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Calculation of Flow Parameters Inside
the High Pressure Line of Fuel Injection
System in Diesel Engines

Hydrodynamical processes in the high pressure line of a fuel injection
system in diesel engines are described by hyperbolical partial differential
equations. In order to solve the equations, it is necessary to reduce them to
one of the characteristic forms and then, applying the appropriate method,
calculate the values of the fluid pressure and velocity inside the high
pressure line. In this paper, the method of finite differences with the
separation of the flux vector was used for solving the equations of the
characteristic form. The method enables the calculation of the flow
parameters inside the high pressure line in a very simple and efficient way,
avoiding the transformation of the equations at each point of the

calculation domain.
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1. INTRODUCTION

When calculating and modeling the working process in
the high pressure line, apart from determining the
physical properties of the working fluid, it is necessary
to apply the corresponding mathematical tool for
solving the partial differential equations which describe
the hydrodynamical processes. Due to the extreme
complexity of the partial differential equations, the
numerical methods are used for their solving. One
should bear in mind that partial differential equations
are simultaneously used with integral and differential
equations which define the process boundary conditions
in the high pressure line. Therefore, the precise
determinations of the flow parameters inside the high
pressure line depend not only on the equations which
describe the processes in the high pressure line and the
calculation methods, but on the way in which the
equations for boundary conditions are formed and
solved as well. It can be concluded that the calculation
of the flow parameters inside the high pressure line is a
very complex task.

In this paper, the hydrodynamical model of the flow
processes in the high pressure line and the method of its
solving by applying finite differences method with the
separation of the flux vector will be presented.

2. THE HYDRODYNAMICAL PROCESSES IN THE
HIGH PRESSURE LINE

In the fuel injection system of the “pump — high
pressure line — injector” type, Fig. 1, fuel is injected
under variable flow conditions and propagation
impulses between the high pressure pump and the
injector. The volumes which are fuelled are finite and
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the tube length is limited. The pressures in the high
pressure line go up to several hundred bars, and in new
systems up to 1200 bars.

HIGH PRESSURE LINE

%I'é DELIVERY VALVE

INJECTOR

Vel
i

1

DISTRIBUTOR PUMP

N
%
AN

Figure 1. Fuel injection system with the piston-radial
distribution pump

Pressure waves are propagated from the high
pressure pump, with finite velocity — sound velocity.
This flow is described by Navier-Stokes equations and
the continuity equation of a complex form [1].
Considering the fact that this system of non-
homogeneous partial differential equations is very
complex in terms of integration, it is necessary to make
some specific assumptions, which simplify and ease its
solving.

The flow in the high pressure line is regarded as
one-dimensional, i.e. the flow parameters depend only
on one coordinate in direction of the high pressure line
axis and the flow velocity vector direction coincides
with it. Since the tube diameter is very small, the tube
cross-section is considered constant and the bend of
tube is negligible. The pressure wave is normal on the
axis of the tube. It is considered that there is friction on
interior surface of the tube wall, while the viscosity
friction between fluid layers is negligible. The processes
in high pressure line are regarded as isentropic.

Thus, Navier-Stokes equations and continuity
equation are very simplified and obtain the following
form:
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This system of two equations has three unknown
variables and one more condition is necessary for solving
it. In this case, it is best to use the equation of state. In
general, the fluid density depends on pressure and
temperature, but if the change of the working fluid state is
isentropic and if Laplace equation for sound velocity is
used, system of equations is reduced to the following:
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Non-linear partial differential equations system (2)
has complex boundary conditions, and the exact
analytical solution cannot be obtained. Because of that,
various numerical and graphical methods are applied.

The process which is often used for solving this
system consists of differential equations linearization. If
we assume low fluid velocity in relation to sound
velocity, we can neglect the convection component.
Also, if we neglect the friction as a function of velocity
square, the system of equations will be linear:
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3. SOLVING EQUATIONS WHICH DESCRIBE
HYDRODYNAMICAL PROCESSES IN THE HIGH
PRESSURE LINE

For solving the partial differential equations (3) which
describe the hydrodynamical process of the flow in the
high pressure line, we will use the method of finite
differences with central pattern at space coordinate in
combination with the separation of flux vector [2,3]. We
will solve the one-dimensional equations systems in the
following form:

0 0
E{V}-Fa{E}—O, (4)
i.e. the quasi-linear form:
0 0
E{V}+[J(V)]a{v} =0 5)

where {E} is the flux vector and [J(v)] Jacobian,
obtained by derivation of vector {£} from vector {v}.
Only the central pattern for approximation of the
derivative along x-axis gives stable calculation for positive
and negative pressure waves. The application of non-
symmetrical operators can increase stability, reduce the
problems to the two-diagonal system of equations instead
of the tree-diagonal one in implicit formulations, and
provide better dispersion and dissipation characteristics.
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By approximating the partial derivative in space by a
backward pattern, it can be concluded that asymmetrical
approximation of the derivative cannot be constructed at
space coordinate which will be simultaneously stable for
both its positive and negative eigenvalues.

