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The problem treated here is to determine thermo-elastic stress in a thick
disc due to interior heat generation within the solid, under thermal

boundary condition, which is subjected to arbitrary initial temperature on

Lalsingh Khalsa

RTM Nagpur University
Mahatma Gandhi Arts, Science and Late
N.P. Commerce College, Armori

the upper and lower face at zero temperature, and the fixed circular edges
with additional sectional heat supply. The governing heat conduction
equation has been solved by using integral transformation techniques. The

results are obtained in series form in terms of Bessel’s functions.
Numerical calculations are carried out for a particular case of a disc made
of Aluminum metal and the results are depicted in figures.
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1. INTRODUCTION

As a result of the increased usage of industrial and
construction materials the interest in isotropic thermal
stress problems has grown considerably. However, there
are only a few studies concerned with the two-
dimensional steady-state thermal stress. Nowacki [1] has
determined steady-state thermal stresses in a thick
circular plate subjected to an axisymmetric temperature
distribution on the upper face with zero temperature on
the lower face and circular edge. Wankhede [2] has
determined the quasi-static thermal stresses in circular
plate subjected to arbitrary initial temperature on the
upper face with lower face at zero temperature. However,
there are not many investigations on transient state. Roy
Choudhuri [3] has succeeded in determining the quasi-
static thermal stresses in a circular plate subjected to
transient temperature along the circumference of circular
upper face with lower face at zero temperature and the
fixed circular edge thermally insulated. In a recent work,
some problems have been solved by Noda et al. [4] and
Deshmukh et al. [5]. In all aforementioned investigations
an axisymmetrically heated plate has been considered.
Recently, Nasser [6,7] proposed the concept of heat
sources in generalized thermoelasticity and applied to a
thick plate problem. They have not, however, considered
any thermoelastic problem with boundary conditions of
radiation type, in which sources are generated according
to the linear function of the temperatures, which satisfies
the time-dependent heat conduction equation. From the
previous literatures regarding disc as considered, it was
observed by the author that no analytical procedure has
been established, considering internal heat sources
generation within the body. The success of this novel
research mainly lies with the new mathematical
procedures with a much simpler approach for
optimization for the design in terms of material usage and

Received: August 2010, Accepted: November 2010
Correspondence to: Dr Vinod Varghese

Reliance Industries Limited,

Mauda, Nagpur (MS) 440 104, India

E-mail: vinod.varghese@ril.com

© Faculty of Mechanical Engineering, Belgrade. All rights reserved

performance in engineering problem, particularly in the
determination of thermoelastic behavior in disc engaged
for pressure vessels, furnaces, etc.

This paper is concerned with the transient
thermoelastic problem in a disc in which sources are
generated according to the linear function of
temperature, occupying the space D = {(x,y,z) € R :a<
(o + )" < b, — h <z < h} where r = (x* + y*)"? with
radiation type boundary conditions.

2. STATEMENT OF THE PROBLEM

In the first instance, we consider a disc in which sources
are generated according to the linear function of
temperature. The material of the disc is isotropic,
homogenous and all properties are assumed to be
constant. Heat conduction with internal heat source and
the prescribed boundary conditions of the radiation type,
the quasi-static thermal stresses are required to be
determined. The equation for heat conduction is 6(r,z,f)
the temperature, in cylindrical coordinates, is:

2
K li(rﬁj+ﬁ +®(r,z,t,6’):% )
ror\_ or) pz? ot

where O(r,z,t,0) is the internal source function, and x =
MpC, A being the thermal conductivity of the material, p
is the density and C is the calorific capacity, assumed to
be constant. For convenience, we consider the
undergiven functions as the superposition of the simpler
function [8]:

@(r,z,t,@):(I)(r,z,t)-i-l//(t)e(r,z,t) 2)
and

t
T(r,z,t)zﬁ(r,z,t)exp —J.l//(cf)dg ,

0

2(rz8) =@ (r,z,t)exp| -[y (£)dS 3)

0

or for the sake of brevity, we consider
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o(r—ry)o(z—-
x(r,z,t)= (r r(;?rro(z Zo)exp(—wt),
as<ry<b,-h<zy<h, »>0. (3a)

