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1. INTRODUCTION

Temperature Loading of a Thin Metallic
Plate Subjected Transversal to Law-
Frequency Electromagnetic Field

Since many devices (such as magnetic circuits of motors, generators,
inductors, transformers) work under the influence of the electromagnetic
fields, obtaining Joule’s heat as a thermal loading of the thin metallic
plate subjected transversal in homogenius, time-varying electromagnetic
field is presented in this paper. The direction of the field propagation is
normal to the surfaces of the plate. Plate thickness is small compared to
the depth of penetration of the magnetic field. Time-varying
electromagnetic field is the reason of the conducting currents appearance
in the material. The problem is solved in analytical form as the interior
Dirichlet boundary problem. The intensity of thermal loading of the plate
is obtained in dynamic form using the integral-transformation technique
(Double Fourier finite-sine transformation and Laplace transformation).
It depends on the plate thickness, electric conductivity, magnetic
permeability, frequency and magnetic intensity of the external
electromagnetic field, impulse’s cycle... The influence of the plate
thickness, field frequency and characteristic times of an impulse on the
dynamic thermal loading are considered. Thermal loading is the entrance
for the further calculation of the behavior of the plate, which is usually
done by FEM.

Keywords: depth of penetration, thin metallic plate, electromagnetic field,
magnetic induction, heat power.

Basic general pieces of information about the theory

As a special scientific field, electro-magneto-
thermoelasticity has started to develop at the end of the
fifties. The first applications were in geophysics,
detection of flaws in ferrous metals, optical acoustics,
levitation by superconductors and magnetic fusion. A
propagation of an elastic field in the presence of
magnetic field was considered by Knopoff [1], Dunkin
and Eringen [2]. W.F. Brown developed a rigorous
phenomenological theory for ferromagnetic materials on
the basis of the large deformation theory and the
classical theory of ferromagnetism [3]. H.F. Tiersten [4]
developed an analogous theory based on a microscopic
model. Since the general nonlinear theory is
complicated, Pao and Yeh derived a set of linear
equations and boundary conditions for soft
ferromagnetic elastic materials [5]. They applied linear
theory to investigate magnetoelastic buckling of an
isotropic plate. The same problem was treated in an
other way by Moon and Pao [6]. This theory was
applied by Shindo [7] to define the intensification
factors of cracks in ferromagnetic elastic solids.
Roychoudhuri and Banerjee (Chattopadhyay) [4]
considered the influence of the magnetic fields in a
rotating media.
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of magneto-thermoelasticity were presented in mono-
graphs by Parkus [9]. A great contribution of a research
in this scientific field was given by Ambarcumian et al.
[10] and Krakowski [11]. A mathematical model for the
temperature field developed during high frequency
induction heating was established by Shen et al. [12].
Sharma and Pal investigated the propagation of
magnetic-thermoelastic plane wave in homogeneous
isotropic conducting plate under uniform static magnetic
field [13]. The two-dimensional problem of
electromagneto-thermo-elasticity for perfectly
conducting thick plate subjected to a time dependent
heat source was studied by Allam et al. [14]. A model
calculation of a high temperature superconducting
microstrip trans-mission lines was performed by
Krakovskii [15].

The subject of this paper is obtaining of Joule’s heat
as a thermal loading of a thin elastic, isotropic,
ferromagnetic plate. The plate is subjected transversally
to the homogeneous, time-varying magnetic field. Plate
thickness is small compared to the depth of penetration
of the magnetic field. The problem is described with
three systems of differential equations: Maxwell’s
equations, equations governing temperature field and
equations describing deformation and stress fields.
Time-varying electromagnetic field is the reason of the
conducting currents appearance in the material which
provides Joule’s heat. Dynamic impulsive electro-
magnetic field is mathematicaly defined as a sum of
Heaviside functions. The problem is solved in an
analytical form as the interior Dirichlet boundary
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problem. The intensity of thermal loading of the plate is
obtained in a dynamic form using the integral-transform
technique.

2. BASIC EQUATIONS

Let the metallic rectangular plate dimensions a x b x A
(Fig. 1) be subjected tranversally to the external
electromagnetic field induction Bo(t). It is assumed
that the plate material is elastic, isotropic, soft
ferromagnetic, and has good electric conductivity. Many
nickel-iron alloys used for the magnetic circuits of
motors, generators, inductors, transformers are of this
type.

