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Optimization of Wind Farm Layout 
 
This paper presents a method for determination of optimum positions of 
single wind turbines within the wind farms installed on arbitrary 
configured terrains, in order to achieve their maximum production 
effectiveness. This method is based on use of the genetic algorithm as 
optimization technique. The wind turbine aerodynamic calculation is 
unsteady, based on the blade modeled as a vortex lattice and a free-wake 
type airflow behind the blade. Optimization method is developed for two 
different fitness functions. Both functions use the total energy obtained 
from the farm as one of the key variables. The second also involves the 
total investments in a single wind turbine, so the optimization process can 
also include the total number of turbines as an additional variable. The 
method has been tested on several different terrain configurations, with 
special attention paid to the overall algorithm performance improvements 
by selecting certain genetic algorithm parameters. 
 
Keywords: wind farm layout, genetic algorithm, differential evolution, 
potential flow, lifting surface, panel method, free-wake model. 

 
 

1. INTRODUCTION 
 

Once suitable wind farm site is established, the next step 
should be wind farm design. It presents significant 
multidisciplinary engineering challenge and mainly 
consists in wind turbine selection, wind farm rating, 
wind farm layout determination and energy production 
analysis. Wind farm layout (distribution of wind 
turbines on the wind farm site) is affected by several 
factors which must be used in account: wind direction 
and wind energy distribution, wake interactions between 
wind turbines, land availability and possibility of 
construction. Up to date, several methods have been 
applied in order to try to optimize wind farm layouts. 

Ozturk and Norman [1] approach the problem with a 
greedy heuristic method. They try to maximize the 
profit, instead of the power output, defined by the 
estimated selling price for a kWh of electricity in a 
given market. Therefore, in objective function they use 
the term which presents the expected profit per kWh 
generated by the wind farm. The optimization method 
consists in trying different operations recursively (add, 
remove and move a turbine) in order to maximize the 
profit defined in objective function. A perturbation is 
added to try to avoid local minima. The wake model is 
very simple and does not take into account wake 
interference in the middle of the wind farm. 
Nevertheless, the method is very interesting as it 
performs quite fast and allows the wake model to be 
independent from the optimization algorithm. 

Mosetti et al. [2], Vila Moreno [3] and Grady et al. 
[4] use genetic algorithms to approach the wind farm 
optimization problem. In [2] and [4], a square wind 
farm is subdivided into a 10 × 10 grid. Genetic 
algorithms are utilized to determine the cells to install 

turbines so as to minimize the cost per unit energy. In 
the case of a wind farm, the individuals are the possible 
layouts of the turbines, the population is the assembly of 
the different individuals and the constraints are the 
minimum turbine separation and the wind farm 
boundaries. In above studies is demonstrated the 
effectiveness of genetic algorithms for solving the wind 
farm layout optimization problem. However, due to the 
binary coding method of the genetic algorithms used in 
[2-4], turbines could only be installed at the centre of 
selected cells. 

Donovan [5] formulates a model based on the 
generalized vertex packing problem (GVP), seeking to 
maximize the power generated in accordance with the 
constraints based on the number of turbines, turbine 
proximity and turbine interference. The mathematical 
background can be found in Hanif and Smith [6]. The 
wake model used in Donovan [5] is not specified, but 
this method seems nonviable for sophisticated wake 
models. 

Finally, Elkinton et al. [7] are developing the 
OWFLO project, standing for Offshore Wind Farm 
Optimization, a more comprehensive study that 
combines an energy production model (taking into 
account wake effects, electrical losses and turbine 
availability) with offshore wind farm component cost 
models. 

The existing work that has tackled wind farm layout 
optimization problem is very limited. Therefore, there is 
potential for improvement upon existing solution 
methods. 

In this paper is presented method for the layout 
optimization of a wind farm given a certain site and a 
certain number of turbines. The method is based on 
Genetic Algorithms as optimization technique, as they 
have been given a lot of attention as very potentially 
powerful optimization methods, and have already been 
applied successfully in many and hard optimization 
problems. Also, they are already successfully used by 
several researchers for optimal wind farm design 
problems. Our research has tried to apply Genetic 
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Algorithm method to the wind farm layout design 
problem with several improvements in calculation of 
fitness function [8]. 

