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Temperature Loading of a Thin Metallic 
Plate Subjected Transversal to Law-
Frequency Electromagnetic Field 
 
Since many devices (such as magnetic circuits of motors, generators, 
inductors, transformers) work under the influence of the electromagnetic 
fields, obtaining Joule’s heat as a thermal loading of the thin metallic 
plate subjected transversal in homogenius, time-varying electromagnetic 
field is presented in this paper. The direction of the field propagation is 
normal to the surfaces of the plate. Plate thickness is small compared to 
the depth of penetration of the magnetic field. Time-varying 
electromagnetic field is the reason of the conducting currents appearance 
in the material. The problem is solved in analytical form as the interior 
Dirichlet boundary problem. The intensity of thermal loading of the plate 
is obtained in dynamic form using the integral-transformation technique 
(Double Fourier finite-sine transformation and Laplace transformation). 
It depends on the plate thickness, electric conductivity, magnetic 
permeability, frequency and magnetic intensity of the external 
electromagnetic field, impulse’s cycle... The influence of the plate 
thickness, field frequency and characteristic times of an impulse on the 
dynamic thermal loading are considered. Thermal loading is the entrance 
for the further calculation of the behavior of the plate, which is usually 
done by FEM. 
 
Keywords: depth of penetration, thin metallic plate, electromagnetic field, 
magnetic induction, heat power. 

 
 

1. INTRODUCTION 
 

As a special scientific field, electro-magneto-
thermoelasticity has started to develop at the end of the 
fifties. The first applications were in geophysics, 
detection of flaws in ferrous metals, optical acoustics, 
levitation by superconductors and magnetic fusion. A 
propagation of an elastic field in the presence of 
magnetic field was considered by Knopoff [1], Dunkin 
and Eringen [2]. W.F. Brown developed a rigorous 
phenomenological theory for ferromagnetic materials on 
the basis of the large deformation theory and the 
classical theory of ferromagnetism [3]. H.F. Tiersten [4] 
developed an analogous theory based on a microscopic 
model. Since the general nonlinear theory is 
complicated, Pao and Yeh derived a set of linear 
equations and boundary conditions for soft 
ferromagnetic elastic materials [5]. They applied linear 
theory to investigate magnetoelastic buckling of an 
isotropic plate. The same problem was treated in an 
other way by Moon and Pao [6]. This theory was 
applied by Shindo [7] to define the intensification 
factors of cracks in ferromagnetic elastic solids. 
Roychoudhuri and Banerjee (Chattopadhyay) [4] 
considered the influence of the magnetic fields in a 
rotating media. 

Basic general pieces of information about the theory 
of magneto-thermoelasticity were presented in mono-
graphs by Parkus [9]. A great contribution of a research 
in this scientific field was given by Ambarcumian et al. 
[10] and Krakowski [11]. A mathematical model for the 
temperature field developed during high frequency 
induction heating was established by Shen et al. [12]. 
Sharma and Pal investigated the propagation of 
magnetic-thermoelastic plane wave in homogeneous 
isotropic conducting plate under uniform static magnetic 
field [13]. The two-dimensional problem of 
electromagneto-thermo-elasticity for perfectly 
conducting thick plate subjected to a time dependent 
heat source was studied by Allam et al. [14]. A model 
calculation of a high temperature superconducting 
microstrip trans-mission lines was performed by 
Krakovskii [15]. 

The subject of this paper is obtaining of Joule’s heat 
as a thermal loading of a thin elastic, isotropic, 
ferromagnetic plate. The plate is subjected transversally 
to the homogeneous, time-varying magnetic field. Plate 
thickness is small compared to the depth of penetration 
of the magnetic field. The problem is described with 
three systems of differential equations: Maxwell’s 
equations, equations governing temperature field and 
equations describing deformation and stress fields. 
Time-varying electromagnetic field is the reason of the 
conducting currents appearance in the material which 
provides Joule’s heat. Dynamic impulsive electro-
magnetic field is mathematicaly defined as a sum of 
Heaviside functions. The problem is solved in an 
analytical form as the interior Dirichlet boundary 
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problem. The intensity of thermal loading of the plate is 
obtained in a dynamic form using the integral-transform 
technique. 