A Bo(t)

X3
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a ,// / X2

Figure 1. Rectangular plate

Dynamic impulsive electromagnetic field presented
in Figure 2 can be mathematicaly defined as a sum of
Heaviside functions [16]

k
By(t)=Byy sinwt| H(t—ty;)-H(t-1;)], (1)

i=l1

where ¢,; is the moment of field occurrence, ¢; is the
moment of field disappearance and w is the appropriate
angular frequency.

Magnetic induction

Time

Figure 2. Impulsive electromagnetic field

In the case of the plane electromagnetic wave, field
amplitudes decrease according to an exponential law
along the trajectory of wave propagation (axis x3). The
penetration constant is in accordance with the decay of
one Neper (0.368) and its value is

, @=2mf", )

where x4 is magnetic permeability, o is electric
conductivity and f is wave frequency. The depth of
penetration J decreases with the increase of frequency,
conductivity and permeability.
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Figure 3 shows variation of the depth of penetration
as a function of wave frequency and relative magnetic
permeability u* for a soft magnetic material. Electric
conductivity of steel is ¢ = 7.7 - 10° S/m and magnetic
permeability for vaccum is go=4m - 107 H/m.
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Figure 3. Depth of penetration as a function of wave
frequency

As a result of time the changing electromagnetic
field conducting currents appear in electric conductors.
Let us assume that the change of the electromagnetic
field under the influence of the induced conducting
currents is small enough that we can prove that the
value of magnetic permeability u is nearly constant.

In the case of the stationary magnetic field
conducting currents do not appear in the plate material.
So, with the boundary condition

Bp :BO = tqu :/uOHO > (33)

magnetic field in the plate /7, is

Hy =" n,, (3b)
7,

Inducted currents form the secondary magnetic field
intensity H;.

This type of a problem is generally mathematically
described by a system of Maxwell’s equations for
slowly moving electrically neutral media and modified
Ohm’s law [9]

rotI:I:j+8—D, rotlzz—a—B, diVD:O,
ot ot
divl§:0, ngo(lz+ﬁxl§), Ezy()(I:I—ﬁx[)),
J=c(K+iixB), (4a)

where the following notation is applied: H — intensity of
the magnetic field, K — intensity of the electric field, B —
magnetic flux density (magnetic induction), D — electric
induction, J — current density, u — deflection, x4y —
permeability of vaccum, o — electric conductivity, & —
dielectric constant of vaccum and ¢ — time.

For the considered problem the system of equations
(4a) has simple form

rotI:I:J, rotIZ:—aa—f, diVEzO, J=0K. (4b)
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Magnetic induction in the plate material after
conducting current appearance B is

Ezyﬁzy(ﬁp+ﬁl):1§0+yﬁl, (5a)

and the system of Maxwell’s equations can be presented
as

- - H, 0B
rot Hy =J, roth—G(,u%+6—t0J. (5b)

3. DIFFERENTIAL EQUATION OF THE PROBLEM

Take the assumption that the plate thickness % is small
compared to the other two dimensions a and b and that
the middle surface of the plate (x;, x;, x3 = 0) has
enclosed contour line C.

Current density in the plate material can be
presented as [11]

L
Jzzrot[u(xl,xz,t)k], 6)

where u(x,x,,f) is scalar function which is equal to
zero on the contour C. From the condition (5b) we
have

rot{ﬁl—%u(xl,xz,t)lg}zo. @)

If the plate is thin and if the magnetic field
frequency is low, depth of penetration is longer than the
plate thickness and we can assume that the current-
induced field H, is nearly constant along the x; axis.
Thus, for the intensity of the current-induced magnetic
field we have

HIZ%M(XI,Xz,t)];. (8)

Equations (5b) and (8) give partial differential
equation of the considered problem as

O’u *u_ ou _ o 2B

4. CONDUCTING CURRENTS
Using the (1) which gives magnetic induction of the

external magnetic field, the (9) takes the following
form

Vlzu — oo u =
k
= ahZ{Boa)cosa)t[H(t —to ) H(t—1;) ]+
i=1
o) =8(t=1;)]},  (10)

where V; is the two-dimension Laplace operator, 0, is

Bysinot[ 5(t

the time derivative and ¢ is Dirac delta-function. Using
the following notation

mT nm a, +a
a, =, a,=—, ¢y =2 (lla)

and applying the double Fourier finite-sine
transformation marked as mn and the Laplace
transformation marked as *, + —> p we arrive at the
transformation function of the function u as (11b).

The inverse Laplace transformation and the inverse
double Fourier finite-sine transformation give the final
solution for the function u(x,x,,f) in the form (12).