According to Euler theorem for homogeneous
function, it follows that:

E=[J]{v}. (6)

As far as vector {E} meets the necessary level of
homogeneity and as far as [J] has the appropriate
number of linearly independent vectors, vector {£} can
be split in two parts, each suitable for its eigenvectors.
One part will correspond only to positive own values,
and the other to the negative ones, i.e.:

{E}={E"}+{E7} (7

where {E'} corresponds to positive eigenvectors of the
matrix [J] and {E} to negative eigenvectors of the
matrix [J]. The equation (7) can be made as follows:

{Ey=([J"1+[J D} ={E"} +{E7} ®)

where:
U =0"1+[J71, ®
{ETy=1T"1v}, (10)
£ =7 1. an

By writing (3) into a vector form, we get:
0 1/ 0

L g R g (12)
ot | p p-a 0 |ox|p 0

0 1/
[J]:{ 5 p} (13)
p-a 0

where:

Not considering the obtainment method of matrix
[S], it can be confirmed by multiplication that matrix [S]
and matrix [S]" transform Jacobian into diagonal form:

0
[SIL/IIST! {g _a}. (14)

The part of Jacobian, which corresponds to positive
“a” and negative “—a” eigenvalue is calculated easily:

N T al2  1/2-p
V7 1=[ST [A"][S]= 5 ,» (15)
p-a /2 all

B e —al2 1/2-p
[J 1=[ST [A ]IS]= 5 - (16)
p-a /2 —al2

Matrix [A] is a diagonal matrix and eigenvalues A
are real. Composite variable {v} is given by:

{v}:{”p/”'“}. (17)
v—pl/p-a
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We can use (17) for the analytical solution. Along
the characteristic x = xy + at, the first component of a
composite vector is a constant, while the second
component of the vector is a constant along the
characteristic x = x, - at. The flux vector is split:
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The split flux vector is transformed into expanded
form for individual points of the domain (i,j) along the
high pressure line:
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The components derived previously from the split
flux vector in the expanded form are used in the

equations for calculating velocity and fluid pressure at
individual points (i,j) along the high pressure line.

v (i,j)=v(i—1,j)—%A(i,j) (30)
p*(i,j):p(i—l,j)—%B(i,j) 31)
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The values v'(ij) and p’(ij) present velocities and
fluid pressures along the high pressure line at points
(1,j), which were obtained in the first step of the
calculation.

i*

A ()= {E;}H -{E&r]

] ] o

R e o L e

Values which were marked with * in previous two
equations were obtained by using values for velocity
v'(ij) and pressure p'(i,j) in terms used for their
calculation. Finally, the equations for calculating flow
velocity and fluid pressure along the high pressure line
in the second step are:

Cv(i-Lj)+v (L) A

v(i,j) = ; ~5 oA ), 6

.. P i_l’j +p* 17.] At
p(i.j)= ( )2 ( )—2.Ax

B (i.j). (35)

The calculated values v(i,j) and p(i,j) present final
values of the fluid velocity and pressure along the high
pressure line, for the given interval Ar ie. given
integration level, Fig. 2,
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Figure 2. Calculation scheme for fluid velocity along the
high pressure line

where j is the number of segments along x-axis, i.e. the
tube,

i=23,4...(L/AY)-1, (36)

and i is the number of levels along time axis,
i=23,4..n. 37)

The condition for convergence, i.e. the condition for
stable solution is:

(a+M)_ Ar<Ax (38)

The state of working fluid in the space from the
delivery valve to the injector at the beginning of the
injection process is not known, so the initial conditions
of the integration are assumed. The time between two
injections is longer than the injection itself, so it can be
assumed that the working fluid at the beginning of the
process does not move, i.e. the fluid velocity equals zero
in each cross-section of the tube. Also, it can be
considered that the fluid pressure is constant in each
cross section of the tube at the beginning of the process.
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At L =0, the fluid pressure at the beginning of the high
pressure line is obtained from boundary conditions by a
mathematical model of the process in the delivery valve:

p(i.1)=p, (). (39)

At L = Ly, the pressure at the end of the high
pressure line is obtained from boundary conditions by a
mathematical model of the process in the injector:

p(i,L/Ax) = pi (i) . (40)

Mathematical models for boundary conditions at
delivery valve and injector can be found in [4].

