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1. INTRODUCTION

q=4q0 +qi+qj+qsk, (2

In general, modelling of kinematics and dynamics of rigid
bodies systems has been mostly based on the Euler angles where g, represents real part, and g1, g and g5 represent
representation of rotation. It is well known that three imaginary parts of the quaternion. Pure part of the
angles can’t afford a regular representation of the quaternion (2) is defined as:
rotation, since there are singularities. Euler proposed a . .
solution to circumvent this problem by introducing a set 4=t gl k. )
of four quantities, the so-called Euler parameters, based
on relations among Euler angles. Later on, Hamilton 2.2 Algebraic properties
(1844) invented the quaternions, an extension of complex
numbers, and soon afterwards, it was discovered that Let p and g be two quaternions. The sum of p and ¢ can
rotations may be represented by quaternions [1]. be written as:

In [2] and [3], Lagrange’s equations of second kind
of rigid bodies system in covariant form were developed p+a=(po+a0)+(p+a)i+(p2+a2)i+(p3+43)k. (4)

using Rodriguez matrix for the representation of
orientation of rigid body with respect to the inertial
frame. Our goal is to develop the same form of

If ¢ is scalar, then the product of quaternion ¢ and
scalar ¢ is given by:

equation, but with the help of quaternions. cq = cqo +cqi+cqrj+cqk . (5)
Further research will be based on control system
designs, because quaternions enable singularity-free For two quaternions p and ¢, their Hamilton or
mathematical representation of orientations [4,5]. quaternion product is determined by the product of the
basis elements and the distributive law. This gives the
2. MATHEMATICAL BACKGROUND OF THE following expression [6]:

QUATERNIONS
P®qg=poqo—P-q+poq+9op+Pxq. (6)

2.1 Definition
From (6) it can be seen that quaternions form non-

commutative under multiplication. Let g be the quaternion.

Quaternions are hyper-complex numbers of rank 4 : . )
The complex conjugate of quaternion ¢ is defined as:

consisting of one real and three imaginary parts. The
quaternions were first described by Irish mathematician A= dn — i anieaak %)
Sir William Rowan Hamilton in 1844 and applied to 7 =9079= 90~ N1~ 9207 43K

mechanics in three-dimensional space. Crucial to this From (6) and (7) it can be concluded the following:
description was his celebrated rule:

(p®q) =¢" ®p". ®)

The norm of quaternion ¢ is defined as:

iP=j?=k’=i®j®k=-1, (1)

where ® denotes quaternion or the Hamilton product.

The quaternion is defined as: N(q) =\/q* ®q :\/qé Jrchz Jrq22 +q32 =|q . 9)
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2.3 Quaternionic representation of rotation of the
rigid body

The rigid body (V) rotates about axis Or which is
represented by unit vector e (Fig. 1). Reference frame
Oxyz is inertial, and reference frame 0¢&7¢ is body-fixed
frame. Unit vectors of axis x, y and z are denoted by i, j
and k, and unit vectors of axis &, # and (" are denoted by
A, pandv.
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Figure 1. Rotation of the rigid body

In initial time these two reference frames were
equivalent. Vector OM = r (point M belongs to the
body (¥)) can be expressed in both reference frames:

r=xi+yj+zk, (11)

and

r(l):é‘k+nu+§v. (12)

Superscript in (12) denotes body-fixed reference frame
in which vector r is expressed. Vectors (11) and (12) belong
to the set of vectors. In order to operate with the quaternion,
a vector, which lives in R, needs to be treated as a pure
quaternion (that is a quaternion which real part is zero)
which lives in R*. The set of all pure quaternions (denoted
by Q) is the subset of O, the set of all quaternions. It can be
defined as one-to-one correspondence between the set of
vectors and the set of pure quaternions, a correspondence in

which a vector re R> corresponds to pure quaternion
r=0+reQ,thatis:

reR’5r=0+reQycO. (13)