The positions of turbines in a wind farm are adjusted 
freely, instead of being in the center of each cell (as in 
[2] and [4]), so that the wake effects could be further 
reduced and more wind energy could be captured. Since 
the optimization variables in this case are real value, a 
real-coded genetic algorithm is employed. In order to 
obtain wake effects more accurate, an improved wake 
model is used for calculation of each turbine wake 
shape and wake interactions. 

 
2. GENETIC ALGORITHMS 

 
2.1 General description 

 
Genetic algorithms (GA) are general-purpose search 
algorithms which use principles inspired by natural 
genetic populations to evolve solutions to problems. The 
basic idea is to maintain a population of chromosomes 
which represent candidate solutions to the concrete 
problem that evolves over time through a process of 
competition and controlled variation. Each chromosome 
in the population has an associated fitness to determine 
which chromosomes are used to form new ones in the 
competition process which is called selection. The new 
ones are created using genetic operators such as 
crossover and mutation. GAs have had a great measure 
of success in search and optimization problems. The 
reason for a great part of their success is their ability to 
exploit the information accumulated about an initially 
unknown search space in order to bias subsequent 
searches into useful subspaces i.e. their adaptation. This 
is their key feature, particularly in large, complex, and 
poorly understood search spaces where classical search 
tools are inappropriate, offering a valid approach to 
problems requiring efficient and effective search 
techniques. Although there are many possible variants 
of the basic GA, the fundamental underlying mechanism 
can be shown as: 

Procedure GA 
begin (1) 

t = 0; 
initialize P(t); 
evaluate P(t); 
While (Not termination-condition) do 
begin (2) 

t = t + 1; 
select P(t) from P(t - 1); 
recombine P(t); 
evaluate P(t); 

end (2) 
end (1) 

where P(t) denotes the population at generation t. 
As a part of real-coded GA, one of the recently 

developed optimization techniques, Differential 
Evolution (DE) has proven to be an efficient method for 
optimizing real-valued multi-modal objective functions. 
Besides its good convergence properties and suitability 
for parallelization, DE’s main assets are its conceptual 
simplicity and ease of use. 

2.2 Differential evolution 
 

Differential Evolution (DE), like other GAs, starts with 
a large collection design vectors, the initial population. 
It interprets the function value of a vector as a measure 
of that individual’s fitness as an optimum. Then, guided 
by the principle of survival of the fittest, the initial 
population of vectors is transformed, generation by 
generation, into a solution vector. 

The overall structure of the DE algorithm (Fig. 1) 
resembles that of most other population-based searches. 
Two arrays are maintained, each of which holds a 
population of n-dimensional, real-valued vectors. The 
primary array holds the current population while the 
secondary array accumulates vectors that are selected 
for the next generation. Selection occurs by competition 
between the existing vectors and trial vectors. The trial 
vectors used by DE are formed through mutation and 
recombination of the vectors in the primary array. 

Mutation is an operation that makes small random 
alterations to one or more parameters of an existing 
population vector. Mutation is crucial for maintaining 
diversity in a population, and is typically performed by 
perturbation. Traditional GAs uses a fixed type of 
perturbation, such as adding random numbers to 
individual parameters. 

 
Figure 1. DE scheme 

The problem with this approach is that it fails to 
account for the fact that what might be a small 
perturbation for one parameter might be gigantic for 
another. DE avoids this problem by using the population 
itself as the source of appropriately scaled perturbations. 
In this way, as convergence approaches, those variables 
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having a narrow and well-defined range around the 
minimum will have small variation among the population 
members, resulting in their mutations being relatively 
small. This automatic adaptation significantly improves 
behavior of the algorithm as convergence nears. 