 
2. BASIC EQUATIONS 

 
Let the metallic rectangular plate dimensions a × b × h 
(Fig. 1) be subjected tranversally to the external 
electromagnetic field induction 0 ( )B t . It is assumed 
that the plate material is elastic, isotropic, soft 
ferromagnetic, and has good electric conductivity. Many 
nickel-iron alloys used for the magnetic circuits of 
motors, generators, inductors, transformers are of this 
type. 
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Figure 1. Rectangular plate 

Dynamic impulsive electromagnetic field presented 
in Figure 2 can be mathematicaly defined as a sum of 
Heaviside functions [16] 
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where toi is the moment of field occurrence, t1i is the 
moment of field disappearance and ω is the appropriate 
angular frequency. 
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Figure 2. Impulsive electromagnetic field 

In the case of the plane electromagnetic wave, field 
amplitudes decrease according to an exponential law 
along the trajectory of wave propagation (axis x3). The 
penetration constant is in accordance with the decay of 
one Neper (0.368) and its value is 

 1
f

δ
σµ

=
π

, 2 fω = π , (2) 

where µ is magnetic permeability, σ is electric 
conductivity and f is wave frequency. The depth of 
penetration δ decreases with the increase of frequency, 
conductivity and permeability. 

Figure 3 shows variation of the depth of penetration 
as a function of wave frequency and relative magnetic 
permeability µ* for a soft magnetic material. Electric 
conductivity of steel is σ = 7.7 · 106 S/m and magnetic 
permeability for vaccum is µ0=4π · 10-7 H/m. 
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Figure 3. Depth of penetration as a function of wave 
frequency 

As a result of time the changing electromagnetic 
field conducting currents appear in electric conductors. 
Let us assume that the change of the electromagnetic 
field under the influence of the induced conducting 
currents is small enough that we can prove that the 
value of magnetic permeability µ is nearly constant. 

In the case of the stationary magnetic field 
conducting currents do not appear in the plate material. 
So, with the boundary condition 

 p 0 p 0 0B B H Hµ µ= ⇒ = , (3a) 

magnetic field in the plate Hp is 

 0
p 0H H

µ
µ

= , (3b) 

Inducted currents form the secondary magnetic field 
intensity H1. 

This type of a problem is generally mathematically 
described by a system of Maxwell’s equations for 
slowly moving electrically neutral media and modified 
Ohm’s law [9] 

 rot DH J
t

∂
= +

∂
, rot BK

t
∂

= −
∂

, div 0D = ,  

div 0B = , ( )0D K u Bε= + × , ( )0B H u Dµ= − × ,  

 ( )J K u Bσ= + × , (4a) 

where the following notation is applied: H – intensity of 
the magnetic field, K – intensity of the electric field, B – 
magnetic flux density (magnetic induction), D – electric 
induction, J – current density, u – deflection, µ0 – 
permeability of vaccum, σ – electric conductivity, ε0 – 
dielectric constant of vaccum and t – time. 

For the considered problem the system of equations 
(4a) has simple form 

rot H J= , rot BK
t

∂
= −

∂
, div 0B = , J Kσ= . (4b) 
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Magnetic induction in the plate material after 
conducting current appearance B is 

 ( )p 1 0 1B H H H B Hµ µ µ= = + = + , (5a) 

and the system of Maxwell’s equations can be presented 
as 

 1rot H J= , 01rot 
BH

J
t t

σ µ
⎛ ⎞∂∂

= − +⎜ ⎟
∂ ∂⎝ ⎠

. (5b) 

 
3. DIFFERENTIAL EQUATION OF THE PROBLEM 

 
Take the assumption that the plate thickness h is small 
compared to the other two dimensions a and b and that 
the middle surface of the plate (x1, x2, x3 = 0) has 
enclosed contour line C. 

Current density in the plate material can be 
presented as [11] 

 ( )1 2
1 rot , ,J u x x t k
h

⎡ ⎤= ⎣ ⎦ , (6) 

where u(x1,x2,t) is scalar function which is equal to 
zero on the contour C. From the condition (5b) we 
have 

 ( )1 1 2
1rot , , 0H u x x t k
h

⎡ ⎤− =⎢ ⎥⎣ ⎦
. (7) 

If the plate is thin and if the magnetic field 
frequency is low, depth of penetration is longer than the 
plate thickness and we can assume that the current-
induced field H1 is nearly constant along the x3 axis. 
Thus, for the intensity of the current-induced magnetic 
field we have 

 ( )1 1 2
1 , ,H u x x t k
h

= . (8) 

Equations (5b) and (8) give partial differential 
equation of the considered problem as 

 
2 2

0
2 2
1 2

( )B tu u u h
t tx x

σµ σ
∂∂ ∂ ∂

+ − =
∂ ∂∂ ∂

, (9) 

which is valid inside the contour C. On the defined 
contour, function u(x1,x2,t) is zero. 
 

