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Identification of Nonlinear Models with 
Feedforward Neural Network and 
Digital Recurrent Network 
 
Nonlinear system identification via Feedforward Neural Networks (FNN) 
and Digital Recurrent Network (DRN) is studied in this paper. The 
standard backpropagation algorithm is used to train the FNN. A dynamic 
backpropagation algorithm is employed to adapt weights and biases of the 
DRN. The neural networks are trained using the identified error between 
the model’s output and plant’s output. Results of simulations show that the 
application of the FNN and DRN to identification of complex nonlinear 
dynamics gives satisfactory results. 
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1. INTRODUCTION 
 

In general, dynamic systems are complex and nonlinear. 
An important step in nonlinear control is the 
development of a nonlinear model. In recent years, 
computational-intelligence techniques, such as neural 
networks, fuzzy logic and combined neuro-fuzzy 
systems algorithms have become very effective tools of 
identification and control of nonlinear plants. The 
problem of identification consists of choosing an 
identification model and adjusting the parameters such 
that the response of the model approximates the 
response of the real system to the same input. 

Since 1986, neural network has been applied to the 
identification of nonlinear dynamical systems. Most of 
the works are based on multilayer feedforward neural 
networks with backpropagation learning algorithm. A 
novel multilayer discrete-time neural network is 
presented in [1] for identification of nonlinear 
dynamical systems. 

In [2], a new scheme for on-line states and 
parameters estimation of a large class of nonlinear 
systems using RBF (Radial Basis Function) neural 
network has been designed. 

A new approach to control nonlinear discrete 
dynamic systems, which relies on the identification of a 
discrete model of the system by a feedforward neural 
network with one hidden layer is presented in [3]. 

Nonlinear system identification via discrete-time 
recurrent single layer and multilayer neural networks 
are studied in [4]. An identification method for 
nonlinear models in the form of Fuzzy-Neural Networks 
is introduced in [5]. The Fuzzy-Neural Networks 
combines fuzzy “if-then” rules with neural networks. 

The adaptive time delay neural network is used for 
identification of nonlinear systems in [6]. Four 
architectures are proposed for identifying different 
classes of nonlinear systems. 

In [7] is investigated the identification of nonlinear 

systems by feedforward neural networks, radial basis 
function neural networks, Runge-Kutta neural networks 
and adaptive neuro-fuzzy inference systems. The result 
of simulation, reported in this paper, indicates that 
adaptive neuro fuzzy inference systems are a good 
candidate for identification purposes. 

This paper investigates the identification of 
nonlinear system by FNN and DRN. In Section 2 the 
nonlinear system identification is analyzed. The 
structures of the FNN and RNN are presented in Section 
3. Some simulation results and discussions related to 
system identification are provided in Section 4. Section 
5 gives the concluding remarks. 

 
2. METHODS FOR NONLINEAR SYSTEMS 

IDENTIFICATION 
 

Different methods have been developed in the literature 
for nonlinear system identification. These methods use a 
parameterized model. The parameters are updated to 
minimize an output identification error. 

A wide class of nonlinear dynamic systems with an 
input u and an output y can be described by the model: 

 ( ) ( )( ),m my k f k= ϕ θ  (1) 

where ym (k) is the output of the model, φ (k) is the 
regression vector and θ is the parameter vector. 

Depending on the choice of the regressors in φ (k), 
different models can be derived: 

NFIR (Nonlinear Finite Impulse Response) model: 

 ( ) ( ) ( ) ( )( )1 , 2 ,..., uk u k u k u k n− − −ϕ = ,  

where nu denotes the maximum lag of the input. 
NARX (Nonlinear AutoRegressive with eXogenous 

inputs) model: 

 ( ) ( ) ( ) ( )( 1 , 2 ,..., ,uk u k u k u k n− − −ϕ =   

 ( ) ( ) ( ))1 , 2 ,..., yy k y k y k n− − − ,  

where ny denotes the maximum lag of the output. 
NARMAX (Nonlinear AutoRegressive Moving 

Average with eXogenous inputs) model: 
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( ) ( ) ( ) ( ) ( )( 1 , 2 ,..., , 1 ,uk u k u k u k n y k− − − −ϕ =  

( ) ( ) ( ) ( ) ( ))2 ,..., , 1 , 2 ,...,y ey k y k n e k e k e k n− − − − − , 

where e (k) is the prediction error and ne is the 
maximum lag of the error. 