 
3. TURBINE BLADE AND WAKE MODEL 

 
3.1 Analytical model 

 
The flow field is assumed to be potential (inviscid and 
irrotational) and incompressible. In that case velocity 
potential satisfies the Laplace equation: 

 0∆Φ = . (1) 

Unsteadiness is introduced by unsteady boundary 
condition: 

 ( ) 0TV V n− ⋅ =
G G G  (2) 

of the Kelvin theorem: 

 0D
Dt
Γ
=

�
 (3) 

and the unsteady form of the Bernoulli equation: 

 2 2 2

2

p p
V V

t
∞

∞
∞

− ∂Φ
= − −

ρ ∂
 (4) 

where: Φ is velocity potential, V
G

is absolute fluid 
velocity, TV

G
 is lifting surface velocity, nG  is the normal 

of the lifting surface at a certain point, and Γ�  is the 
bound circulation. 

In order to define the aerodynamic characteristics of 
blades, two models should be established: blade model 
and wake model. 

The blade is modeled as a thin lifting surface, which 
enables a complete 3D modeling around wind turbine 
blades. Unfortunately, it cannot deal with compressible 
and viscous flows. 

Numerical modeling of the wake must be done very 
carefully due to its high influence on the lift force 
generation. The free-wake model, which is applied in this 
paper, is one of the most advanced, since it can cover all 
relevant problems connected with the wake influence. 

 
3.2 Unsteady Kutta condition 

 
In case of inviscid problems, it is necessary to satisfy 
Kutta condition at the trailing edge. 

On the basis of unsteady Bernoulli equation, the 
difference between upper and lower surface pressure 
coefficients is: 

  ( )
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− ∂
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where subscripts U and L denote upper and lower 
surface values. 

In case of the thin lifting surface, with the 
assumption that spanwise velocity components are 

small, the potential difference can be written as an 
integral from leading edge to a certain point M at the 
surface: 

 ( )U L U L d
M

T T
LE

V V lΦ −Φ = −∫  (6) 

where the tangential velocity difference is the local 
bound vortex distribution: 

 ( )U LT TV Vγ = − . (7) 

Final equation defining the potential difference is: 

 U L d
M

LE
lγΦ −Φ = ∫ . (8) 

If we assume that spanwise velocities are small, the 
difference of velocity squares can be calculated as: 

 2 2
U L 2V V V γ∞− ≈ . (9) 

By substituting (9) and (8) in (5), the following 
equation can be obtained: 

 2
2 d

M

P
LE

C V l
tV

γ γ∞
∞

⎛ ⎞∂⎜ ⎟∆ = − +
⎜ ⎟∂⎝ ⎠

∫ . (10) 

The Kutta condition can be expressed as the 
uniqueness of pressure coefficients at the trailing edge, 
which, mathematically expressed, takes the form: 
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Since it is impossible to be V∞ = ∞, the relation 
within the parentheses must be equal to zero: 
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The integral in the upper equation is, in fact, the 
contour circulation which covers the lifting surface: 

 d
TE

LE
lγΓ = ∫�  (13) 

so, the (12) can be written as: 
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The expression for unsteady Kutta condition comes 
out directly as: 

 TEV
t
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∂

�
. (15) 

If the right hand-side part is substituted with (9) 
written for the trailing edge, we obtain: 

( )
2 2
U L U L

U L2 2
TE TE TE TE

TE TE

V V V V
V V

t

− +∂Γ
= − = − −

∂

�
. (16) 



 

110 ▪ VOL. 38, No 3, 2010 FME Transactions
 

From this equation it can be clearly seen that the 
variation of the lifting surface circulation in time can be 
compensated by releasing vortices of magnitude 

( )U LTE TEV V−  at the velocity ( )U L 2TE TEV V+ . 

 
3.3 Discretization and numerical solution procedure 

 
The method for the solution of this problem is based on 
the coupling of the dynamic equations of blade motion 
with the equations of aerodynamics. It is not possible to 
obtain an analytical solution of this problem, so 
discretization and numerical approach must be 
accepted. 