Substituting (2) and (3) to the heat conduction
equation (1), one obtains

2
K li( 8TJ+_6 +x(r,z,t)= oar 4)
ror\_ or) pz2 ot
where « is the thermal diffusivity of the material of the

disc (which is assumed to be constant), subject to the
initial and boundary conditions

M,(T,I,O,O):TO

forall a<r<b, -h<z<h &)
M, (T,1,k,a)=0,
M, (T, 1,ky,b)=0

forall -h<z<h,t>0 (6)
MZ(T,I,k3,h):exp(—a)t)é'(r—ro),
M_ (T, 1 ky,—h)=exp(-at)s(r—rny)

forall 0<r<b,t>0. 7

The most general expression for these conditions can
be given by

Mg(f,l;,l?,x)z(l;f+l?f)9:$ (Ta)

where the prime (”) denotes differentiation with respect
to &; d(r — ry) is the Dirac Delta function having a < ry
< b; > 0 is a constant; exp(-wf)d(r — ry) is the
additional sectional heat supply available on its surface
at z = £ h; T, is the reference temperature; k (=1) and

k (= k;, i =1,2,3,4) are radiation coefficients of the disc,
respectively.

The Navier’s equations without the body forces for
axisymmetric two-dimensional thermoelastic problem
can be expressed as [4]

2(1+

v e, 1 Qe (1+o) 00 _o,

r 121)6r 1-2v 8r
1 de 2(l+v) a0

. o,
1- 21)82 1-2v 62

Viu, —

=0 ®)

where u, and u, are the displacement components in the
radial and axial directions, respectively and the
dilatation e as

ou, u, Ou

=——L+L4+—= 8a
¢ or r oz (82)

The displacement function in the cylindrical
coordinate system are represented by the Goodier’s
thermoelastic displacement potential ¢ (7,z,f) and Love’s
function L as [5]

o &°L

9
“r= or araz ©)
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2
~9 -2k (10)

u
- 0%z

in which Goodier’s thermoelastic potential must satisfy
the equation

V2= (1+Ujat9 (11)
v
and the Love’s function L must satisfy the equation
VZ(VZL)zo (12)
where
2
v? =li(r3j+a—. (12a)
ror\C or) az2

The components of the stresses are represented by
the use of the potential ¢ and Love’s function L as

2 2
o, =2G M—V2¢ 9w L—a— , (13)
or? az or?

og0 —26{(1%—V2¢) a[ oV L—lﬁ—LJ}, (14)
r oz or

o 2 ) o, o2, O°L
ozz_zG{aZ v¢] 62[(2 v)V2L ;J},as)

and
¢ \V4 _i
B ZG{&GZ or ((1 ) & oz* j} {10

where G and v are the shear modulus and Poisson’s ratio
respectively.
The boundary condition on the traction free surface
stress functions is
0|y = Orel_yy =0 (17)
The equations (1) — (17) constitute the mathematical
formulation of the problem under consideration.

3. SOLUTION OF THE PROBLEM
3.1 Transient heat conduction analysis

In order to solve fundamental differential equation (4)
under the boundary condition (6), we firstly introduce
the integral transform [9] of order n over the variable r.
Let n be the parameter of the transform, then the
integral transform and its inversion theorem are written
as

b
g(n) = Irg(r)Sp (kl,kz,,unr)dr ,
a

g(r)zi(gp(n)/cn)Sp(kl,kz,,unr) (18)

S
Il
—_
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where g, (n) is the transform of g(r) with respect to

nucleus S,(ki,ko.u,r) and the eigenvalues p, are the
positive roots of the characteristic equation given as

Jo (ky, ua) Yy (K pib) = Jo (Ky, 1) Yy (Ky, a) = 0 . (18a)

The kernel function Sy(ky,kz.u,r) in the interval a < r
< b can be defined as

So (kiskys ptar) = Jo (st ) Yo (ks ptya) + Yo (kp, pyb) | =
Yo (1437)[ Jo (ks @) + T (o s1yb) | (18)
with
Jo (ki ur) = Jo (ur)+kppdg (ur),
Yy (ki,,ur)zYO(,ur)+kiyYO' (yr) (18¢)

fori=1,2 and
b 2
C, :jr[SO(kl,kz,,unb)] dr (18d)
a

in which Jy(ur) and Yo(ur) are Bessel functions of first
and second kind of order p = 0 respectively.

