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Balancing in View of the Method of 
Singular Perturbation 
 
This paper presents several techniques for system order reduction, known 
from literature, all of them based on system balancing by employing the 
method of singular perturbation. These techniques have the same 
robustness accuracy evaluated with respect to the H∞ norm of the reduced-
order system like two techniques known as the direct truncation and the 
balancing residualization method. A modification of these techniques 
preserves the exact DC gain as the original system, and produces from 
very good to excellent accuracy at low and medium frequencies. To 
illustrate the efficiency of the order-reduction techniques here presented, a 
real simulation example is given. 
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1. INTRODUCTION 
 

In the eighties a technique of robust order reduction was 
developed for linear, time invariant systems, based on 
the use of balancing transformation [1-3]. 

A linear, time invariant system is considered, 
represented by a state space model: 

 0 0
d ( ) ( ) ( ), ( )

d
x t A x t Bu t x t x

t
= + =   

 ( ) ( ) ( )y t C x t Du t= +  (1) 

where x(t) is n – dimensional state vector, u(t) is m – 
dimensional input vector, and y(t) is p – dimensional 
output vector. A corresponding transfer function for the 
open loop system is given by: 

 1( ) ( )G s C sI A B D−= − + . (2) 

It is assumed that the system (1) is 
asymptotically stable and that G(s) is a minimal 
realization. 

Assumption 1: A system is asymptotically stable, a 
pair (A, B) is controllable and a pair (A, C) is 
observable. 

The controllability and observability gramians of the 
system (1) satisfy algebraic equations of the Lyapunov 
as in [2,3]: 

 0T TPA AP BB+ + = , (3) 

 0T TQA A Q C C+ + = . (4) 

For a system that is controllable and observable, 
both gramians, the one of controllability and the 
observability gramian, are positive definite matrices, i.e. 
P > 0, Q > 0. 

2. SYSTEM ORDER REDUCTION THROUGH 
BALANCING TRANSFORMATION 
 

The balancing transformation is such transformation of 
the state space vector that makes both the controllability 
and the observability gramians become identical and 
diagonal i.e.: 

 b ( ) ( )x t T x t= ,  

 b
b b b

d ( )
det( ) 0 ( ) ( )

d
x t

T A x t B u t
t

≠ ⇒ = + ,  

 b b b b( ) ( ) ( ) ( )y t C x t D u t y t= + = , (5) 

 1 1
b b b b, , ,A TAT B TB C CT D D− −= = = =  (6) 

 b b 1 2diag{ , , , }nP Q σ σ σ= = Σ = … ,  
 1 2 0nσ σ σ≥ ≥ ≥ >" , (7) 

where σi are Hankel singular values. 
Assuming that the original system is controllable 

and observable, a balanced system will be as well, both 
controllable and observable, since the balancing 
transformation preserves controllability and 
observability of the system [2,3]. Hence, all σi are 
positive. Furthermore, both original and balanced 
system are of minimal realization. 

The transfer function of the balanced system, given 
by: 

 1
b b b b( ) ( ) ( )G s C sI A B D G s−= − + = , (8) 

stays unchanged thanks to a coordinate change through 
a nonsingular transformation. The balanced gramians of 
controllability and observability are satisfying these 
algebraic Lyapunov equations: 

 b b b b 0T TΣA A Σ B B+ + = ⇔   

 b b b b b b 0T TP A A P B B⇔ + + =  (9) 

 b b b b 0T TΣA A Σ C C+ + = ⇔   

 b b b b b b 0T TQ A A Q C C⇔ + + = . (10) 
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The idea for the order reduction through balancing 
transformation can be linked with the original paper of 
Kalman in 1963 on the canonical system decomposition 
[4]. It was shown there that the system modes that are 
either uncontrollable or unobservable do not appear in the 
system transfer function. Therefore, in [2,3] authors 
deduce that the system modes both weakly controllable 
and weakly observable have little influence on the system 
dynamics, so they can be neglected. However, it was 
noticed that those modes which are weakly controllable 
and well observable can not be neglected, as well as those 
which are well controllable and weakly observable modes 
– they may become particularly important for the closed-
loop system performance. Let us assume that the balanced 
system (5) – (7) is partitioned in such a way that: 

 11 12 11
b b

21 22 22
,

A A B
A B

A A B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

,  

 [ ]b 11 22 b,C C C D D= = ,  

 1
1 1 2

2

0
, diag{ , , , }

0 r
Σ

Σ Σ
Σ

σ σ σ
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

… ,  

 2 1 2diag{ , , , }r r nΣ σ σ σ+ += … , (11) 

where A11 and A22 are matrices of the dimension r × r 
and (n − r) × (n − r), respectively, and other matrices 
have dimensions that correspond to the system 
dimensions defined as in (1). 