Dicretization in time is done by observing the flow 
around the blade in a series of positions that it takes at 
certain times tk (k = 0,1,2…), which are spaced by finite 
time intervals ∆t at different azimuths. 

Discretization of the thin lifting surface is done by 
using the panel approach. By this method, the lifting 
surface is divided in a finite number of quadrilateral 
surfaces – panels. Vorticity distribution is discretized in 
a finite number of concentrated, closed quadrilateral 
linear vortices, whose number is equal to the number of 
panels, in such a way that one side of the linear vortex is 
placed at the first quarter chord of the panel, and 
represents the bound vortex of the corresponding panel. 
The opposite side of the vortex is always placed at the 
trailing edge, while the other two sides are parallel to 
the flow. The wake is represented by quadrilateral 
vortex in the airflow behind the lifting surface. One side 
of it is connected to the trailing edge, while the opposite 
one is at the infinity. The other two sides (trailing 
vortices), which actually represent the wake, are placed 
parallel to the airflow. The vorticity of the quadrilateral 
vortex is equal to the sum of the vorticities of all bound 
vortices of the panels that correspond a certain lifting 
surface chord, but opposite in direction. Then the 
trailing edge vorticity is equal to zero. 

Model established in such a manner corresponds to 
the steady flow case (Fig. 2). On the other hand, it can be 
very easily spread in order to include the unsteady effects. 

 
Figure 2. The steady panel scheme 

 
3.4 Vortex releasing model 

 
The variation of the lifting surface position in time 
induces variation of circulation around the lifting 
surface as well. According to the Kelvin theorem, this 

variation in circulation must also induce the variation 
around the wake. According to the unsteady Kutta 
condition, this can be achieved by successive releasing 
of the vortices in the airflow (Fig. 3). 

 
Figure 3. Vortex releasing 

Suppose that the lifting surface has been at rest until 
the moment t, when it started with the relative motion 
with respect to the undisturbed airflow. The vortex 
releasing, as a way of circulation balancing, is done 
continually, and in such a way a vortex surface of 
intensity γ (t) is formed. 

At the next moment t + ∆t, the flow model will look 
like in Figure 4. The circulation of the vortex element 
joined to the trailing edges equal to the difference in 
circulations at moments t + ∆t and t. 

 
Figure 4. Unsteady panel scheme 

We will discretize the vortex “tail” by replacing it 
with the quadrilateral vortex loop, whose one side is at 
the trailing edge, and the opposite side is at the finite 
distance from the trailing edge (shed vortex). By this we 
can obtain the final model for unsteady case. 

 
3.5 Discretization of wake 

 
The established vortex releasing model is appropriate 
for the wake modeling using the “free wake” approach. 

During the time, by continuous releasing of the 
quadrilateral vortex loops, the vortex lattice formed of 
linear trailed and shed vortices is created. 

The collocation points of the vortex lattice are node 
points. The wake distortion is achieved by altering the 
positions of the collocation points in time, by 
application of a rather simple kinematics relation: 

 ( ) ( ) ( )i i ir t t r t V t t+ ∆ = + ∆
KG G . (17) 
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The velocities of the collocation points are obtained 
as sums of the undisturbed flow velocity and velocities 
induced by other vortex elements of the flow field. 

Induced velocities are calculated using the Biot-
Savart law. In order to avoid the problems of velocity 
singularities, line vortex elements are modeled with 
core. The existence of the vortex core has remarkable 
influence in blade-wake interactions, since in this way 
large velocity irregularities on the blade close to the 
wake are avoided (Fig. 5). 

 
Figure 5. Discretized wake 

In this way, a discretized wake model, consistent 
with the panel model of the lifting surface and vortex 
releasing is obtained. 