NOE (Nonlinear Output Error) model: 

( ) ( ) ( ) ( )( 1 , 2 ,..., ,uk u k u k u k n− − −ϕ =  

( ) ( ) ( ))1 , 2 ,...,m m m yy k y k y k n− − − . 

NBJ (Nonlinear Box-Jenkins) model: uses all four 
regressor types. 

The NARX and NOE models (Figs 1 and 2) are the 
most important representations of nonlinear systems. 

 
3. FNN AND DRN NEURAL NETWORK FOR 

NONLINEAR SYSTEM IDENTIFICATION 
 

Neural networks can be classified as feedforward and 
recurrent (or feedback). The two-layer feedforward 
neural network with sigmoidal activation function in the 
hidden layer and linear activation function in output 
layer has the ability to approximate nonlinear function if 
the number of neurons in the hidden layer is sufficiently 
large. The FNN used in this paper is shown in Figure 3. 

The input vector to the neural network is defined as: 

( ) ( ) ( ) ( ) ( )1 , 2 ... , 1 ,T
uI k u k u k u k n y k⎡= − − − −⎣  

( ) ( )2 ... yy k y k n ⎤− − ⎦ . 

The inputs u (k – 1), u (k – 2),…, u (k – nu) and u (k 
– 1), u (k – 2),…, u (k – ny) are multiplied by weights 

uijω  and yijω , respectively, and summed at each 

hidden node. Then the summed signal at a node 
activates a nonlinear function (sigmoid function). Thus, 
the output y (k) at a linear output node can be calculated 
from its inputs as follows: 

( )
( ) ( )1

1 1

1

1

nH
m i nn yui u k j y k j bu y iij ij

j j

y k b

e

⎛ ⎞
= ⎜ ⎟− − + − +⎜ ⎟⎜ ⎟= =⎝ ⎠

= +

∑ ∑
+

∑
ω ω

ω (2) 

where nu + ny is the number of inputs, nH is the number 
of hidden neurons, uijω  is the first layer weight between 

the input u (k – j) and the i-th hidden neuron, yijω  is the 

first layer weight between the input y (k – j) and the i-th 
hidden neuron, ωi is the second layer weight between 
the i-th hidden neuron and output neuron, bi is a biased 
weight for the i-th hidden neuron and b is a biased 
weight for the output neuron. 

 
Figure 1. The general block scheme of the NARX model [8] 

 
Figure 2. The general block scheme of the NOE model [8] 
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It can be seen from Figure 3 that the FNN is a 
realization of the NARX model (Fig. 1). The difference 
between the output of the plant y (k) and the output of 
the network ym (k) is called the prediction error: 

 ( ) ( ) ( )me k y k y k= −  (3) 

This error is used to adjust the weights and biases in the 
network via the minimization of the following function: 

 ( ) ( ) 21
2 my k y k= −⎡ ⎤⎣ ⎦ε  (4) 

The backpropagation is the most popular algorithm 
to train FNN [9]. 

The backpropagation update rule for the weights 
( uijω , yijω ) and bisaes (bi, b) is: 

 ( ) ( )1u uij ij
uij

k k ∂
+ = −

∂
εω ω η

ω
 (5) 

 ( ) ( )1y yij ij
yij

k k ∂
+ = −

∂
εω ω η

ω
 (6) 

 
Figure 3. Feedforward neural network structure [3] 

 
Figure 4. Digital Recurrent Network [9] 
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 ( ) ( )1i i
i

b k b k
b
εη ∂

+ = −
∂

 (7) 

 ( ) ( )1b k b k
b
εη ∂

+ = −
∂

 (8) 

where η is the update rate and: 

m

u m uij ij

y
y

∂∂ ∂
=

∂ ∂ ∂
ε ε

ω ω
; m

y m yij ij

y
y

∂∂ ∂
=

∂ ∂ ∂
ε ε

ω ω
; 

m

i m i

y
b y b

∂∂ ∂
=

∂ ∂ ∂
ε ε ; m

m

y
b y b

∂∂ ∂
=

∂ ∂ ∂
ε ε  

Figure 4 is an example of a DRN. The output of the 
network is feedback to its input. This is a realization of 
the NOE model, Fig. 2. The output of the network is a 
function not only of the weights, biases, and network 
input, but also of the outputs of the network at previous 
points in time. In [10] dynamic backpropagation 
algorithm is used to adapt weights and biases. 