Assuming that σr > σr+1, a balanced truncation 
produces a system of lower order r, defined by: 

 1
11 1 11

d ( )
( ) ( )

d
x t

A x t B u t
t

= + ,  

 11 1( ) ( ) ( )y t C x t Du t= + . (12) 

The corresponding transfer function of the reduced 
order system is: 

 1
11 11 11 11( ) ( )G s C sI A B D−= − + . (13) 

Reduced order system achieved this way is both 
controllable and observable since all corresponding 
Hankel singular values are positive. Furthermore, the 
reduced order system is balanced and asymptotically 
stable. It was shown in literature [1] that the H∞ norm for 
the reduced order system, obtained through truncation 
procedure given above, satisfies the condition: 

 11 1 2( ) ( ) 2( )r r nG s G s σ σ σ+ +∞− ≤ + + +" . (14) 

It was noticed that the reduced order system 
obtained through balanced truncation procedure gives 
very good approximation of the original system in the 
case of the impulse input (good spectra approximation 
on higher frequencies) but shows considerable steady 
state error in the case of step input (poor spectra 
approximation on lower frequencies) [2,3,5]. This error 
is due to a fact that the original system and the reduced 
order system have different DC gains. Actually, after 
the above described truncation through balancing 
transformation, most of the spectra on lower frequencies 
are kept and some of the spectra on the higher 
frequencies also but some of the spectra on lower 
frequencies are lost as well as most of the spectra on the 

higher frequencies. By eliminating the part of the 
spectra on the lower frequencies (the neglected part of 
the system – state variables x2(t)), we produce gain that 
differs from the gain of the original system that was 
balanced. This discrepancy was removed in [2,3] where 
a technique of balanced residualization was proposed 
that produces an accurate (exact) DC gain and very 
good spectra approximation on the lower frequencies 
and middle frequencies. It should be noticed that in [1] 
was also used a residualization technique. Improved 
truncation method that preserves exact DC gain value as 
in the original system is given by (37). 

 
3. SYSTEM ORDER REDUCTION VIA BALANCED 

RESIDUALIZATION 
 

Let us describe in short the essence of the system order 
reduction technique based on the balanced 
residualization as in [1]. 

A balanced linear system given by (15) is under 
consideration: 

 1 11 12 1 11

2 21 22 2 22

( ) ( )
( )

( ) ( )
x t A A x t B

u t
x t A A x t B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

,  

 [ ][ ]11 22 1 2( ) ( ) ( ) ( )Ty t C C x t x t D u t= + , (15) 

where A11 and A22 are matrices of the dimension r × r 
and (n − r) × (n − r), respectively, and other matrices 
have dimensions that correspond to the system 
dimensions defined as in (1). 

Let us assume that corresponding Hankel singular 
values are satisfying σr > σr+1. Assuming that the state 
space variable x2 has reached its quasi-steady state value 
(it should be noticed that x2 is asymptotically stable fast 
space variable) we can place zero instead of 
corresponding time derivative, which leads to the next 
approximation of the reduced order system: 

 11 12 1 111

21 22 2 22

( )( )
( )

( )0
A A x t Bx t

u t
A A x t B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
,  

 [ ][ ]11 22 1 2( ) ( ) ( ) ( )Ty t C C x t x t Du t= + . (16) 

A matrix A22 is asymptotically stable – it has been 
shown in [1] that this matrix has all eigenvalues in the 
closed left half of the complex plane which makes it 
invertible matrix. Hence, from the second line of the 
(16) we can find x2(t) expressed as a function of x1(t) 
and u(t) as in: 

 ( )1
2 22 21 1 22( ) ( ) ( )x t A A x t B u t−= − + , (17) 

which leads to the form of the residualized system of the 
lower order: 

 1 r 1 r( ) ( ) ( )x t A x t B u t= +� ,  
 r 1 r( ) ( ) ( )y t C x t D u t= + . (18) 