 
3.6 Discretization in time of unsteady Kutta 

condition 
 

Let us consider the unsteady Kutta condition from the 
aspect of the assumed discretized model. It is necessary 
to substitute the partial derivative in (15) with the finite 
difference form: 

 
( ) ( )t t t

t t t
Γ + ∆ −Γ∂Γ ∆Γ

= =
∂ ∆ ∆
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. (18) 

By substituting this equation in (15), we obtain: 
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In case of numerical solutions, it is customary to 
satisfy Kutta condition in vicinity of the trailing edge. 
According to that, the intensity of the distributed 
vorticity at the trailing edge γTE is treated as equal to the 
intensity of the distributed vorticity at the trailing edge 
panel γn. The intensity of the distributed vorticity is 
constant at every panel, so it can be written: 

 n
TE n

nl
γ γ

Γ
= =  (20) 

where γn is intensity of the distributed vorticity at the 
trailing edge of panel, and li is the panel cord length. 
Substituting this equation in (19), the difference of 
circulations around the lifting surface at the moments t 
+ ∆t and t can be calculated by: 

 ( ) ( ) n

n
t t t V t

l∞
Γ

Γ + ∆ −Γ = − ∆� � . (21) 

4. DEFINITION OF EQUATION SET 
 

The boundary condition of impermeability of the lifting 
surface should be satisfied at any moment of time, tk (k 
= 0,1,2…) in a finite number of points of lifting surface: 

 ( ) 0; 1, 2, ,i T i iV V n i n− ⋅ = =
G G G … . (22) 

Points at which this condition must be satisfied are 
called the control points. One of them is placed on each 
panel, at the three-quarter chord panel positions. By this, 
at every moment of time, the number of lifting surface 
impermeability conditions is equal to the number of 
unknown values of circulations of bound vortices. 

The equations of motion of the lifting surface are 
known, as well as the velocities T iV

G
 of all characteristic 

points, and their normals inG  as well. 
At each flow field point, velocity can be divided to 

the free stream velocity and perturbation velocity: 

 i iV V w∞= +
G G G . (23) 

The perturbation velocity is induced by lifting 
surface and wake vortex elements. It is calculated by 
Biot-Savart law. At every moment, the wake shape and 
circulations of its vortex lines are known, and so the 
wake induced velocity at every flow field point is 
known as well. On the other hand, the circulations of the 
bound vortices are unknowns (their positions are 
defined by the lifting surface shape). The boundary 
condition for the i-th control point can be written as: 

 ( ),
1

n

i j ji i
i

a t b
=

Γ =∑  (24) 

where ai,j are the coefficients depending of the blade 
geometry, and bi are the coefficients containing the 
influence of the wake and free-stream flows. 

This way, by writing equations for all control points, 
the equation set of the unknown bound circulations is 
obtained. 

Besides this equation set, the Kutta condition must 
be satisfied. By adding the Kutta conditions to the 
equation set, an overdetermined equation set is 
obtained. It can be reduced to the determined system by 
the method of least-squares. After that, it can be solved 
by some of the usual approaches, by which the unknown 
values of circulations iΓ  at the time t are obtained. 

 
5. DETERMINATION OF THE AERODYNAMIC 

FORCE 
 

After unknown circulations iΓ  are obtained, velocity at 
every point of the flow field is known, and we can use 
them for the determination of aerodynamic forces that 
act on the blade. The calculation aerodynamic force is 
necessary for the defining of the blade position at the 
next moment of time. The total aerodynamic force is 
calculated as the sum of forces acting on all panels. 

 
1

n

i
i

F F
=

= ∑
G G

. (25) 



 

112 ▪ VOL. 38, No 3, 2010 FME Transactions
 

Aerodynamic force acting on a single panel can be 
defined by introducing the Kutta condition in a vector 
form: 

 ( )ef .i iF V BC
→

∞= ρ ×Γ
G G

 (26) 

where BC
→

 is bound circulation vector, and effective 
circulation is calculated from the leading edge to the 
quarter-chord position of the i-th panel in discretized 
form: 

 ( )
1

ef .
1

1
4

i
i

i ki
kV t

−

∞ =

⎛ ⎞Γ∂
Γ = Γ + Γ +⎜ ⎟⎜ ⎟∂ ⎝ ⎠

∑ . (27) 

 
6. OPTIMIZATION PROCESS 

 
The first steps in the process of genetic optimization are 
determination of the fitness function and definition of 
the variables and constant parameters of the 
optimization process, i.e. the definition of the 
chromosome of the individual. 