The intensity of the magnetic field in the plate
material is defined as

HX

7’ 1
, =H,+H, =—0H0+Zu. (13a)

U

Boundary condition (3b) gives the intensity of the
external magnetic field after conducting current
appearance in the form

Hy=Hy+22 (13b)
o b

5. JOULE’S HEAT

Joule’s heat P, as eddy-current losses, can be calculated

QJFE O ot ©) from the expression
which is valid inside the contour C. On the defined P= —J'”J ||2 as, (14a)
contour, function u(x;,x,,f) is zero. o
—Ploi _ ,~Pli ) IV o
x 4hB, & a)p(e o—e ) sin wt ;e 7ol —sin coty;e” i (11b)
Uppn =~
HOp &y i (p2+a)2)(p+cmn) D+ Cmp
_16hB, o Sin@,x sina,x,
u(xp,xp,1) = Z — - r=
pab 23 a,a,

m=

.M»

1

. —C t—toi
[sm wty;e mn(t=loi) 4
1

cosw(r—t;)+wsinwo(t—1;

2 2
mn

n COS @ (1 1, ) +sin a)(t ;) = e " (t=toi)
+o (1=t0i) =

. e (t-ty; c
—{sma)tlie Cmn (1117) 4 gy =mn
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where S is an appropriate area of the middle surface of
the plate.

The power of the conducting current densities (15)
can be calculated using (6) and (12).

The presented procedure is suitable to obtain Joule’s
heat (eddy-current losses) in a plate subjected
transversally to time-changing magnetic field in the case
when the depth of penetration is large compared to the
plate thickness. The assumption that the magnetic field in
the plate is constant through the plate thickness is valid
only for the low-frequency external magnetic fields. For
high-frequency problems the presented procedure has to
be performed with the finite element method.

The power of the conducting currents is presented by
one type of volume heat source in the plate. The system
of equations describing temperature field in a plate is [17]

W=+ +2—, j=1,2,3 (16)
(o2

where « is the coefficient of thermal intensity, # is the
coupling between the temperature and the deformation
fields, 4o is the heat conduction coefficient, V* is the
Laplace operator. The temperature field is presented as
0 [°C, K] = T — T, where T is the temperature of the
plate in its natural state.

The quantity of heat generated in a unit volume and
unit time (heat source intensity) W(x;,x,x3,f) consists of
three parts: the intensity of external heat source Wg, the
hysterisis losses Wy and the Joule’s heat (eddy-current
losses).

The presented equation has to be completed with an
appropriate set of boundary and initial conditions.

If we take into account plate vibrations, we have to
involve finite element analysis along with the
analytically obtained solutions for the heat power and
the temperature field.
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]H(t—th-) . (15)

6. NUMERICAL RESULTS
6.1 Joule’s heat for a sinusoidal field

The first numerical example is given for a thin steel
rectangular plate with the thickness of 1 mm. The plate
was subjected to the external sinusoidal magnetic field
of a induction By, = 2T. It is assumed that all field
components vary in time ¢ as sinot. The properties of
steel are: relative magnetic permeability ., = 500 and
electric conductivity o = 10° S/m.

According to the solution (14a) and (15), the power of
the eddy-current losses was calculated for two field
frequencies and for three dimensions of the square plates.

Figure 4 presents time variation of the heat power
for the field frequency of 2 Hz in the period of 2
seconds. The presented diagram is obtained for the point
coordinates x; = x, = 10 mm.

—a=b=200mm
— a=b=400mm
a=b=600mm

") o ) alCaR
AR NN R
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Heat power [W/m2]

Time [s]

Figure 4. Heat power for the field frequency of 2 Hz at the
point x4 = X, =10 mm as a function of time

Dynamic variation of the heat power for the same
external field frequency and for x; = x, = a/10 is shown
in Figure 5.

The results for the external magnetic field of
frequency 20 Hz in the period of 200 ms are presented
in Figure 5.
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Figure 5. Heat power for the field frequency of 2 Hz and the
point x1 = x2 = a/10 as a function of time
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Figure 6. Heat power for the field frequency of 20 Hz at the
point x4 = X, = 10 mm as a function of time

Distribution of the eddy-current power (Joule’s heat)
across the middle surface of the plate is presented in
Figures 7 and 8. The power was calculated for the field
frequency of 2 Hz and at the moment # = 1.125 s.
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Figure 7. Distribution of the heat power across middle
surface of the plate dimensions 200 x 200 x 1 mm
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Figure 8. Distribution of the heat power across middle
surface of the plate dimensions 400 x 400 x 1 mm

As noticeable, conducting currents appear only near
the edges. Heat power is concetrated only in the zone
width of about a/10. The center of the plate has not
thermal loading.
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6.2 Joule’s heat for an impulsive magnetic field

Let the square steel plate dimensions 200 x 200 x 1 mm
be exposed to impulsive external strong magnetic field
of maximum induction of 27.