The relation between the vector expressed in inertial
frame (11) and the vector expressed in body-fixed frame
(12) is given by:

r:q®r(1)®q*, (14)

where ¢ is unit quaternion (a quaternion with norm one)
which has the following structure:

0 .0
=Ccos—+esin—, 15
q 5 5 (15)

where 0 represents the rotation angle about axis Oz, and
e is pure quaternion which corresponds to the unit
vector axis Oz. The result of (14) is also pure quaternion
which corresponds to the position vector of point M. It
can be illustrated in the following figure (Fig. 2):
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Figure 2. Quaternionic representation of rotation of the
rigid body

Vector e is invariant, and because of that property it
is all the same in which the coordinate frame this vector
would be expressed.

The next case is when the rigid body rotates about
the moving axis. The rigid body (V) rotates about
moving axis Oz, represented by unit vector e,. At the
same time, this axis rotates about the axis Ot
represented by unit vector e;. The reference frame Oxyz
is inertial, 0&7,¢; is body-fixed and 0&#,{; is fixed on
the rotation axis Oz, (Fig. 3). At initial time these three
frames were equivalent.

z

Figure 3. Rotation of the rigid body about moving axis

Vector OM = r (point M belongs to the body (7))
expressed in reference frame 0&# is:

g erPeg, (16)
where
17 .0
9> =cos72+e(22) sm72. (17)

It must be mentioned that vector e, is invariant in
relation to reference frames 0¢&7,{; and 0&H7,¢,, and
vector e, is invariant in relation to reference frames Oxyz
and 0&;{;. Vector OM = r expressed in inertial
reference frame is:

r=qor g, (18)
where
6 . G
=CcoS—+e;sin—. 19
q R (19)

Substituting (16) in (18), one can get following
expression:
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r=g8g0r") 0404 =
~(90)0r ) ®(q04,) =qorP ®4", 20)
where
9=919®q, (21)
represents composite quaternion.

3. KINEMATICS OF OPEN CHAIN SYSTEM

3.1 Transformation of coordinates

The open chain system of rigid bodies (V7), (V2), ..., (V,) is
shown in Figure 4. The rigid body (V) is connected to the
fixed stand. Two neighboring bodies, (V7.;) and (¥;) of chain
are connected together with joint (i), which allows
translation along the axis which is represented by unit vector
e;, or rotation about the same axis body (7}) in respect to
body (V;.;). The values ¢’ represent generalized coordinates.

Figure 4. Open chain of the rigid bodies system

The reference frame Oxyz is inertial Cartesian frame,
and the reference frame 0&#{; is local body-frame
which is associated to the body (V;) at the point C;
which represents the centre of inertia of body (V;). At
initial time, corresponding axis of reference frames were
parallel. This configuration is called reference
configuration and it is denoted by (0). The symbols &

and & can be introduced, which are defined as:
& =1,4=0 (22)

in the case when bodies (V) and (V;) are connected
with prismatic joint, and

&=0,&=1 23)

in the case when bodies (V1) and (V;) are connected with
cylindrical joint. Arbitrary vector T;, associated with the
body (V) is given (Fig. 5). In reference configuration,
this vector is identical in both reference frames

(/)
30 (24)

Figure 5. Vector 7 on rigid body (V)

In the case when bodies (V.;) and (V) are connected
by cylindrical joint, after rotation of the body (¥}) about
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the axis e; for angle ¢/, vector 7; in body-fixed reference
frame 0&.17;.1¢;.1 has the following value:

(1) _ (/) g
T ' =p;®T; ®p;, (25)
where p; represents unit quaternion which is defined as
J . J
—encd )4
Pj —cos?+ej sm7. (26)

If rigid body (V) is connected with (V.;) by
cylindrical joint, then:

) ; *
W =p 0 en,,, 27)
where
Pj-2,j=Pj1 9P (28)
and:
j-1 . Jj-1
_q (1) . 4
Pjo1 =cos +e; sin 5 29