Applying the transform defined in (18) to the (3) —
(5) and (7), and taking into account (6), one obtains

_ o°T
K _/J}ET(}’Z,Z,[)'F% +/?(n’z’[)=
zZ
6T(n,z,t)
:—’ 19
P (19)
M, (T,l,o,o)zfo, (20)

M _(T,1,k3,h) =exp(—at)rySy (ki ky, 11,10) »
Mz (T,l,k4,—h) = exp(—a)t)rOSO (kl,kz,lunl"o) , (21)

;?(n, z, t) =
=1ySo (k1. k., 1,70 ) 5 (2 — 29 Jexp(—at)  (22)
where 7 is the transformed function of 7 and 7 is the
transform parameter.

We introduce another integral transform [8] that
responds to the boundary conditions of type (7)

—_—

f(mit)= | f(z0)B,(z)dz,
“h
f(z)=3 G (). (23)

A

1 m

3
I

The symbol (") means a function in the transformed
domain, and the nucleus is given by the orthogonal
functions in the interval — 2 <z < h as

B, (z)=0, cos(a,z)-W,sin(a,z) (23a)
where
O = a,, (ky +ky)cos(ayh),
W,, =2cos(a,,h)+ (ks —ky)a,, sin(a,h),
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h
A = | Pa(z)dz =
—h

=n[0} +W£]+%Z’"”[Qi ~Wa| @3b)

and the eigenvalues a,, are the positive roots of the
characteristic equation with

[ kzacos(ah)+sin(ah) ][ cos(ah)+kyasin(ah)|=
= [k4a cos(ah)— sin(ah)} [cos (ah)-kya sin(ah)} .(23¢)

Further applying the transform defined in (23) to the
(19), (20) and (22), and using (21) one obtains

—x

—,u,f T (n,m,t)+

}V()SO (kl,kz,,unro)exp(—a)t) .

ky ke

x ;?* n,m,t 1 d7* n,m,t
—arznT (n,m,t)+ (K' ):; (dt )»(24)
M, (T*,l,o,o) =Ty, (25)

SO (kl ,kz,/,ln}”o)Pm (ZO )exp(—a)t)
2n

7 (nm,t)= (26)

where 7" is the transformed function of 7 and m is the
transform parameter.

After performing some calculations on (24) and
using (26), the reduction is made to linear first order
differential equation as

daT —

?'FKAn,mT = H(/un’am) (27)
where
Ay = My + iy (27a)
and

H(#n’am):{Pm(h)K_Pm (-h)x Pm(zo)}'

ks ky 2nr,
198y (ky kg 1y ) exp (—at) . (27b)
The general solution of (27) is a function
T (n,m,t)exp(;c/l t) =

n,m
H (s, 0m)
=————2exp|-xA4,,,t)+C. 28
Py p (=K mt) (28)
Using (25) in (28), we obtain the values of arbitrary
constants C. Substituting these values in (28) one
obtains the transformed temperature solution as

y H(u,,
T (n,m,t)zMexp(—a)t)+

ym — @

+|:]—b* _H(ﬂnaam)
KAy — @

n,

}exp(—KAn’mt) . (29)
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Applying inversion theorems of transformation rules defined in (23) to the (29), there results

0

]_“(n,z,t) = Z %[pnm exp(—a)t)+(]_"()* ~ n.m )exp(—mn,mt)} P, (z) (30)

m=1""m

and then accomplishing inversion theorems of transformation rules defined in (18) on (30), the temperature solution is
shown as follows:

S I <R | —x
r Zt ZC_{ZT[(@nmexp( Q)t) ( 0 _Son,n1)exp(_mn,mt):|}Pm (Z)SO (klak2a,unr) (31)
n=l"—n =1"m
where
H(;Unaam)
@, = —m (31a)
w KAn,m_w

Taking into account the first equation of (3), the temperature distribution is finally represented by

H(V,z,t) = icin{ i %[pn’m exp(—a)t)_,_(]_b* ~Pum )exp(—/(/ln’mt)} }Pm (z)SO (kl,kz,,unr)expﬁw(g)dé} .(32)

n=l1 m=1""m 0

The function given in (32) represents the temperature at every instant and at all points of disc of finite height when
there are conditions of radiation type.

