ,   = ,q k q k q q k q k q+ +       (23) 

Where 
1 1
1 2

2 1 2 1
1 1 2 2

11 12
11 12 22

12 22
2

11 12 22 12 22

1 1= , = ,

= , = ,

= 2 , = ,

= 2 , 0.

k k
a b

k k k s k
a aa a a a s
a a

b a s a s a a a

+
+ + −

+

+ + + ≠

    (24) 

Taking into account (23), kinetic energy of the system 
considered (cf. (2)) can be written in the form  

2 2 2 2
1 2

1= , =
2

T V V q q+ .                    (25) 

Potential energy (cf. (17)) gets the form  

* * 1 * 2
1 2= c q c qΠ + ,                       (26) 

where (cf. (21), (24)) 

* *
1 1 2 2 1 2

1 1= ( ), = ( )c c c c c s c
a b

+ + .         (27) 

Power of generalized forces of Coulomb friction (cf. 
(10) obtain the form (cf. (23))  

* * *= , , = 1,2,i i j
i ijP b q d q q i jµ − −            (28) 

where (cf. (21))  

( )

* *
1 1 2 2 1 2

*
11 11 12 21 22

*
12 11 21 12 22

*
21 11 12 21 22

* 2
22 11 12 21 22

1 1= ( ), = ( ),

1= ,

1= [ ( )],

1= [ ( )],

1= [ ( ) ].

b b b b b s b
a b

d d d d d
a

d d d s d d
a b

d d d s d d
a b

d d s d d s d
b

+ +

+ + +

+ + +

+ + +

+ + +

             (29) 

Let us introduce natural parameter = ( )tε ε  (cf. [1] and 
[4]) by substitution  

1 2= cos ,  = sinq V q Vε ε .     (30) 

Eliminating the velocities 1q  i 2q  by (30), the principle 
of work and energy (6) has the form  

= 0V Vψ ϕ ρ ε+ + ,    (31) 

wherefrom integrand (9) gets the folowing form  
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( )= 1F V Vλ ψ ϕ ρ ε+ + + +  

( ) ( )* 1 * 2
1 2cos sinq V q Vσ ε σ ε+ − + −    (32) 

where  

1 2

* 2 3
22 4

* 2 4
21 3

* * * *
1 1 1 2 2 2

* * * *
3 12 21 4 11 22

= cos sin ,

= 1 (cos ) sin 2 ,
2

= (cos ) sin 2 ,
2

= , = ,

= , = .

r r
r

d r

rd r

r b c r b c

r d d r d d

ψ ε ε

ϕ ε ε

ρ ε ε

+

+ + +

− + −

+ +

+ −

                (33) 

Formulating Euler's equations for (32) in relation to 1q , 

2q , V  i ε , we get (cf. (21))  

( )

* * *
1 1 1
* * *
2 2 2

2

1

= 0 = = cons .,

= 0 = = const.,

( ) = 0,

( ) [ ] = 0,

C t

C

V V

σ σ

σ σ

ϑ ϕ ρ λ ε ϕ λ

ϑ ρ λ λ ϕ ρ ψ

→

→

′+ − +

′ ′− + − +

          (34) 

where (cf. (33))3 

* *
1 1 2

* *
2 1 2

2 1

3 4

4 3

= sin cos ,

= cos sin ,
= cos sin ,
= cos 2 sin 2 ,
= cos 2 sin 2 .

C C

C C
r r
r r

r r

ϑ ε ε

ϑ ε ε
ψ ε ε
ϕ ε ε
ρ ε ε

−

+
′ −
′ −
′ − −

                           (35) 

The condition of transversality at the right end-point 
gets the form  

[1 ] = 02 ( = )1
V t tϑ λψ− + .                       (36)

Taking into consideration that V  and ε  is not 
prescribed in the final position of the system, we have 
also the end-conditions  

( = ( =1 1
[ ] = 0, [ ] = 0,) )t t t t

F F
V ε
∂ ∂

∂∂
           (37) 

wherefrom we get  

1( = 1
= = 0.)t tλ λ                               (38) 

 As the integrand F  does not contain t  explicitely, 
Euler's equations (34) have the first integral  

21 = , = const.V C Cϑ λψ− +                   (39) 

Eliminating V  by (31), Euler's equation (cf. (34)) in 
relation to ε  gets the form  

( ) ( ) ( )1 [ ] = 0,V Vϕ ϑ ρ λ λ ψ ρ ε ρ ϕ ϕψ′ ′− + + − +    (40) 

wherefrom we get  

                                                            
3 *

1C  and *
2C  are Lagrange’s multipliers corresponding to the 

constraints (30).  

( )( )1
1= { [ ]}.V

V
λλ ϑ ψ ρ ε ρ ϕ ϕψ

ρ ϕ
′ ′+ + − +   (41) 

 If we now eliminate λ  in Euler's equation (cf. (34)) in 
relation to V  by (41) we shall get  

( )
( )1 2

=
[ 2 ]

V
ψ ρ ϕ ϕψ

ϑ ϕψ ϑ ρ ϕ ψ ϕψ
′ ′− +

′ ′+ − +
,        (42) 

wherefrom in a case that the system in the start position 
has a velocity of known intensity 0( ) = 0V t  we shall get 
(cf. (33)) a value of the natural parameter at moment 

0=t t   

( )
( )

* *
2 11 1 21

0 * *
2 12 1 22

1
= arctan[ ].