In the case of prismatic joint, vector 1; is the same in
both local body-fixed frames:

7 — ), (30)

In the general case, with the help of symbol & , the

quaternion (26) has the following form:

&4’ () S
i = COS +e'// sin . 31
p; S te > (€2))

Vector T; in inertial reference frame Oxyz has the
following value:

= po, @m0 (32)
where
P, =P®p®.®p;, (33)
and
pj;=1. (34)

3.2 Velocity of inertia centre of the rigid body (Vi)

The position vector of inertia centre C; of the rigid body (V;)
has the following value in inertial reference frame (Fig. 4):

i
k
OC; =r; = Z(pkk +Srerq )+Pi , (35)
k=1
where
(k) g *
Pik = Pok Pl ®Pos (36)
- @ @ pr 37
e, = poi-19e;’ O pyy 1, 37
(1) g
Pi =0 ®P; ®pg;- (3%)
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Velocity of the centre of inertia is:

dr; L oor, i
Vi=—t=2—4¢" =3 T,d". (9
d a=1 6qa a=1 0!(1)
where
or;
Ta([.) = 6(]_0!’ (40)

which is called the quasi-basic vector. Generalized
coordinate partial derivatives of the quaternion are:

2’%20, k+a, (41)
q
and
Z:;Z=—%§_a sinaqua+%Eaega)cos g?azqa =
——E[ s1n6?aq +e(aa)cosg“2qa] 42)
Since

—el? @l =1 (43)

then, multiplication of (42) with (43) on the left side,
(43) becomes:

Py Lz ()ode

a o

- gae(a) ®(—e£xa) sin £ad” —cos £ad” ] =
2 2

fae(a“) ®[e£1a) sin £ad” +cos £ag” J =
2 2
L) O, (44)

Also, taking into account:
P ®p=1, 43)

then

0 * ap* * 6p

2 (s 0p)-Teop, s 0T
q

0, (46)
oq”

and, from the previous expression:

* 6]) 1 * —
®pa ==D —2 = _Epa ®§aegza) ®pa . (47)

*
op,
a qa a qa
Multiplication of the previous expression with p:;
on the right side gives:
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*

0 ) -
Lo L @), 48)

oq”

In the case a < k, generalized coordinate partial
derivative of vector py is:

(k) &
Pir 0 PO,k®Pkk ®PO,k _

aq“ aq“
9 e
Pok o (k) o * (k) o OPo.k
= ®py ® pos + Pos ®P) ®—, (49)
ez Kk . , K Pz
where
0 5
2ok _  ®p,®..0%20 @ p, =
(04 a
oq oq

1=
= 5P ®-® py e ®p, ®..0 p, =

= %é_apo,a—l ®e$1a) ® Pyt (50)
and
%:p}i ®...®%®...®qf =
oq” oq”
- —%Eapz ®.0p 0 @p | ®. .®p =
= _%gap;—l,k ®el) @ Po.a-1- G
Since
) = Pyt ®eq @ Py (52)

then (50) and (51) become:

Pox 1<
;l = _faea ®p0,k 5 (53)
oq 2
and
ok 1+
;[ = __é:apo,k ®ea . (54)
oq 2

Substituting (53) and (54) in (49), one can get
following expression:

apkk 1 - (k) *
aq_“ =E§aea ® por ®Pi @ Pok —

1 - k *
—Efapo,k ®chk) ®poi Be, =

1 - 1 -
=E§aea @ P —Efapkk e, =

=E§a (€ Prk +€o X Pk + Pk € — Pk X€4 ) =

=E§a(—ea Pk €y X Ppp +€o Prp + ey XPrp ) =

= gaea X P - (55)
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In the case a > £, there follows:

Pus_ g, (56)
oq”

Similar to the previous expressions, it can be written
the following:

0ek

aq—azggaea ><ek, (57)
when a <k,
o8 _ 0, (58)
oq”
when a >k,
op;
P2 ey % (59)
oq“”
Also, when a < i, and
Py, (60)
oq”

when a > i. According to the previous expressions, (40)
becomes:

or; L = k
Ta(i) = aq; = kz (faea XPrx tSrSas X €1 q )+
=a

+§aea + gaea xp; =

=, { > (Pkk +§kek61k)+l)i:|+§aea (61)

k=a

when Va <i, and:
T (i) = 0 (62)
when Va >i. According to (61) and (62), the

expression for velocity of the centre inertia of the rigid
body (V) is the following:

Vi =2 Thid” - (63)

If vectors in (61) are expressed in local body-fixed
coordinate frames, then quasibasic vectors become:

Ty = §a(P0a 1®e( )®P0a 1)

1
X{Z(!’Ok ®Pkk ®P0k +§k(170k 1®e§€)®p0k 1)qkj+

k=a
@p) @ pr.
+p0,l P; pO,l +

+§a(P0a | ®elf )®P0a 1) (64)
when Va <i.
3.3 Acceleration of the inertia centre of the rigid body (V)

Acceleration of the inertia centre of the rigid body (V)
is time derivative of (39):
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i .
_ .. a ) -
= YTy + L= 4 (69)
a=l1 a=1
The second part of the previous expression can be
written as:

dT i 0T
=Y i) 5 (66)
5o oq”

dr

According to (40), it can be written the following:
Moy _ 2’ _ Tat) _ Tp)

= = = ,  (67)
8qﬂ aq“aqﬁ 8qﬂ oq”
then (65) becomes:
i i
= 2 T + X X Tapnd®d” . (68)
a=1 a=1f=1
where
6Ta(l)
Lap(i) = o (69)
and
Loy =T pa(i)- (70)
In the case a < f then (see (55)):
oT
Pl
T .. =E,e, xT (71)
wP0) = Ai)
and, in the case a > f:
Moty _ <
T opi) = P Egesx T, (72)

The expressions (71) and (72) can be written in the
unique form:

raﬁ(i) = ginf(a,ﬂ) inf(a,f) % Sup(a,ﬁ)(i) - (73)

The expression (65) can be written in the following way:

=2 Ty +eraﬁ agf . (74)

a=1 a=1 =1

The vectors in (73), expressed in local body-fixed
coordinate frames have the following form:

Cinf(c,p) =

= (Po,inf(a,ﬂ) ® efﬂiiaﬁﬂ))) ® p;,inf(a,ﬁ)—l j - (75)

Taup(ar i) = Ssup(ac.5) (Po a1 ®e) ® piy )
X|:kzi;,!(l70,k ®p%§) ®p3,k +3k (Po,k—l ®e§f‘) ®p3,k_1 ) ¢ j+
+po,; @pl ® pf;,,.] "

+oo (Mg @) O by ). (T6)
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3.4 Angular velocity of the rigid body (Vi)

Angular velocity of the rigid body (V) can be obtained
from the following expression:

i
o =Y Ee,q%, (77)

or

If unit vector of axis in (77) is expressed in the local
body-fixed reference frames, then (77) has the following
form:

=Y &, (pOa 1®e( )®P0a 1)Cla~ (79)
a=1

4. KINETIC ENERGY OF THE RIGID BODIES SYSTEM

Consider an open chain of the rigid bodies system (7)),
("), ..., (V). Differential of kinetic energy of the body
(V) (Fig. 6) is:

2
dEk( ) =_dleM ) (80)
where C; represents inertia centre, dV; is infinitesimal
volume of the body (V;) which corresponds to
infinitesimal mass dm;.