3.2 Thermoelastic solution
Referring to the fundamental equation (1) and its solution (32) for the heat conduction problem, the solution for the

displacement function is represented by the Goodier’s thermoelastic displacement potential ¢ governed by (11) and
represented by

¢(>G—jzci{z L ep(-0n) (oo (4,2, <z>}-

n=l1 m=1"m*"n,m

0

t
'So(klakz,ﬂnr)eXp[Iw(J)dll. (33)

Similarly, the solution for Love’s function L is assumed so as to satisfy the governed condition of (12) as

L(r,z,t)= GJF—Z)at ii{ i /I_Tl[pn’m exp(—a)t)+<70* ~Pnm )exp(—rc/ln,mt)]}

- n=1 m<n,m
t
.[Bnm sinh (,z)+ Cnmzcosh(ﬂnz)]SO (kl,kz,,unr)exp[j!//(é’)dgl . (34)
0

In this manner two displacement functions in the cylindrical coordinate system ¢ and Love’s function L are
formulated. Now, in order to obtain the displacement components, substituting the values of thermoelastic displacement
potential ¢ and Love’s function L in (9) and (10), one obtains

(1+UJ Z My {Z . ;11 [({On,m exp(—a)t)+(7_“0* _SOn’m)exp(—KAn’mt)}}

nmlmnm

t
.{Pm (z)—[(Bnm,un +Cppp )e0sh (1,2)+Cp 2 sinh(,unz)]}S(’) (ky,ky, 11,7 ) exp [It//(.{)dé’] , (35)
0

1 SRR T
O e L R L oo

-{[—am (O, sin(ay,z)+W,, cos(a,,z)) - 1y 2(-1+ 20)(B,, sinh(u,2)+C,,,,z cosh(1,2)) = 2(=1+20) C,,,, sinh (11, ) s, J

-So (ky, kg, 1)+ 1, (2(1 —U))[Bnm sinh (u,z)+C,,2 cosh(,unz)} .

t
.[ﬂnS()’(kl,kz,,unr)+ _— (kl,kz,,unr)]}exp[jw(é’)dé’] . (36)
0
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Thus, making use of the two displacement components, the dilation can be obtained. Then, the stress components
can be evaluated by substituting the values of thermoelastic displacement potential ¢ from (33) and Love’s function L
from (34) in (13) — (15) and (16), one obtains

_ 2G(1+Ujatici{i n _/: [SOn,m exp(—a)t)+(f0* —Son,m)exp(—mn’mt)]}-

n=1 1 m< nm

-{—Pm (Z)[r_lS(') (ki ky. 11,7 ) — a5, (kl,kz,ynr)J+,un (0= 1) 4By cO8h (11,2)+ C,p, (z5inh (11,2) + cosh (u1,2)) |

S0 (ky kg, p,r)+ ,unU[Bnm cosh (,z)+C,,, (zsinh (u,z)+ cosh(,unz))]
‘
.[r—lsé (K ky s 1,7 ) + 14,80 (kl,kz,ynr)}rZUCnmyﬁ cosh(x,2) S (kl,kz,unr)}exp[‘[l//(g’)dg’} , (37)
0

1 e O IR =
Ogp = 2G(1+Zjatz—{z T |:80n,m exp(—a)t)+(T0 —gon,m)exp(—lc/ln’mz‘)}}

n=l1 ” m=1""m*"nm
-{—Pm (z)[y,an(’)'(kl,kz,ynr)—amSO (kl,kz,,unr)]—i-,un (u—l)f1 [(,uanm +C,y Jeosh (p,z)+ ynCnmzsinh(,unz)]

-So (kl,kz,,unr)+ ,u,%u[(,uanm +Cn )cosh(,unz)+ 1,CrnZ sinh(,unz)] .

t
186 (kyokey a7 +So(k1,k2,ﬂnr)]+2')cnmﬂ3 COSh(#nZ)So(klakzaﬂnr)}exp@l//(f)dfi, (38)
0