DRN network is composed of a nonlinear hidden 
layer and a linear output layer. The inputs u (k – 1), u (k 
– 2),…, u (k – nu) are multiplied by weights uijω , 

outputs ym (k – 1), ym (k – 2),…, ym (k – ny) are 
multiplied by weights yijω  and summed at each hidden 

node. Then the summed signal at a node activates a 
nonlinear function. The hidden neurons activation 
function is the hyperbolic tangent sigmoid function. In 
Figure 4, ωi represents the weight that connects the node 
i in the hidden layer and the output node; bi represents 
the biased weight for i-th hidden neuron and b is a 
biased weight for the output neuron. 

The output of the network is: 

 ( )
1

nH
m i i

i
y k b

=
= ω ν +∑  (9) 

where nH is the number of hidden nodes and: 

 
n ni i

i n ni i

e e
e e

−

−
−

ν =
+

 (10) 

 ( ) ( )
1 1

nn yu
i u m y iij mij

j j
n u k j y k j b

= =
= − ω + − ω +∑ ∑  (11) 

The network should learn the uijω , yijω , ωi, bi and 

b that minimizes ε (4). 
Using the gradient decent, the weight and bias 

updating rules can be described as: 

 ( ) ( )1
ij ij

ij

u u
u

k k εω ω η
ω
∂

+ = −
∂

 (12) 

 ( ) ( )1
mij mij

mij

y y
y

k k εω ω η
ω
∂

+ = −
∂

 (13) 

 ( ) ( )1i i
i

b k b k
b
εη ∂

+ = −
∂

 (14) 

 ( ) ( )1b k b k
b
∂

+ = −
∂
εη  (15) 

where: 
e

m

u m uij ij

y
y

∂∂ ∂
=

∂ ∂ ∂
ε ε

ω ω
; 

e
m

y m yij ij

y
y

∂∂ ∂
=

∂ ∂ ∂
ε ε

ω ω
; 

e
m

i m i

y
b y b

∂∂ ∂
=

∂ ∂ ∂
ε ε ; 

e
m

m

y
b y b

∂∂ ∂
=

∂ ∂ ∂
ε ε  

where the superscript e indicates an explicit derivative, 
not accounting for indirect effects through time. 

The terms m

uij

y∂
∂ω

, m

yij

y∂
∂ω

, m

i

y
b

∂
∂

 and my
b

∂
∂

 must be 

propagated forward through time, [10]. 
 

4. SIMULATION RESULTS 
 

Example: We consider the dynamic system which is 
described by the following nonlinear difference 
equation [11]: 

 
( )

( ) ( ) ( )
( ) ( )
( )

2 2

1 2 1 2.5
0.35

1 1 2

0.35 1

y k y k y k
y k

y k y k

u k

− − − +⎡ ⎤⎣ ⎦= +
+ − + −

−

 (16) 

where y is the output of the plant and u is the plant input. 
We assume that structure of the model is known, nu 

= 1, ny = 2. The inputs and output of the FNN and DRN 
are u (k – 1), y (k – 1), y (k – 2) and y (k), respectively. 

The input u (k) was assumed to be a random signal 
uniformly distributed in the interval [-1 1]. In Figure 5 
there are plotted the input signal applied to plant (16) and 
the corresponding response. The dashed line denotes the 
input. In this simulation the plant output is bounded 
within the approximation region [-0.4 0.6]. The training 
data for this example consists of 6000 observations. 

The FNN is chosen to be a two-layer structure (Fig. 
3) with 12 hidden neurons and a learning rate 0.85. The 
number of hidden neurons of the DRN structure is 12. 