1

r d r d

r d r d
ε

− + +

− +
            (43) 

 If we apply the same procedure to (39), having in mind 
(42), we shall get the Lagrange's multiplier  

( ) ,
]2[

=
21

12

ψϕψϕρϑψϕϑ
ϕϑρϑλ

′+′−+
+

−            (44) 

wherefrom taking into account (38), we obtain 

* *
* * *1 1 1 12 1 22
2 1 1 * *1 1 1 11 21 1

( ) ( ) tan (1 )
( ) ( ) tan 1

d dC C C
d d

ρ ε ϕ ε ε κ
ρ ε ϕ ε ε κ

+ + +
= =

− + +
 (45) 

In order to obtain the equations of motion of the system 
considered (cf. (33), (35)) taking into account (45) and  

 
1 2 2 1

,   =2 ,   2 ,
,   ,

ψ ψ ϕ ρ ρ ρ
ϑ ϑ ϑ ϑ
′′ ′′ ′ ′′ ′= − = −
′ ′= = −

   (46) 

the differential equations (30) can be written in the form 

1

* 2
1

2

* 2
1

d 1 ( )cos ,
d ( )

d 1 ( )sin ,
d ( )

q V V V
C

q V V V
C

ρ ϕ ε
ε ψ

ρ ϕ ε
ε ψ

′= − +

′= − +

        (47) 

where (cf. (35) , (42), (45)) 

3 4

( )
(2 )

V ψ ρ ϕ ϕψ
ϑ ϕψ ϑ ρψ ψϕ ϕψ

′ ′− +
=

′ ′+ − +
                     (48) 

{{ 2
3 2( ) ( )V ψϑ ψ ρ ϕ ϕ ϕ ρ ′ ′= − − + +   

}       (3 2 )ϕψ ρ ϕ′ ′− +  

[ ]{4       ( ) ( )ϑ ψ ϕ ρ ψ ρ ψρ ρψ′ ′ ′ ′+ + − −  

}}2       2 ( )ψ ρψ ϕ ρ′−  

[ ]{ } 2
3 4        (2 )ϑ ϕψ ϑ ψ ρ ϕ ϕψ −′ ′+ − + ,          (49) 

1 1 1
3

1 1 1

( ) ( ) tansin cos
( ) ( ) tan

ρ ε ϕ ε ε
ϑ ε ε

ρ ε ϕ ε ε
+

= − =
−

 

* *
12 1 22

* *
11 21 1

(1 )   sin cos
1

d d
d d
κ

ε ε
κ

+ +
= −

+ +
, 
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1 1 1
4

1 1 1

( ) ( ) tancos sin
( ) ( ) tan

ρ ε ϕ ε εϑ ε ε
ρ ε ϕ ε ε

+
= − =

−
 

* *
12 1 22

* *
11 21 1

(1 ) cos sin
1

d d
d d
κ

ε ε
κ

+ +
= −

+ +
.                (50) 

The solutions of the differential equations (47) has the 
form 

1 2
0 0( ),   ( ),q K q K= Φ −Φ = Ψ −Ψ          (51) 

where (cf. (48), (49)) 

1

1

0 1 0 0 1 0

* 2
1

( , ) ( ) cos  d

( , ) ( )sin  d

               ( , ),   ( , ),
1                .

( )

V V V s

V V V s

K
C

ε ε ρ ϕ ε
ψ

ε ε ρ ϕ ε
ψ

ε ε ε ε

′Φ = +

′Ψ = +

Φ = Φ Ψ = Ψ

=

∫

∫               (52) 

Taking into account that at final position the following 
relations (cf. [6])  

1 1
1 1 0 1 0( ) ( ) ( ) 0q qε∆ = Ψ −Ψ − Φ −Φ = ,     (53) 

holds where (cf. (52))  

1 1 1 1 1 1( , ),      ( , )ε ε ε ε ε εΨ = Ψ = Φ = Φ =          (54) 

we get a value of the natural parameter 1ε  at moment 

1t , constant K  from  

1 2

1 0 1 0

q qK = =
Φ −Φ Ψ −Ψ

,                 (55) 

*
1C  (cf. (52)) and *

2C  (cf. (45)). 
 
EXAMPLE. Let us consider motion of the mechanical 
system which consists of two prismatic rigid bodies and 
moves in homogeneous field of gravity. The 
configuration of the system is defined by the set of 
coordinates 1 2( , )q q q= . The system starts from the 

position defined by coordinates 1 (10)
0( )q t q= and 

2 (20)
0( )q t q= , where it was at rest. Final position is set 

by 1 (11)
1( )q t q= and 2 (21)

1( )q t q= . The coefficient of 
Coulomb friction on the rough inclined side (at angle 

0tα to horizontal) of prism 1P  is 1µ . The coefficient of 
friction on rough horizontal plane is 2µ , (Fig 1.).  