(D D LR S Lo SR

m=1""m*"nm
{_/Jan (Z)|:/unS(,), (klakz,ﬂnV)Jfr_lSo (k15k2:,unr)j|+lu;% [Bnm COSh(/unZ)+CanSinh(:unZ)]'

'(2_U)|:ﬂnS6,(klak2’ﬂnr)+’ilSO (kl’k2hunr):|+(l_u),uns0 (kl’k2’,unr)+1uncnm COSh(/unZ)'

t
.[(2 —U)[ﬂnS(’)'(kl,kz,,unr)+ 'S, (kl,kz,ynr)] +(1-v) 2 Sy (kl,kz,,unr)}}exp“y/({)d(] : (39)
0
1 21 ]& -1 —
o, = 2G(;—Zjatgc—n{n§l A [ga,,,m eXp(—a)t)+(T0 —pn’m)exp(—l(/ln’mt)}}-

.{[_,unam (0, sin(a,,z)+ W, cos(amz))] So (ky.ky s 1,7 )+
+[Bnm sinh (u,z)+ C,,,zcosh (,u”z),u,f [U,un +(1—U)r71J—20,u,3Cnm sinh(ynz)} So (ki. ko, pt,r )+

t
+(1-0)[ By sinh (1,2)+ C,,z cosh ( ynz)][ﬂisg'(kl,kz, pinr) =S (ki ko s ynr)]} exp[J.!//(g’)dg":l . (40)
0

3.3 Determination of unknown arbitrary function B,, and C,,

Applying boundary condition (17) to the (37) and (40) one obtains

By, (h))?[h cos(ynh)}?—Z]—amfynS() (kl,kz,,unr)g[(Z—u))?+(1—U),u,,S0 (kl,kz,/,znr)]

" [(2-0) X +(1-0) 1,8, (kl,kz,unr)}{(h,un)cos(,unh)[hcos(,unh)f—Z}—gsinh(,unh)f} @D
and
_ P, (h))?[sinh(,unh)?]—amfynSé (kl,kz,ynr)cosh(ynh)[(Z—u))?+(l—u)/1nS0 (kl,k2,/1nr)J @)
" [(2-0) X +(1-0) 1,8 (kl,kz,,unr)]{gsinh(,unh)f—(h,un)cos(,unh)[hcos(,unh)f—Z}}
where
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X = 8§ (kpoky sty )+ 77 Sg (ke )
Y = ,u,f (U,un +r7! (1- U)) So (ky, ks sty )+ (1= U)(,ugS(')”(kl Sy, p,r)— r_zSo (ky,ky ,,unr)) ,

Z: 2U,Ll,% SIHh(:unh)Sé (klﬂk2alunr) P
f =W, cos(a,h)+0,, sin(a,h),

g = cosh (g, h)+ (k) sinh (z,h) . (42a)
4. SPECIAL CASE
Set
v($)= (t to) 0<itog<t, (43)
=0. 44

Substituting (43) and (44) into (32) and (37) — (40), one obtains the expressions for the temperature and stresses
respectively as follows:

O(r,z,t)= i {i i e [exp(—wt)—exp(—KAn’mt)J}Pm (2)So (kykyot,r) (45)

m

1+ - 1 |~

. =2e G(I_Zja ZC {mZ:l ﬂm/’;n:; [exp(—a)t)—exp(—/(/ln’mt)}}

.{—Pm(z)[r‘ls(’)(kl,kz,yn )—azSo (kisky, ttyr )J+,un (v- l ,un By c0sh (12,2)+ Cpyy (2 sinh (12,2) + cosh (2 ))]
-S(’)’(kl,kz,,unr)—i-ynu[ o €0sh (14,2)+C (z sinh (g,2)+ cosh(,unz))]-

.[r_lS(’) (kl ,kz,,unr) + 1,80 (kl ,kz,,unr)J + ZUCnm,u,% Cosh(,unz)SO (kl ,kz,,unr)} R (46)

Opy = 26GG+ZJat§CL{§ ;5/‘)/;1 a [exp(—a)t)—exp(—zc/ln’mt)]}.