4. CONDUCTING CURRENTS 
 

Using the (1) which gives magnetic induction of the 
external magnetic field, the (9) takes the following 
form 

 2
1 tu uσµ∇ − ∂ =   

 ( ) ( ){ 0 o 1
1

cos
k

i i
i

h B t H t t H t tσ ω ω
=

⎡ ⎤= − − − +⎣ ⎦∑ ,  

 ( ) ( ) }0 o 1sin i iB t t t t tω δ δ⎡ ⎤− − −⎣ ⎦ , (10) 

where 2
1∇  is the two-dimension Laplace operator, ∂t is 

the time derivative and δ is Dirac delta-function. Using 
the following notation 

 m
m
a

α π
= , n

n
b

α π
= , 

2 2
n m

mnc
α α

σµ
+

= , (11a) 

and applying the double Fourier finite-sine 
transformation marked as mn and the Laplace 
transformation marked as *, t → p we arrive at the 
transformation function of the function u as (11b). 

The inverse Laplace transformation and the inverse 
double Fourier finite-sine transformation give the final 
solution for the function u(x1,x2,t) in the form (12). 

The intensity of the magnetic field in the plate 
material is defined as 

 0
p 1 03

1
xH H H H u

h
µ
µ

= + = + . (13a) 

Boundary condition (3b) gives the intensity of the 
external magnetic field after conducting current 
appearance in the form 

 '
0 0

0

uH H
h

µ
µ

= + . (13b) 

 
5. JOULE’S HEAT 

 
Joule’s heat P, as eddy-current losses, can be calculated 
from the expression 

 2

S

hP J dS
σ

= ∫ , (14a) 
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2 2
1 2

1 2

1
x x

u uJ J J
h x x
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= + = +

∂ ∂
, (14b) 

where S is an appropriate area of the middle surface of 
the plate. 

The power of the conducting current densities (15) 
can be calculated using (6) and (12). 

The presented procedure is suitable to obtain Joule’s 
heat (eddy-current losses) in a plate subjected 
transversally to time-changing magnetic field in the case 
when the depth of penetration is large compared to the 
plate thickness. The assumption that the magnetic field in 
the plate is constant through the plate thickness is valid 
only for the low-frequency external magnetic fields. For 
high-frequency problems the presented procedure has to 
be performed with the finite element method. 

The power of the conducting currents is presented by 
one type of volume heat source in the plate. The system 
of equations describing temperature field in a plate is [17] 

 2
,

0

1
j j

Wu
t
θ η

κ λ
∂⎛ ⎞∇ − − = −⎜ ⎟∂⎝ ⎠

,  

 
2

E H
JW W W
σ

= + + ,  j = 1, 2, 3 (16) 

where κ is the coefficient of thermal intensity, η is the 
coupling between the temperature and the deformation 
fields, λ0 is the heat conduction coefficient, ∇2 is the 
Laplace operator. The temperature field is presented as 
θ [°C, K] = T – T0 where T0 is the temperature of the 
plate in its natural state. 

The quantity of heat generated in a unit volume and 
unit time (heat source intensity) W(x1,x2,x3,t) consists of 
three parts: the intensity of external heat source WE, the 
hysterisis losses WH and the Joule’s heat (eddy-current 
losses). 

The presented equation has to be completed with an 
appropriate set of boundary and initial conditions. 

If we take into account plate vibrations, we have to 
involve finite element analysis along with the 
analytically obtained solutions for the heat power and 
the temperature field. 

 
6. NUMERICAL RESULTS 

 
6.1 Joule’s heat for a sinusoidal field 

 
The first numerical example is given for a thin steel 
rectangular plate with the thickness of 1 mm. The plate 
was subjected to the external sinusoidal magnetic field 
of a induction B0 = 2T. It is assumed that all field 
components vary in time t as sinωt. The properties of 
steel are: relative magnetic permeability µrel = 500 and 
electric conductivity σ = 106 S/m. 

According to the solution (14a) and (15), the power of 
the eddy-current losses was calculated for two field 
frequencies and for three dimensions of the square plates. 

Figure 4 presents time variation of the heat power 
for the field frequency of 2 Hz in the period of 2 
seconds. The presented diagram is obtained for the point 
coordinates x1 = x2 = 10 mm. 
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Figure 4. Heat power for the field frequency of 2 Hz at the 
point x1 = x2 = 10 mm as a function of time 

Dynamic variation of the heat power for the same 
external field frequency and for x1 = x2 = a/10 is shown 
in Figure 5. 