4. THE RESULTS OF FLUID FLOW PARAMETERS
CALCULATION

The fuel injection system scheme whose working
process was modeled is shown in Figure 1. The system
is composed of piston-radial distributor pump (IPM
099.33.50), the tube (length 340 mm, inside diameter 2
mm) and the injector (IPM type 303.71.00, YDN O SD
293). The calculation and measurement of individual
parameters were made under maximum fuel delivery
and the pump shaft speed of 1500 rpm.

The results shown in Figures 3 and 4 were obtained
by solving the model of the working process in the fuel
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Figure 3. The comparison of measured and calculated fluid
pressure at the end of the high pressure line
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Figure 4. The change in fluid velocity at the end of the high
pressure line
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injection system in diesel engines [4]. The previously
described method of finite differences with separation
of the flux vector was used for solving the equations
which describe the hydrodynamical processes in the
high pressure line. Figure 3 shows a comparison of
calculated and measured fluid pressure and Figure 4
shows the change in fluid velocity at the end of the high
pressure line, both as the function of the pump shaft
angle.

There is a moderately good agreement between
simulation and experimental data for pressure at
injector, Fig. 3. Model prediction of pressure peak value
is very good, but some phase shift between measured
and calculated lines can be observed.

5. CONCLUSION

The numerical method of finite differences with
separation of the flux vector can be easily applied in
solving the hyperbolic partial equations (3) which
describe the hydrodynamical processes in the high
pressure line of the fuel injection system of diesel
engines. Selection of the integration step along both the
time and space coordinates must satisfy the condition
for stable solution (38). Also, this integration time step
must be compatible with time step used in integration of
differential equations for boundary conditions in the
delivery valve and the injector.

The advantage of splitting the vector {£} into two
parts is in avoiding the transformation of the equations
at each point in the calculation domain into a series of
disconnected partial differential equations. Instead of
transforming the equations each time, only vector {£}
components are calculated.

By analyzing accessible papers which consider the
process of solving the equations which describe the
hydrodynamical processes in the high pressure line of
diesel injection system, it can be concluded that the
method presented in this paper was used only in one
paper for calculation of flow parameters in the high
pressure line [5]. However, in the mentioned paper, only
the results of flow parameters are given without
analyzing the application of the method. In most papers
published so far and concerning this field, the finite
differences method combined with characteristic
method has been used.
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NOMENCLATURE
a sound velocity in the high pressure line
n maximum number of levels along ¢ axis
)2 fluid pressure in the high pressure line
Dy fluid pressure in the delivery valve
Dk fluid pressure in the injector
v fluid flow velocity in the high pressure line
t time
x coordinate along the tube
d tube diameter
L tube length
i number of levels along time axis
] number of segments along the tube
E flux vector
J Jacobian

Greek symbols

A diagonal matrix
A hydraulic friction coefficient
P fluid density in the high pressure line
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IMPOPAYYH IMTAPAMETAPA CTPYJAIBA YK
HEBOBOJA BUCOKOI ITIPUTUHCKA CUCTEMA
3A YBPU3TABAE 'OPUBA KO/ JU3EJI-
MOTOPA

Caasko Pakuh, Munom [{BeTuh

XUIpoJAMHAMUYKN IIPOLIECH Yy 1I€BOBOJY BHCOKOT
MPUTHCKA CHCTEMa 3a yOpH3raBambe ropuBa KoJ JH3el-
MOTOpa Cy OIMCAHW XHUIEPOOIMYKAM MapIyjaTHAM
mudepeHnyjarHIM  jenHaunHama. Jla Om  pemmim
IIOMEHYTE jelHauYnHe, HEOMMXOJHO je FHXOBO CBONhCHE
Ha jemaH Of KapakTePUCTUYHHX OOJHMKa, a 3aTHM Ce
MpUMEHOM  oAroBapajyhe  HyMepHUKe  MeToje
IpopadyHaBajy BPEJHOCTH MPUTHCKA U Op3uHe (urynaa
Iy’X LIEBOBOJa BHCOKOT IPHUTHCKA. Y OBOM pany je 3a
pelaBamke  KapaKTepUCTUYHOI  OOJIMKa  jeJJHaYnHa
KopumheHa MeTo/1a KOHaYHUX Pa3iifKa ca pa3BajamkbeM
¢nykc Bektopa. Ilomenyra wmetoma omoryhyje
NpopavyyH MapaMerapa CTpyjama Iy LEBOBOJA Ha
BEeOMa jeIHOCTaBaH M euKacaH HaunH, n3deraBajyhu
TpaHcopmanmjy  jemHauyMHAa 32  CBaKy  TaudkKy
MPOpaYyHCKE OOJACTH.
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