11 (m=1"m*"nm
'{_Pm (Z)I:/I,%,S(’)’(kl,kz,,unr)—d,iSO (kl’kza/unr):|+:un (U 1 1[ /uanm +Cnm)COSh(xun )+tuncnmzsmh( ):|
So (k1K 4t,7)+ 170 (£ By + Co ) c08h (18,2) + 18,y zsin0 (18,2) |-

L5 (Ko ) + S0 (ks 1) ]+ 20C 1 €5 (12,2) S (K s )} 47)

= 2eG(1+0j05t ZL{ > —Onm [exp(—a)t)—exp(—ic/ln,mtﬂ}
{—,uan (z)[,unSg (ki sk g7 )+ 1718, (kl,kz,,unr)J + 2 [ Bun cosh (11,2)+ C,z sinh (u,2) |-
'(2_U)|:/unS(’),(k1ak2’/lnr)+ ’flSO (kl’k2nunr):|+ (1 _U),unSO (kl’k2’,unr)+1uncnm COSh(/unZ)'

'[(Z_U)[ynsél(klak2nunr)+r_lSO (kl,kz,/,lnl”):|+(1—l)),u,%S0 (klak2alunr):|} 5 (48)

1+v & 1 & _Son m

=2eG| — |a; Z— > [exp(—wt)—exp(—/c/ln,mtﬂ :

1-v el C, o 1/‘Lm/lnm
.{[_,unam (0, sin(a,,z)+ W, cos(amz))] So (ky.ky s 1,7 )+

+[Bnm sinh (1,2 )+ Cyymz cosh (4, 2) 12 [Uyn +(l—u)r_lJ—2uu,2,Cnm sinh (,unz)} So (kysky s g7 )+

+(1=0)[ B, sinh (1,2)+ C,ppyz cosh (u1,2) ] [ﬂ256'(k1 ey i) =1 1So (y ,kz,,unr)]} . (49)
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5. NUMERICAL RESULTS, DISCUSSION AND
REMARKS

To interpret the numerical computations, we consider
material properties of aluminum, which can be commonly
used in both, wrought and cast forms. The low density of
aluminum results in its extensive use in the aerospace
industry, and in other transportation fields. Its resistance to
corrosion leads to its use in food and chemical handling
(cookware, pressure vessels, etc.) and to architectural uses.

Table 1. Material properties and parameters used in this
study (property values are nominal) [10]

Material propertie / parameter Value
Modulus of Elasticity, E [N/cm?] 6.9-10°
Shear modulus, G [N/cm?] 2.7-10°
Poisson ratio, v 0.281
Thermal expansion coefficient, o, [1/°C] 255-10°°
Thermal diffusivity, x [cm%/s] 0.86
Thermal conductivity, A [W/m °C] 200.96
(cal s™'/cm °C) (0.48)
Inner radius, a [cm] 1
Outer radius, b [cm] 4
Thickness, /& [cm] 2

In the foregoing analyses are performed by setting
the radiation coefficients constants, k; = 0.86 (i = 1,3)
and k; = 1 (i = 2,4), so as to obtain considerable
mathematical simplicities. The other parameters
considered are rp=2.5,zp= 1 and w = 1.

The derived numerical results from (45) — (49) have been
illustrated graphically (Figs. 1 —5) for both: with internal heat
source, as well as without internal heat source, with available
additional sectional heat on its flat surface at z= 1.

Figure 1 shows the temperature distribution along the
radial and thickness direction of the disc at ¢ = 0.25. It is
observed that due to the thickness of the disc, a steep
increase in temperature was found at the beginning of the
transient period. As expected, temperature drop becomes
more and more gradually along thickness direction.

U @ s o
i e ey Ny,

Figure 1. Temperature distribution 8 along r and z direction
for t = 0.25 with internal heat source

Figure 2 shows the radial stress distribution g,, along
the radial and thickness direction of the disc at # = 0.25.
From the figure, the location of points of minimum stress
occurs at the end points through-the-thickness direction,
while the thermal stress response is maximal at the interior

FME Transactions

and so that outer edges tend to expand more than the inner
surface leading inner part being under tensile stress.

Figure 2. Radial stress distribution o, for varying along r
axis and z axis for t = 0.25 with internal heat source

Figure 3 shows the tangential stress distribution gy
along the radial and thickness direction of the disc at # =
0.25. The tangential stress follows a sinusoidal nature with
high crest and troughs at both ends i.e. » =1 and » = 4.