The results for the external magnetic field of 
frequency 20 Hz in the period of 200 ms are presented 
in Figure 5. 



FME Transactions VOL. 38, No 2, 2010 ▪ 99
 

0

2

4

6

8

10

12

0 0,5 1 1,5 2

Time [s]

H
ea

t  
po

w
er

 [W
/m

2]
a=b=200mm
a=b=400mm
a=b=600mm

 
Figure 5. Heat power for the field frequency of 2 Hz and the 
point x1 = x2 = a/10 as a function of time 
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Figure 6. Heat power for the field frequency of 20 Hz at the 
point x1 = x2 = 10 mm as a function of time 

Distribution of the eddy-current power (Joule’s heat) 
across the middle surface of the plate is presented in 
Figures 7 and 8. The power was calculated for the field 
frequency of 2 Hz and at the moment t = 1.125 s. 

Power [W/m2] 

Figure 7. Distribution of the heat power across middle 
surface of the plate dimensions 200 × 200 × 1 mm 

Power [W/m2] 

Figure 8. Distribution of the heat power across middle 
surface of the plate dimensions 400 × 400 × 1 mm 

As noticeable, conducting currents appear only near 
the edges. Heat power is concetrated only in the zone 
width of about a/10. The center of the plate has not 
thermal loading. 

6.2 Joule’s heat for an impulsive magnetic field 
 

Let the square steel plate dimensions 200 × 200 × 1 mm 
be exposed to impulsive external strong magnetic field 
of maximum induction of 2T. 

In the first example the frequency of the field was 1 
Hz, while the pulse lasts 0.5 s and the time between two 
neighboring pulses (relaxation time) was 0.5 s, too. The 
appropriate diagram is presented in Figure 9. 
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Figure 9. External magnetic induction as a function of time 
(impulsive magnetic field frequency 1 Hz) 

Dynamic variation of the heat power for the 
impulsive external magnetic field presented in Figure 9 
for the points coordinates of x1 = x2 = a/10 is shown in 
Figure 10. 
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Figure 10. Heat power for the impulsive field of frequency 1 
Hz at the point x1 = x2 = a/10 as a function of time 

The power of the conducting currents rapidly 
increases during the field appearance and 
disappearance. Duration time and relaxation time of the 
pulse are long enough that eddy-currents vanish at the 
end of each circle. 

According to the analytical solution, in the second 
example, heat power of the eddy-current losses was 
calculated for the ten times higher frequency field. 
Characteristic times of the pulse are described in the 
Figure 11. 
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Figure 11. External magnetic induction as a function of 
time (impulsive magnetic field frequency 10 Hz) 
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The frequency of the field was 10 Hz, while the 
pulse lasts 0.05 s. The diagram describing dynamic 
variation of the heat power is presented in Figure 12. 
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Figure 12. Heat power for the impulsive field frequency 10 
Hz in the point x1 = x2 = a/10 as a function of time 

As noticeable from the presented diagram, for the 
field frequency of 10 Hz the power of the conducting 
currents rapidly increases during the field 
disappearance. 

The following example presents thermal loading of a 
thin rectangular plate with dimensions a = b = 200 mm 
and h = 1 mm. The distribution of the heat power 
(Joule’s heat) across the middle surface of the plate is 
presented in Figures 13 and 14. 

Power [W/m2] 

Figure 13. Distribution of the heat power across the middle 
surface for the plate dimensions 200 × 200 × 1 mm at t = 0.1 s 

Power [W/m2] 

Figure 14. Distribution of the heat power across the middle 
surface for the plate dimensions 200 × 200 × 1 mm at t = 0.3 s 

Let the field frequency is 1 Hz according to the 
diagram in Figure 9. 

The material properties are the same as in the 
previous examples. 

Under the influence of the field appearance the 
power of the eddy-currents increases and achieves its 
maximum after about 0.08 s. Thus, 0.1 s after the field 
appearance the power of the conducting currents is still 
concentrated near the edges. During the time, the 
intensity of the heat power decreases and propagates to 
the center of the plate. 

The distribution of the heat power obtained using 
analytical solution for t = 0.1 s is presented in Figure 13 
and for t = 0.3 s in Figure 14. 

Further calculation (obtaining temperature field, 
stress and deformation) is usually done using the finite 
element analysis. 