 1
r 11 12 22 21A A A A A−= − ,  

 1
r 11 12 22 22B B A A B−= − ,  

 1
r 11 22 22 21C C C A A−= − ,  

 1
r 11 22 22 22D D C A B−= − . (19) 
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According to the theory of singular perturbation [6], 
this system represents zero approximation of the 
original system defined by (15). It is mentioned in [2,3] 
that the transfer function of the residualized system: 

 1
r r r r r( ) ( )G s C sI A B D−= − + , (20) 

apart from having the same property as the one for the 
reduced order system achieved through truncation, that is: 

 r 1 2( ) ( ) 2( )r r nG s G s σ σ σ+ +∞− ≤ + + +" , (21) 

also keeps true value of the DC gain as in the case of the 
original system. It can be noticed from (13) that the DC 
gain of the reduced order system is not the same as the 
DC gain of the original system, i.e.: 

 1
11 11 11 11(0) (0)G C A B D G−= − + ≠   

 1
b(0) (0)G CA B D G−= − + = ,  

[ ]
1

11 12 11
b 11 22

21 22 22
(0)

A A B
G C C D

A A B

−
⎡ ⎤ ⎡ ⎤

= − +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.  (22) 

On the other hand, it was shown in control literature, 
through several matrix algebraic operations, that the DC 
gain of the residualized system is identical to the DC 
gain of the original system, i.e.: 

( )1
r r r r r 11 22 22 21(0) 1G C A B D C C A A− −= − + = − − ×   

 ( ) ( )11 1
11 12 22 21 11 12 22 22A A A A B A A B

−− −× − − +   

 ( )1
22 22 22D C A B−+ − =   

[ ]
1

11 12 11
11 22

21 22 22
(0)

A A B
G C C D

A A B

−
⎡ ⎤ ⎡ ⎤

= = − +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.  (23) 

It was noticed that the residualized system of the 
reduced order gives well the approximation of the system 
spectrum on lower and middle frequencies. Hence, step 
responses of the residualized systems of reduced order are 
good approximation of the corresponding step responses of 
the original system. It is interesting that the reduced order 
system obtained through truncation have better spectra 
approximation on higher frequencies than the reduced 
order system obtained using balanced residualization. 

In the next part a further generalization of the results 
displayed above will be shown, as it was given in [2,3], 
that will lead to alternative techniques development. 
Techniques obtained will be based on the 
transformation known from the theory of singular 
perturbation by a name the Chang transformation. 

 
4. GENERALIZED BALANCED RESIDUALIZATION 

IN ORDER REDUCTION 
 

The order reduction technique explained in previous 
section actually represents the zero order approximation 
obtained by using the theory of singular perturbation [6]. It 
should be noticed that the theory of singular perturbation 
was used for the order reduction through balancing in a 
wide variety of papers – see the reference list in [2,3]. 

A singularly perturbed control linear system has 
model of the form: 

 1 21 1 1

3 42 2 2

( ) ( )
( )

( ) ( )
A Ax t x t B

u t
A Ax t x t Bµ
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

�
�

,  

 [ ] 1
1 2

2

( )
( ) ( )

( )
x t

y t C C Du t
x t
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

, (24) 

where µ is small positive parameter of the singular 
perturbation that exhibits differing of the state space 
variables in two groups – slowly varying variables x1(t) 
and fast varying variables x2(t). 

This system is dual to the system (15), literally – 
they are identical for µ = 1. Actually, the balanced 
system too has slow and fast modes: fast modes are 
those corresponding to small Hankel singular values and 
slow modes are those corresponding to relatively large 
Hankel singular values. Hence, it is possible to express 
the system (15) in a singularly perturbed form, e.g. 
assuming that µ = σr+1 / σr or even µ = σr+1 / σ1 and then 
multiplying by µ the second line in (15), the one 
corresponding to fast state space variables x2(t). This 
procedure will scale appropriately the corresponding 
matrices making their elements of the same size order as 
elements in matrices corresponding to slow variables 
x1(t). Matrices from (15) and (24) are satisfying: 

 1 11 2 12 3 21 4 22, , ,A A A A A A A Aµ µ= = = = ,  
 1 11 2 22 1 11 2 22, , ,B B B B C C C Cµ= = = = . (25) 

By using Chang transformation a singularly 
perturbed control system (24) can be partitioned 
(decomposed) in two independent subsystems, slow and 
fast: 

 1 s 1 s

2 f 2 f

( ) 0 ( )
( )