 

 
Figure 1 

The differential equations of motion of the system 
considered (Fig. 1) have the form  

1 2
11 12 11 1

2 1
22 12 2,2 2

,q q Q u
q

q q Q u
q

µ

µ

α α

α α

∂Π
+ = − +

∂

∂Π
+ = − +

∂

                     (56) 

where  
2

21
1

12

2 21 2

( ) tan ,

( tan ),

0,    ,    tan .

Q m M g mq

Q m g q

c c mg
q q

µ

µ

µ α

µ α

α

= − + −

= − −

∂Π ∂Π
= = = −

∂ ∂

            (57) 

Relation (10) in this case have the form (cf. (57)) 
1 2

1 2P q qµ ψ ϕ ϕ= + + ,                          (58) 
where 

1 2
1 2

1 2
1 11 21

1 2
2 12 22

1 2 2 1

12 2 21 1

11 22

,

,

,
( ),    ,

tan ,    tan ,
0.     

b q b q

d q d q

d q d q
b g m M b gm
d m d m
d d

ψ

ϕ

ϕ
µ µ

µ α µ α

= − −

= −

= −
= + =
= − = −
= =

          (59) 

If we now introduce relation (23), kinetic energy (25) 
and potential energy (26) of the system have the same 
form , where (cf. (27))  

1 2

2

2 2

2

tan tan,     ,  

(tan ) ,

2 1 (tan ) ,

.
(tan )

gm gmsc c
a b

a M m

b M m ms s m
Ms

m

α α

α

α

α

∗ ∗= − = −

= +

= + − + +

= −

         (60) 

Power of the generalized force is presented by (28) 
where (cf. (29) and (60))  

( )

( )

( )

( )

( )

( )

1 2 2*
1

1 2 2*
2

1 2*
11

1 2*
21

1 2*
12

1 2*
22

= ,

= ,

tan
= ,

tan
= ,

tan
= ,

tan
= .

g m m M
b

a
g m s m M

b
b

m
d

a
m s

d
a b

m s
d

a b
m s

d
b

µ µ µ

µ µ µ

µ µ α

µ µ α

µ µ α

µ µ α

+ +

+ +

+
−

+
−

+
−

+
−

                 (61) 

Taking into account (30), the relation (31) has the same 
form, where (cf. (33), (60)) 
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1 2 2

1 2 2

1 2

1 2

2
1 2

2 1 2

1 2

( tan )= cos

( tan )     sin ,

( ) (1 )= 1 sin 2 tan
2

      tan

1      (cos ) ( ) tan ( ),

( ) (1 )= (cos ) tan

( )      tan

     

m Mg
a

m s s Mg
b

sm
a b

s m
b

sm
a b

sm
a b

sm
a b

µ µ α µ
ψ ε

µ µ α µε

µ µϕ ε α

µ µ
α

ε µ µ α

µ µ
ρ ε α

µ µα

+ − +
+

+ − +
+

+ +
− −

+
− −

− + −

+ +
− +

+
+ −

1 2
1 1 sin 2 tan ( ) ( ).
2

sm
a b

ε α µ µ− + −

      (62) 

 Let 32
13

m =  denote the mass of the prism 1P  and let 

20
13

M =  denote the mass of the prism 2P  in a suitable 

system of units. If 
4
πα = , 1

1
10

µ =  and 2
1
50

µ = , then 

the relation (43) gives the value of natural parameter in 
the initial position (at moment 0t t= ), 0 0.413771ε = − . 

 If 1
1( ) = 12q t  i 2

1( ) = 6q t  (at moment 1=t t ), then the 
relation (53) gives the value of the natural parameter in 
the final position (at moment 1=t t ), 1 = 0.951221ε . 
The graph in Fig.2 is showing the brachistochrone 

2 1= ( )q f q  of the system considered. 
 The changes of the power of generalized forces of 
Coulomb friction with respect to ε  of the system 
considered are shown graphically in Fig.3.  
 After solving for 

1

0

1
d=t

ε

ε

ε
ε∫                                (45) 

we get the time the system needs to move from the start 
to the final position, 1 = 1.63737t s .  

 
Figure 2 

  
Figure 3 

 
4. CONCLUSION 

 
The mathematical model used to compute the 
brachistochrone in this special case of the multibody 
system with two degrees of freedom is based on 
variational calculus. The problem is formulated as 
constrained with the constraint which represents the 
principle of work and energy (6), where power of 
generalized forces of Coulomb friction has the modified 
form obtained from [5]. The complete analogy is made 
between solution obtained in an example considered and 
a solution in relation to material point.  
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БРАХИСТОХРОНО КРЕТАЊЕ МЕХАНИЧКОГ 
СИСТЕМА СА РЕАЛНИМ ВЕЗАМА 

 
Драгутин Ђурић 

 
У овом раду разматрано је кретање механичког 
система у пољу конзервативних сила под дејством 
веза са Кулоновим трењем. У специјалном случају 
направљена је аналогија између  Ешбијеве 
брахистохроне и брахистохроне механичког система 
са два степена слободе. 
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