 
7. CONCLUSION 

 
As many constructions (type magnetic circuits of 
motors, generators, inductors, transformers) work under 
the influence of the electromagnetic fields, the subject 
of this paper is obtaining Joule’s heat as a thermal 
loading of a thin metallic plate. The plate is subjected to 
the homogeneous, time-changing electro-magnetic field. 
The direction of the field propagation is normal to the 
surfaces of the plate. It is assumed that the plate 
material is elastic, isotropic, soft ferromagnetic which 
has good electric conductivity. The plate thickness is 
small compared to the penetration depth of the magnetic 
field. 

The problem of a metallic plate subjected 
transversally to a strong, homogeneous, time-varying 
magnetic field can be described through three systems 
of differential equations: Maxwell’s equations, 
equations governing temperature field and equations 
describing deformation and stress fields. 

Time-varying electromagnetic field is the cause of 
the conducting currents appearance in the material 
which provides Joule’s heat. Dynamic impulsive 
electromagnetic field can be mathematicaly defined as a 
sum of Heaviside functions. If the plate is thin and if the 
magnetic field frequency is low, the depth of 
penetration is large compared to the plate thickness and 
we can assume that the current-induced field is nearly 
constant along the plate thickness. 

The presented problem is analytically solved as the 
interior Dirichlet boundary problem and the intensity of 
the thermal loading of the plate is obtained in the 
dynamic form. A very suitable method for solving the 
problem, as shown in this paper, is the integral-
transformation technique (Double Fourier finite-sine 
transformation and Laplace transformation). It depends 
on the plate thickness, electric conductivity, magnetic 
permeability, frequency and magnetic intensity of the 
exterior electromagnetic field, impulse cycle... So, the 
influence of the plate thickness, field frequency and 
characteristic times of the pulse on the dynamic thermal 
loading of the plate is considered. 

In the case of sinusoidal magnetic field conducting 
currents appear only near the edges. Heat power is 
concetrated only in the zone close to edges. The center 
of the plate has not thermal loading. 

When the magnetic field has impulsive character the 
power of the conducting currents rapidly increases 
during the field occurrence and disappearance. Under 
the influence of the field appearance the power of the 
eddy-currents increases and achieves maximum after 
about several hundreds of seconds. After field 
appearance, the power of the conducting currents is 
concentrated near the edges. During the time the 
intensity of the heat power decreases and propagates to 
the center of the plate. 
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Thermal loading is the entrance for the further 
calculation of the behavior of the plate, which is usually 
done by FEM. 
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NOMENCLATURE 

a, b middle surface dimensions 
h plate thickness 
t time 
B magnetic induction 
H magnetic field intensity 
J conducting currents density 
P heat power 
K electric field intensity 
f magnetic field frequency 
ω angular frequency 
µ magnetic permeability 
µ0 magnetic permeability of vaccum 
σ electric conductivity 
δ Dirac delta-function 

2
1∇  two-dimension Laplace operator 

 

 
ТЕМПЕРАТУРСКО ОПТЕРЕЋЕЊЕ ТАНКЕ 

МЕТАЛНЕ ПЛОЧЕ ПОД ДЕЈСТВОМ 
МАГНЕТНОГ ПОЉА НИСКЕ ФРЕКВЕНЦИЈЕ 

 
Весна Милошевић Митић, Ташко Манески 

 
Пошто многе конструкције типа магнетских кола 
електромотора, генератора, индуктора или 
трансформатора раде под утицајем 
електромагнетских поља, у раду је приказано 
одређивање Џулове топлоте као термичког 
оптерећења танке металне плоче. Плоча је 
постављена трансверзално у односу на хомогено 
временски променљиво електромагнетско поље. 
Правац простирања поља је управан на средњу 
раван плоче. Дебљина плоче је мала у поређењу са 
дубином продирања магнетног поља. Временски 
променљиво електромагнетно поље доводи до 
појаве кондукционих струја у материјалу плоче. 
Проблем је решен у аналитичком облику као 
унутрашњи Дирихлеов гранични проблем. 
Интензитет топлотног оптерећења плоче одређен је 
у динамичком облику применом технике 
интегралних трансформација (двоструке коначне 
синусне Фуријеове трансформације и Лапласове 
трансформације). Он зависи од дебљине плоче, 
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електричне проводности материјала, магнетске 
пермеабилности, фреквенције и индукције 
спољашњег магнетног поља, импулсног циклуса... 
Разматран је утицај димензија плоче, фреквенције 
поља и карактеристичних времена импулса на 

динамичко термичко оптерећење плоче. Тако 
дефинисано термичко оптерећење представља 
улазни податак за одређивање понашања плоче 
(напон, деформација), које се уобичајено одређује 
применом методе коначних елемената. 

 
 
 
 