( ) 0 ( )
z t A z t B

u t
z t A z t Bµ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

,  

 [ ][ ]s f 1 2( ) ( ) ( ) ( )Ty t C C z t z t D u t= + , (26) 

where notation was introduced as in: 

 s 1 2 f 4 2,A A A L A A LAµ= − = + ,  
 s 1 2 1 f 2 1,B B MB MLB B B LBµ µ= − − = + ,  
 s 1 2 f 2 2 1,C C C L C C C LM C Mµ µ= − = − + . (27) 

L and M are matrices satisfying algebraic equation: 

 ( )4 3 1 2 0A L A L A A Lµ− − − = ,  

 ( )4 2 2 1 2 0MA A MLA A A L Mµ− + − − =⎡ ⎤⎣ ⎦ . (28) 

These equations could be successfully solved for 
small values of µ, using either the fixed point method or 
Newton’s method. For relatively large values of µ a 
method of eigenvectors can be used. Numerical methods 
mentioned above could be found in literature – see 
papers referenced in [2,3]. It should be noticed that in 
the case of small µ values an approximation of zero-
order for solution of the (28) is given by: 

 (0) 1 (0) 1
4 3 2 4,L A A M A A− −= = . (29) 

Output of the system (26) could be represented as: 

 [ ][ ]s f 1 2( ) ( ) ( ) ( )Ty t C C z t z t Du t= + =   
 s f( ) ( )y t y t= + , (30) 
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where outputs of the slow and fast subsystem are 
defined respectively as: 

 s s 1( ) ( ) ( )y t C z t D u t= + ,  
 f f 2( ) ( )y t C z t= . (31) 

It is not important where the feed-forward loop 
(direct output control branch) is included, whether it is 
associated with fast or with slow subsystem, which 
depends primarily upon the nature of the input signal of 
the system. Respectively, transfer function for the fast 
and the slow subsystem obtained from partitioning of 
the system given above are: 

 1
s s s s( ) ( )G s C sI A B D−= − + ,  

 1
f f f f

1 1( ) ( )G s C sI A B
µ µ

−= − =   

 1
f f f( )C sI A Bµ −= − . (32) 

In order to obtain exact partitioning (30) of the 
system in slow and fast subsystem, it is necessary to 
solve L-M equations. For the small values of the µ 
parameter this could be easily achieved using, for 
example, the fixed point algorithm. Several algorithms 
for solving L-M equations are suggested in [2,3]. 

Using term O(µ), from (28) and (29) we can deduce: 

 (0) 1
4 3( ) ( )L L O A A Oµ µ−= + = + ,  

 (0) 1
2 4( ) ( )M M O A A Oµ µ−= + = + . (33) 

These observations are suggesting that matrices 
obtained through exact system partitioning to slow and 
fast subsystem can be computed from matrices used in 
residualization approximation via following relations: 

 1
s 1 2 4 3 r( ) ( )A A A A A O A Oµ µ−= − + = + ,  

 1
s 1 2 4 2 r( ) ( )B B A A B O B Oµ µ−= − + = + ,  

 1
s 1 2 1 2 4 3 ( )C C C L C C A A O µ−= − = − + ,  

 f 4 2 4 ( )A A LA A Oµ µ= + = + ,  

 f 2 1 2 ( )B B LB B Oµ µ= + = + ,  
 f 2 2 1 2 ( )C C C LM C M C Oµ µ µ= − + = + . (34) 

Hence, the results known from the literature could 
also be obtained by perturbing matrices from (33) and 
(34) by adding the term O(µ) and placing µ = 0 in the 
transfer function of the fast subsystem that was defined 
in (32), which can be fair enough approximation on 
lower and middle frequencies (under assumption that µ 
is sufficiently small). 

A generalization of the residualization 
approximation can be obtained using slow subsystem 
with approximation of the fast one with its DC gain 
which equals 1

f f fC A B−− . Transfer function 
approximated with reduced order model is: 

 1 1
s s s f f f( ) ( )G s C sI A B D C A B− −≈ − + − . (35) 

The DC gain in generalized residualization satisfies 
following lemma given and proven in [2,3]. Here the 
proof will be omitted. 