(Vi)

X

Figure 6. Characteristic vectors of the rigid body (V)

Velocity of the point M; which belongs to the body
¥y is:

VMz' :Vi:VCi+miXPi~ (81)
Kinetic energy of the body (V) is:
1
Ek(i) :E j (VC,- +o; XP,-)'(VCZ. +o; Xpl-)dml- . (82)
i
Due to (see[3]):

I p;dm; =
()

the expression (82) becomes:

mipc, =0, (83)

24=VOL. 38, No 1, 2010

1
Ek(l) :EmiVCi 'VC[ +

+% I (0;xp;)-(0;xp;)dm; . (34)
(%)

Kinetic energy of the system of the rigid bodies is
equal to the sum of kinetic energies of each body:

n

1 n
Ey = ZEk(i) =52mch,- Ve, +
i=1 i=1
1 n
+Ez j o, xp;)-(@;xp;)dm; . (85)
l=1 Vl)
Since
n al'c.
Ve =2 4" (86)
! a=l1 aqa
then
arc 6rc .
Ve, Ve, = z z— o —Lq%q”. (87)
a1 =1 04

The second part of (85), using (78), can be
transformed as follows:

n

;%P = Y Ry ¥p; )4 = > Pi e (gg
i % Pi afi) P; g Z q (88)
a=l1 a=10q

then, it becomes:

1 n n n

1 n n o
=2 2 2 aapd“d” (90)

where

Z op; Op;
+Z [ "; dm; . 1)
=1(1)%" %4
Coefficients o, are called the covariant coordinates
of the basic metric tensor, and matrix [aaﬁ]e R™" are
called basic metric tensor. According to (40), the first

part of (91) becomes:
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:me(Ta(f)){Tmo}' (92)

The second part of the right side of (91) can be
transformed in the following way:

ZJ‘ 8pz_apld

an oq”
=2 [ Gdpleaxp)(epxpifim.  (93)
=1 (7)
Since (see[3]):

(s Xpi){eﬁxpi}:

~(eq)| ! ]2 {ea}, 9%

then (93) becomes:

=i~f_a_ﬂ(ea)[Jc[]{eﬁ}, (95)

where

nrt —Em &
2 2

= J- & ¢ +& —mg; |dm; o (96)

Vi 2 2

9 —Cisi =i M +&
denotes inertia tensor of the rigid body (V;). It is most
convenient for the inertia tensor of the body (V;) to be
expressed in local body-fixed reference frame 0&#,(;,

because, in this case, the inertia tensor is constant. After
that, covariant coordinates have the following form:

agp = gmz’ (Ta(i) ){Tﬁ(i)} -

+§é?a5?ﬁ (e(of))[./ci J{e(ﬂl)} , 97)
or

fap = ,»supzw,m m (o)) T +

gagﬁ(eg))[Jq]{e '

n

3

i=sup(, )

g + g - (98)

—
==
W"
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where aaﬂ and a a,[)’ denote translational and rotational
component of covariant coordinates:

n

K )| L0 R

and

n . .
agi= Y Ep(ed)[ue )R] oo
i=sup(a, )
From (98) it can be concluded that coefficients a,z
have the following property:

Agp (ql,...,q”)zaﬁa (ql,...,q”). (101)

Unit vectors in (100), expressed in body-fixed
coordinate frame have the following form:

eg) = Pa-1,i ®eg{a) ®pa—1,i =
*
=po 0N @p, ;. (102)
and

e(é) = p;—lt e(ﬂﬁ) O pp-1; =

=1y @) @y, (103)

5. DIFFERENTIAL EQUATIONS OF MOTIONS OF
THE RIGID BODY SYSTEM

In this section differential equations of motion of
rigid bodies system in covariant form using
quaternion algebra will be derived. Consider open
chain system of rigid bodies (V1), (V3), ..., (V). It is
assumed that constraints are holonomic, scleronomic
and ideal. A system of independent coordinates (q',
¢*,....¢") can be chosen, which allows that kinetic
energy to be written as the function of these
coordinates and their time derivatives. In this case,
differential equations of motion can be represented in
the form of Lagrange’s equation expressed only as
the function of generalized coordinates (¢', ¢°,...,q")
and their time derivatives:

d| OF OF
—[%‘J——k:Qy, (104)
dt{ o4

where O, denotes generalized force of active forces
system which act on the rigid body system, which
corresponds to generalized coordinate ¢’. Generalized
velocity partial derivatives of kinetic energy are:

OE;, L
—=—Zaﬂq +— Zaa},q (105)
q’
According to (98), (105) can be written as:
OF;

q’

Z Ay ™ (106)
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Time derivative of (106) is:

0B, | &
dt( J Za‘”q "

1& 6a aa
+— Z{ 7 "37}1 g (107)
2z pa\ 0" 0q”

Generalized coordinate partial derivatives of kinetic
energy are:

—=—ZZ “ﬁ o (108)
oq" 2,01 po1 0

Substituting (107) and (108) in (104), the Lagrange
equations have the following form [3]:

Zaayq +eraﬂyq q*

a=1p=1

=0,. (109

where

- aaﬂ}, aa},a ~ Oayp (110)
by = B Y
oq* oq oq

denotes Christoffel symbols of the first kind. This form
of equations is called covariant. According to (98), it
can be written:

Copy =Topy +Topy - (111)

where

t t

Ftr _ l ﬁ}’ 861 A _ aa(;ﬂ 112

afy — a ﬂ (112)
oq 8q oq”

denotes the translational components, and

a0t rot rot
rre: — l 45y aa?’a _ aaaﬂ (113)
B2\ 0 ogP o

denotes rotational components of Christoffel symbols.
Deriving (99), applying the following properties:

Maiy —or, Ty
Gqﬂ aq“aqﬂ oq”

, (114)

(71), (72) and (73), and substituting it in (112), the
translational components of the Christoffel symbols
become:

m; _inf(a,ﬂ) (einf(a,ﬂ) x
i=sup(a,B,7)

Tsup(a.p)i) ){Ty(i)} . (115)

where
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Cinf(c,p) =

inf (e, *
= Po,inf(a.p)-1 © ei(nf(f,, ﬁ))) ® P inf(ar.p)-1+ (116)

The rotational components of the Christoffel
symbols are as follows:

aarot ~ n 59%)

— — (i Oe

EsE, (e(l)) Jo, F==1 i)
i:sup(ﬂ,}/) ﬂ |: 1 :I 6(](2

According to (102) and (103), and doing the same as

in Section 3.2, partial derivatives of unit vectors of the
axis in the case o > f3,y, are:

(i)

0

i é?a() () (118)
oq”

and
aell)
¢ =Ze g/) () (119)
oq“

Substituting (118) and (119) into (117), it can be
obtained:

+isupz(:ﬂ’7) gaé?ﬁgy (e(ﬂl) )|:Jci :| {eg’l) % e(sfl)p(a,}’) } -(120)

Doing similarly with other components as in (113),
and substituting it into (126), the rotational components
of the Christoffel symbols become:

-y 5 fafﬁsy((e%ezzp(a, >)[ch4e<;>>+

i=sup(e,B,7)

o e
A a4 ) q1{6%>}—
(e[l ”xeﬁulw}) 20

According to the certain properties of members in
the previous expression, (121) becomes:
rot

Faﬂ v~

Sl ((efril)f(a 5 Xe(sfl)p(a,ﬁ) )[J G ]{e(yl)} -
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Due to the property of dual object, the inertia tensor
can be written in the following way [3]:

K j)[pﬁ]zdw g ){pf[z]—{pi}(pi)}dw,<1zs>

and substituting (123) in (122), the Christoffel symbols
become:

rot

Copy =
=%. > EEE
i=sup(a,.y)
(i)[—(eg(a, R EARCAE
+(eg)xegj)){pi}(pi){e%)}+
(

+(e%)xeg,i)){pi}(pi){e;)}jdmi. (124)