Figure 3. Tangential stress distribution gy, for varying
along r axis and z axis for t = 0.25 with internal heat source

Figure 4 shows the axial stress distribution o,
which is similar in nature, but small in magnitude as
compared to radial stress component.

>
) S
s W
.:.~':-~\

Figure 4. Axial stress distribution o, for varying along r
axis and z axis for t = 0.25 with internal heat source

Figure 5 shows the shear stress distribution o,. along
the radial and thickness direction of the disc at ¢ = 0.25.
Shear stress also follows more sine waveform with high
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pecks and troughs along the radial direction at » =1 and r =
4, but minimum at the center part along thickness direction.

Figure 5. Shear stress distribution o, for varying along r
axis and z axis for t = 0.25 with internal heat source

In order for the solution to be meaningful the series
expressed in (32) should converge foralla <r<band - A
<z < h. The temperature equation (32) can be expressed as

M 1
0 = z_
(r,z,t) e_ C

n=l"—n

Mop
{ Lo [ exp(—at) —exp(—k A, , t)}}

'Pm(Z)So(kl,kz,,unr). (50)

We impose conditions so that 8(r,z,f) converges in
some generalized sense to g(r,s) as t — 0 in the
transform domain. Taking into account the asymptotic
behaviors of P, (z), t,, So(ki,kou,r) and C, [8,9], it is
observed that the series expansion for 6(r,z,f) will be
theoretically convergent due to the bounded functions.

6. CONCLUSION

In this study, we treated the two-dimensional
thermoelastic problem of a thick disc in which sources
are generated according to the linear function of the
temperature. We successfully established and obtained
the temperature distribution, displacements and stress
functions with additional sectional heat, exp(-w?)d(r —
ro) available at the edge z = + & of the disc. Then, in
order to examine the wvalidity of two-dimensional
thermoelastic boundary value problem, we analyzed a
particular case with mathematical model for w({) = o(¢ —
to), and numerical calculations were carried out.

From the figures of stress functions it can be
observed that radial and axial stresses develop tensile
stress at the center of the disc, whereas its opposite
happens at the outer circular boundary. Tangential and
shear stresses develop compressive stress in axial
direction, so it may be concluded that due arbitrary heat
flux on the upper and lower surfaces of disc and internal
heat generation expand in axial direction and bend
concavely at the center. This expansion and bending is
in the proportion of the thermal diffusivity of metal.

The results obtained here are more useful in
engineering problems particularly in the determination
of state of strain in thick disc. Also, any particular case
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of special interest can be derived by assigning suitable
values to the parameters and function in the (37)—(40).
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JABOJUMEH3UOHAJJHHA HECTAIIUOHAPHU
IMPOBJIEM 3A JUCK BEJIMKE JEB/BUHE 3UJIA
CA YHYTPAIIIbUM HU3BOPOM TOIVIOTE

Bunon Baprese Jlancunr Kanca

Pan ce 0aBu mpo0IeMoM neprHNCama
TEPMOIUIACTHYHHX  HAIOHA KOjU  HACTajy  ycien
reHepucama TOIUIOTe YHyTap IHUCKa BeJHKe NeOJbHHE
3W/la Yy TPAaHUYHHAM TOIUIOTHUM YyclioBuMa. [lo ropmoj
MOBPIIMHU JUCK j& W3JIOKEH MPOU3BOJHHO]j IOYETHO]
TeMIIepaTypH, TEMIIEpaTypa Ohe MOBPLIMHE je HyNa, a
MOTNIPEYHH Tpecek (PUKCHE Kpy)KHE WBUIE U3IIOKEH je
JIOaTHOM TOIUIOTHOM H3BOpY. JeJHauMHa TOILUIOTHE
NPOBOJIUBMBOCTH j€ pelIeHa TEXHUKOM HWHTETpaliHe
TpaHcopmarje. Pesynarat cy moOHjeHH y OONHKY
pena mnomohy becemoBux ¢yHkumja. Hymepuuku
IIpopayyH je 00aBJbEH 3a CiTy4aj AUCKa O] alyMHHHjyMa,
a pe3yNITaTH Cy MPHKa3aH! Ha JWjarpamMuMa.
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