 
6.1 Definition of the fitness function 

 
Optimization process has been performed for the two 
different fitness functions. For a wind farm it is very 
important to determine the total energy that can be 
obtained from it. Because of that, in both cases the 
fitness function has the elements of the maximizing of 
the total obtained energy. 

In the first case, the fitness function is the ratio of 
the total energy that is obtained from the wind farm, 
denoted as Ptotal, versus the energy sum of the isolated 
wind turbine, denoted as Pmax, for the same wind 
conditions at the flat terrain. 

 total

max
fitness function 1 

P
P

= . (28) 

In the second case, the fitness function takes into 
account an economical factor, being the investment 
costs. In order to reduce the time required for the 
genetic algorithm calculations, a simplified model of the 
investment cost determination has been applied, in the 
sense that this factor is influenced only by the number 
of wind turbines. By this model it is assumed that 
nondimensional value costs/year is equal to one for one 
wind turbine, and that the maximum cost reduction is 
1/3 for each added wind turbine. According to that, the 
costs/year for the whole wind farm can be expressed in 
the form: 

 
20.0174N2 1costs N

3 3
e−⎛ ⎞= +⎜ ⎟

⎝ ⎠
. (29) 

Fitness function which also incorporates the costs 
and total power obtained from the wind farm can be 
written in the form: 

 
total

costsfitness function 2 
P

= . (30) 

Defining such an fitness function and by its 
minimizing during the optimization process, a 
disposition of the turbines within the wind farm can be 
obtained, which gives the best ratio of the obtained 
power and the investments. This fitness function can 
also be spread in the sense that the number of the wind 
turbines can be included as the optimization factor, 
which will be the subject of the next phase of these 
investigations. 

 
6.2 Selection of the parameters and definition of the 

chromosome 
 

The next step is the definition of the individuals, i.e. 
definition of the individual’s chromosome. To simplify 
the optimization process, we will assume that the 
terrain configuration where the farm will be positioned 
is known, that the farm will consist of the same 
turbines, meaning the same type, rotor diameter and the 
tower height. We will also assume that for the given 
terrain configuration the wind data are known, and also 
that the wind velocity and direction are constant. Such 
simplifications imply that the only variables of the 
fitness function are the x and y coordinates of the points 
where the wind turbines are positioned (the z 
coordinate can be obtained from the terrain 
configuration, Fig. 6). 

 
Figure 6. Layout of wind turbines on the site and variables 
which define a chromosome of an individual in the process 
of genetic optimization 

For N wind turbines of which the wind farm 
consists, the chromosome is simply formed as by 
joining the coordinates into an array, according to the 
following pattern: 

 

x1 y1 x2 y2 … … xN yN 

 
It can be seen that one individual actually represents 

a layout. Population consists of a certain number of 
individuals, i.e. possible dispositions of wind turbines 
on the site. 

In the optimization process the following parameters 
of the wind farm have been selected: 

• wind turbine rotor diameter D = 40 m 
• tower height H = 60 m 
• the field size 400 × 400 m 
• wind speed V = 10 m/s. 
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6.3 Optimization process for the fitness function 1 
 

The optimization process was initially done for the 
fitness function 1, with the following parameters of the 
differential evolution: 

• number of wind turbines on the farm N = 8 
• size of the population D = 20 
• parameters of the differential evolution process F 

= λ = 0.81 
• probability of the crossover CR = 0.75. 
The number of wind turbines on the farm comes out 

from the need to perform the calculations within the 
reasonable time limits, while the software is still in the 
process of development. The population of 20 
individuals, i.e. possible wind turbine layouts within the 
farm is quite sufficient in the process of differential 
evolution for such configuration of the terrain, although 
it would be worth making attempts even with the higher 
numbers, in order to verify the software capabilities in 
most general cases of application. The other parameters 
have been determined empirically, according to similar 
optimization problems and according to several test runs 
of this particular software. 