In the first example the frequency of the field was 1
Hz, while the pulse lasts 0.5 s and the time between two
neighboring pulses (relaxation time) was 0.5 s, too. The
appropriate diagram is presented in Figure 9.

2

Magnetic induction
Bo[T]

0 0,5 1 1,5 2 2,5 3 35 4
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Figure 9. External magnetic induction as a function of time
(impulsive magnetic field frequency 1 Hz)

Dynamic variation of the heat power for the
impulsive external magnetic field presented in Figure 9
for the points coordinates of x; = x, = a/10 is shown in
Figure 10.
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Figure 10. Heat power for the impulsive field of frequency 1
Hz at the point x4 = X, = a/10 as a function of time

The power of the conducting currents rapidly
increases  during the field appearance and
disappearance. Duration time and relaxation time of the
pulse are long enough that eddy-currents vanish at the
end of each circle.

According to the analytical solution, in the second
example, heat power of the eddy-current losses was
calculated for the ten times higher frequency field.
Characteristic times of the pulse are described in the
Figure 11.
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Figure 11. External magnetic induction as a function of
time (impulsive magnetic field frequency 10 Hz)
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The frequency of the field was 10 Hz, while the
pulse lasts 0.05 s. The diagram describing dynamic
variation of the heat power is presented in Figure 12.
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Figure 12. Heat power for the impulsive field frequency 10
Hz in the point x4 = x, = a/10 as a function of time

As noticeable from the presented diagram, for the
field frequency of 10 Hz the power of the conducting
currents rapidly increases during the field
disappearance.

The following example presents thermal loading of a
thin rectangular plate with dimensions a = » = 200 mm
and 7 = 1 mm. The distribution of the heat power
(Joule’s heat) across the middle surface of the plate is
presented in Figures 13 and 14.

™

Power [W/m?]

1.69E+01 ... 2.03E+01
1.35E+01 ... 1.69E+01
1.00E-02 ... 3.38E+00

A J|

Figure 13. Distribution of the heat power across the middle
surface for the plate dimensions 200 x 200 x 1 mmatt=0.1s
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Figure 14. Distribution of the heat power across the middle
surface for the plate dimensions 200 x 200 x 1 mm att=0.3s

Let the field frequency is 1 Hz according to the
diagram in Figure 9.

The material properties are the same as in the
previous examples.

Under the influence of the field appearance the
power of the eddy-currents increases and achieves its
maximum after about 0.08 s. Thus, 0.1 s after the field
appearance the power of the conducting currents is still
concentrated near the edges. During the time, the
intensity of the heat power decreases and propagates to
the center of the plate.
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The distribution of the heat power obtained using
analytical solution for # = 0.1 s is presented in Figure 13
and for = 0.3 s in Figure 14.

Further calculation (obtaining temperature field,
stress and deformation) is usually done using the finite
element analysis.

7. CONCLUSION

As many constructions (type magnetic circuits of
motors, generators, inductors, transformers) work under
the influence of the electromagnetic fields, the subject
of this paper is obtaining Joule’s heat as a thermal
loading of a thin metallic plate. The plate is subjected to
the homogeneous, time-changing electro-magnetic field.
The direction of the field propagation is normal to the
surfaces of the plate. It is assumed that the plate
material is elastic, isotropic, soft ferromagnetic which
has good electric conductivity. The plate thickness is
small compared to the penetration depth of the magnetic
field.

The problem of a metallic plate subjected
transversally to a strong, homogeneous, time-varying
magnetic field can be described through three systems
of differential equations: Maxwell’s equations,
equations governing temperature field and equations
describing deformation and stress fields.

Time-varying electromagnetic field is the cause of
the conducting currents appearance in the material
which provides Joule’s heat. Dynamic impulsive
electromagnetic field can be mathematicaly defined as a
sum of Heaviside functions. If the plate is thin and if the
magnetic field frequency is low, the depth of
penetration is large compared to the plate thickness and
we can assume that the current-induced field is nearly
constant along the plate thickness.