The learning rate was taken as 0.75. In these 
simulations different numbers of hidden neurons are 
tested. Choosing the right number of hidden neurons is 
essential for a good result. The total number of the 
parameters of each neural network is 49. In the learning 
processes, the weights (36) of the neural networks were 
adapted as well as the biases (13). 

To validate the models, the input signal: 

 

( ) ( )
( ) ( ) ( )

( )

sin / 25 , 250

0.3sin / 25 0.4sin / 32

0.3sin / 40 , 250 1000

u t t t

u t t t

t t

= <

= + +

≤ ≤

π

π π

π

 (17) 

was used. 
Figure 6 illustrates prediction error. From the Figure 

6 it can be seen that maximum prediction error is less 
than 0.015. 

The output of the DRN follows of the output of the 
plant. The simulation result indicates that the prediction 
error is less than 0.7 · 10-3, Fig. 7. 
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Figure 5. Identification data (input-dashed line, output-solid line) 
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Figure 6. Prediction error (FNN model) 
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Figure 7. Prediction error (DRN model) 

 

 
5. CONCLUSION 

 
The dynamical systems contain nonlinear relations 
which are difficult to model with conventional 

techniques. In this paper, the FNN and DRN have been 
successfully applied to unknown nonlinear system 
identification and modeling. In the designing of neural 
network model, the problem is how to determine an 
optimal architecture of network. 
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The determination of the values of nu and ny is an 
open question. Large time lags result in better prediction 
of the NN. However, large nu and ny also result in a 
large number of parameters (weights and biases) that 
need to be adapted. 

Fuzzy logic and neuro-fuzzy systems (ANFIS) have 
been applied to identification of nonlinear dynamics. 

However, neural networks are the simplest approaches 
in the sense of computational complexity, [12]. 

FNN and DRN models can be embedded into a 
model predictive control scheme. If the plant output can 
not be measured, DRN model can be taken. 

The results obtained can be extended to 
multivariable systems. Industrial robots have to face 
many uncertainties in their dynamics, in particular 
structured uncertainty, such as payload parameter, and 
unstructured one, such as friction and disturbance. The 
FNN and DRN have been successfully applied to 
identification of robot’s dynamics. 
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NOMENCLATURE 

ym (k) output of the model 
y (k) output of the system 
u (k) system input 
φ (k) regression vector 
θ parameter vector 
nu maximum lag of the input 
ny maximum lag of the output 
e (k) prediction error 
ne maximum lag of the error 
nH number of hidden neurons 

uijω  first layer weight between the input u (k – j) 
and the i-th hidden neuron 

yijω  first layer weight between the input y (k – j) 
and the i-th hidden neuron 

ωi 
second layer weight between the i-th hidden 
neuron and output neuron 

bi biased weight for the i-th hidden neuron 
b biased weight for the output neuron 

Notation 

FNN Feedforward Neural Networks 
DRN Digital Recurrent Network 

 

 
ИДЕНТИФИКАЦИЈА НЕЛИНЕАРНИХ 
МОДЕЛА НЕУРОНСКОМ МРЕЖОМ СА 
ПРОСТИРАЊЕМ СИГНАЛА УНАПРЕД И 

ДИГИТАЛНОМ РЕКУРЕНТНОМ 
НЕУРОНСКОМ МРЕЖОМ 

 
Весна М. Ранковић, Илија Ж. Николић 

 
У овом раду се проучава идентификација 
нелинеарног система неуронском мрежом са 
простирањем сигнала унапред (FNN) и дигиталном 
рекурентном неуронском мрежом (DRN). За 
обучавање FNN користи се стандардни алгоритам са 
пропагацијом грешке уназад. Динамички алгоритам 
са пропагацијом грешке уназад употребљава се за 
адаптацију тежинских коефицијената и прагова 
активације DRN. Неуронске мреже се обучавају 
коришћењем идентификоване грешке између излаза 
модела и излаза објекта. Резултати симулација 
показују да примена FNN и DRN у идентификацији 
сложене нелинеарне динамике система даје 
задовољавајуће резултате. 