The flow of the optimization process is shown in 
Figure 7. From this diagram it can be seen that the 
method converges reasonably fast toward the optimum 
solution. 

 
Figure 7. Flow of the optimization process for fitness 
function 1 

Figure 8 shows the optimum distribution of eight wind 
turbines on the given terrain configuration, as obtained in 
the 865-th generation of the optimization process. 

 
Figure 8. Optimum distribution of the wind turbines for the 
fitness function 1 

6.4 Optimization process for the fitness function 2 
 

The optimization process was the done for the fitness 
function 2, with the following parameters of the 
differential evolution: 

• number of wind turbines on the farm N = 8 
• size of the population D = 20 
• parameters of the differential evolution process F 

= λ = 0.84 
• probability of the crossover CR = 0.78. 
With respect to the first process, parameters which 

control the process of the differential evolution have 
been slightly altered, as a consequence of several test 
runs. 

The flow of the optimization process is shown in 
Figure 9. From this diagram it can be seen that the 
method converges reasonably fast toward the optimum 
solution, and shows higher stability and convergence 
rate than the first process. 

 
Figure 9. Flow of the optimization process for fitness 
function 2 

Finally, Figure 10 shows the optimum distribution of 
eight wind turbines on the given terrain configuration, 
as obtained in the 890-th generation of the optimization 
process. 

 
Figure 10. Optimum distribution of the wind turbines for the 
fitness function 2 

 
7. CONCLUSION 

 
Results presented in this paper show that genetic 
algorithms can be successfully applied in the 
preliminary definition of the optimum disposition of the 
wind turbines on the farm. In wind farm layout 
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optimization, the positions of the turbines should be 
adjusted freely so that the wind wake effects could be 
further reduced. However, previous studies provided 
binary coded genetic algorithm to place turbines in the 
center of cells in a pre-defined grid. Method presented 
in this paper optimizes the continuous positions by 
using real-coded genetic algorithm. 

Further advances could be achieved by improving 
the aerodynamic model, in the sense of including the 
viscous fluid flow effects. That could be done in two 
ways: by applying a more complex general fluid flow 
model or by introducing approximate viscous effects 
calculations into the existing model. More complex 
general model coupled with GA, applied on present 
computers, would be very time consuming. Thus, the 
second option with the present hardware capabilities 
would be much more reasonable. Here presented 
optimization process could be improved by introducing 
larger populations, while accelerating the optimization 
process could be achieved by using parallel genetic 
algorithms. 
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ОПТИМИЗАЦИЈА РАСПОРЕДА 

ВЕТРОГЕНЕРАТОРА УНУТАР ФАРМЕ 
 

Бошко П. Рашуо, Александар Ч. Бенгин 
 
У раду је представљен метод одређивања 
оптималних положаја ветрогенератора у оквиру 
фарме, постављене на терену произвољне 
орографије. Оптимални положаји појединачних 
ветрогенератора су одређени тако да се постигне 
њихова максимална ефикасност. Метод је заснован 
на генетском алгоритму као оптимизационој 
техници. Аеродинамички прорачун ветрогенератора 
је изведен на нестационарном потенцијалном 
струјном пољу. Лопатице ветрогенератора су 
моделиране као вртложне површине, а вртложни 
траг је моделиран употребом „freewake“ методе. 
Оптимизациони модел је развијен за две функције 
циља. Обе функције користе укупну енергију 
добијену из фарме као једну од кључних 
променљивих. Друга функција циља укључује и 
укупно улагање у сваку појединачну турбину, тако 
да оптимизациони процес укључује и укупан број 
ветрогенератора као променљиву. Метод је тестиран 
на неколико произвољних конфигурација терена, при 
чему је посебна пажња посвећена избору параметара 
генетског алгоритма, како би се постигле повољне 
перформансе оптимизационог процеса. 

 