The presented problem is analytically solved as the
interior Dirichlet boundary problem and the intensity of
the thermal loading of the plate is obtained in the
dynamic form. A very suitable method for solving the
problem, as shown in this paper, is the integral-
transformation technique (Double Fourier finite-sine
transformation and Laplace transformation). It depends
on the plate thickness, electric conductivity, magnetic
permeability, frequency and magnetic intensity of the
exterior electromagnetic field, impulse cycle... So, the
influence of the plate thickness, field frequency and
characteristic times of the pulse on the dynamic thermal
loading of the plate is considered.

In the case of sinusoidal magnetic field conducting
currents appear only near the edges. Heat power is
concetrated only in the zone close to edges. The center
of the plate has not thermal loading.

When the magnetic field has impulsive character the
power of the conducting currents rapidly increases
during the field occurrence and disappearance. Under
the influence of the field appearance the power of the
eddy-currents increases and achieves maximum after
about several hundreds of seconds. After field
appearance, the power of the conducting currents is
concentrated near the edges. During the time the
intensity of the heat power decreases and propagates to
the center of the plate.

FME Transactions



Thermal loading is the entrance for the further
calculation of the behavior of the plate, which is usually
done by FEM.
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NOMENCLATURE

]
S

middle surface dimensions
plate thickness

time

magnetic induction
magnetic field intensity
conducting currents density
heat power

electric field intensity
magnetic field frequency
angular frequency
magnetic permeability
magnetic permeability of vaccum
electric conductivity

Dirac delta-function

SRR e\hw&mt@”xg

=

two-dimension Laplace operator

TEMIIEPATYPCKO OIITEPEREILE TAHKE
METAJIHE IIVIOYE IO AEJCTBOM
MATHETHOTI ITIOJbA HUCKE ®PEKBEHIIUJE

Becna MusnomeBuh Mutuh, Tamko MaHnecku

[lomro MHOre KOHCTPYKIHMje THIA MarHeTCKUX Koja
eJIEKTPOMOTOpA, ~ TeHepaTopa,  HWHIYKTOpa  HIH
TpaHcdopmaropa pane oJ yTunajemMm
CJICKTPOMAarHeTCKUX T10Jba, y pagy je NpHUKa3aHo
onpehuBame IlymoBe TOomIOTE Kao  TEPMUYKOT
omnrepehea TaHke MeTanHe IUtode. [lmoda je
NOCTaBJbEHA TPAHCBEP3aIHO Y OJHOCY Ha XOMOTCHO
BPEMEHCKH IPOMEHJBMBO EJIEKTPOMAarHeTCKO IOJbe.
[paBary mpoctupama Mmojba je yIpaBaH Ha Cpelby
paBaH mioue. JleOsprHa 1oYe je mana y nopehemy ca
OyOMHOM IIpOJMpama MarHeTHOI II0Jba. BpeMeHcku
NPOMEHJBUBO  €JIEKTPOMAarHeTHO TI0Jb€ JOBOIH JIO
nojaBe KOHAYKIMOHUX CTpyja Yy Marepujajy Iuioue.
[Ipobmem je pemieH y aHATUTHYKOM OOJHKY Kao
yHyTpaumu  JlUpuxJieoB  TpaHWYHH  NpoOJeM.
WuTen3urer ToruotHOr onrtepehema iode onapeheH je
y  IOUHAMUYKOM  OOJHMKY  NPUMEHOM  TEXHHUKE
WHTETPATHUX TpaHchopManrja (IBOCTPYKE KOHAYHE
cunycae DypujeoBe Ttpanchopmarmje u Jlammacose
tpancopmanmje). OH 3aBucH of JeOJbHHE ILIOYE,
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EIEKTPUYHE TPOBOJHOCTH MaTepujajia, MarHeTcKe
NepMeaduIHOCTH,  (pEeKBeHLUje U WHIYKLHje
CTIOJbAIIET MAarHETHOT I10Jba, UMITYJICHOT LHUKIYyCA...
Pasmarpan je yTumaj nuMmeHsuja 1uioue, (GpeKBEHIHje
nojha W KapakTepUCTHYHHX BpEeMeHa HMITyJca Ha
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JIMHAMHYKO TepMHuko omrepeheme taoue. Tako
nehuHUCAaHO TepMHUKO onrepeheme TpencTaBiba
yIa3HH MoAaTak 3a ojpehuBame MOHAIIAmA IJI0YE
(namon, nmedopmanuja), kKoje ce yobuuajeHo ojpelyje
NPUMEHOM METOJIe KOHAUHHX eJIeMEHaTa.
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