The last two terms of subintegral function in
previous expression can be written as follows:

(6o o) (e =l i ) [} =
= (e i el
)

+(eg1)p(a,,b’)xe7l ){ i} (pi { Cinf(a.B) } (125)

Subintegral function can be easily transformed in the
following expression:

(et ot [ 2 1)+
+( Ei)f(a 5 ()){p’}(pl){egi)p(a,ﬁ)}:
() g2 ot o) el o 120

and, the rotational components of the Christoffel
symbols become:

rot

Lopy =
- Y EEE
i=sup(a,B,7)
(i) B
( J){( e <)o} o) e fmi =
T e
where
[1,]= | {p:}(p:)dm; (128)
(")

denotes the planar moment inertia [3]. Unit vectors in
(127) can be expressed in local-body fixed coordinate

FME Transactions

frame like in (102), so the Christoffel symbols finally
become:

mi—in a, p,in a,p)- ®

ot ten [t
inf(e,f *

®e§nf(fz,ﬂ>)) ®Poainf<a,ﬂ)—1) Toup(ap)i )J{T o)+

n o % sup(a,B
+ Z fafﬁgg}, ((Psup(a,ﬁ),i ®e£upr()(a,ﬂ))) ®

i=sup(a,B.7)
®psup(a,ﬂ),i)x(p7’i ®eg/7) ®p},,i))[l_[l-]

{pmf(a B)i ®e£1111;€(aaﬁﬂ)))®pinf(a,ﬂ),z}- (129)

6. CONCLUSION

This paper has shown the development of Lagrange’s
equations of the second kind of the rigid bodies system
in the covariant form using the quaternion algebra. It
can be concluded that every vector which belongs to the
arbitrary body of the rigid bodies system can be easily
expressed in the body-fixed reference frame of another
body making composite quaternion, which consists of
Hamiltonian product of quaternions representing the
rotation neighbouring bodies, avoiding trigonometric
functions characteristic of Euler’s angles. Also, it is
easy to find generalized coordinate partial derivatives of
that vector.

Unlike the existing results, where quaternionic
approach has been applied only for the case of rotation
of one or two bodies, it is here presented the procedure
of obtaining the model of multi-body system of # rigid
bodies in terms of quaternions, which is useful for
studying kinematics, dynamics as well as for research of
control system designs.
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KNHEMATUKA U IUHAMUKA CUCTEMA
KPYTHUX TEJIA Y KBATEPHUOHCKOJ
DOOPMU: JATPAHKEBA ®OPMYJIALINJA Y
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KOBAPUJAHTHOM OBJIUKY - POJAPUT'OB
NPUCTYII

Hemama /1. 3opuh, Muxauuno I1. JlazapeBuh,
Anexcannap M. Cumonosuh

Y 0BOM pajy ce npeaiaxe KBaTepHUOHCKH NPHCTYII 3a
MOJICTIMPabe KHHEMAaTHKE U TUHAMHUKE CHCTEMa KPyTHUX
Tema. Ymecto perymapHor . IbytH-OjmepoBor u
JlarpamxeBor Merona KopumhieHOr Ha TpaJuIlHOHAIAH
HauWH, ymoTpeOibaBajy ce JlarpamxkeBe jemHaunHe
Jpyre BpCT€ y KOBapHjaHTHOM OOJIMKY NPHMEHOM
PonpuroBor mpucrtyma u KBaTepHHOHCKE —airedpe.
JlobujeH je Momen cucTtemMa Ol n KPyTHX Teha y
KBaTePHUOHCKO] (oOpMH KOjH je KOpHCTaH 3a
NpOy4aBamkbe KHHEMATHKe, IMHAMUKE CHCTeMa 3 OIILITH
Clly4aj KpeTama, Kao 1 3a CHHTE3y CHCTEMa YIIPaBJbamba.
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