Lemma: The procedure of generalized residualization 
preserves original value of the DC gain, i.e.: 

 1 1 1
s s s f f fCA B D C A B D C A B− − −− + = − + − . (36) 

Finally, in [1,2] it was emphasized that the DC gain 
for the model approximation using technique of 
balanced order reduction based on truncation could be 
improved if the transfer function of the truncated i.e. 
selected slow subsystem is chosen in the modified form 
as in: 

 corr 1
s,trunc 11 11 11( ) ( )G s C sI A B−= − +   

 1 1
11 11 11C A B CA B− −+ − , (37) 

which itself represents a correction of the truncation 
method. 

Simulations carried out for several examples have 
shown that such approximation can become closer to the 
approximation using balanced residualization. 

Table 1. System matrices for the model of the power system consisting of two machines 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

330033000000
033003300000
150031402610102500724001270029000
015903140050037300008002900000500
003710018200763023520027100
000060014100012001310000300
0000159031415903140

.-
.-

..-..-.-.-
..-.-.-.-.

.-.-.-.-.-

.-.-.-.-.
..-

A  

⎥
⎦

⎤
⎢
⎣

⎡
=

20100000000
00620000000

.
.

BT  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001350025800198002250012500
000350047200027005070000100
00000000010

.....-

.....
.

C  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00
00

D  
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5. EXAMPLE 
 

Methods displayed here for the order reduction were 
tested on several examples known from literature and 
taken from [7,8]. A multivariable model of two machine 
power system was simulated using Matlab. The example 
contains the model of the system having two inputs and 
three outputs. The value for the reduced order was 
determined from Hankel singular values. Several 
reduced order models were produced, using methods 
 

described above. The efficiency of these approximations 
was compared for typical input functions: impulse, step, 
ramp and sine. In the open loop case a comparison with 
the original model was made, for all frequency 
characteristics (both magnitude and phase spectra) of all 
available transfer functions. 

A mathematical model of a part of Serbian power 
system working in isolated regime is chosen for simulation 
and taken from [7]. It is the two machine power system 
having the system matrices given in the Table 1. 
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Figure 1. Impulse responses: original and balanced systems are compared with four different reduced order approximations 
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Figure 2. Step responses: original and balanced systems are compared with four different reduced order approximations 
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Figure 3. Magnitude and phase spectra: original and balanced systems are compared with four different reduced order 
approximations 

From matrix A dimensions (Table 1) it is clear that 
the system has order n = 7, and from Hankel singular 
values it was determined that the reduced order could be 
r = 5. System has two inputs and three outputs. 

Each of the model approximations had reduced order 
r = 5, and each of them was tested, as well as the 
original and balanced full order model, for typical input 
functions: impulse, step, ramp and sine. In time domain 
all of the approximations produce similar and good 
performance. 

From Figure 1 (at the end of the text) it could be 
seen that impulse responses for the original system, 
balanced model of order n and four reduced order 
models of order r are quite close. All six models exhibit 
similar performances in the open loop. 

From Figure 2 it is obvious that step responses for 
the original system, balanced model of order n and four 
reduced order models of order r are similar. All six 
models exhibit similar performances in the open loop. 

Frequency responses were compared for all 
available six transfer functions: from input 1 to all of 
three outputs and from input 2 to all of three outputs. 
For all six transfer functions, a magnitude and phase 
spectra were shown for all reduced order 
approximations, and for the original and balanced model 
as well. A µ value was 0.1173. 

Figure 3 shows frequency responses – both 
magnitude and phase spectra, of the original system, the 
balanced system of order n and four reduced order 
systems, all off order r = 5, obtained in different 
manners described above. 

The results show rather well behaviour of all 
approximations. Substantial accuracy can be achieved, 
better on lower frequency and worse on higher 
frequencies. It was chosen that the upper frequency 
bound for the open loop modelling is 34 rad/s. 

 
6. CONCLUSION 

 
It could be concluded that the generalized 
residualization method as well as its versions is very 
appropriate for the use on lower and middle frequencies. 
In several papers, e.g. [2,3,9,10] was noticed that in the 
closed loop controller design it is very important to take 
into account the high frequency dynamics. Several ways 
to overcome this problem are suggested in [2,3]. In the 
process of the order reduction it stays unclear where the 
boundary lies between linear systems with oscillatory 
modes and linear systems with highly oscillatory modes. 

Hence, it should be tried out both order reduction 
based on slow subsystem and order reduction based on 
fast subsystem, and depending on the results achieved 



FME Transactions VOL. 38, No 4, 2010 ▪ 187
 

for the system taken a decision should be made which 
technique for the order reduction gives better 
approximation. However, engineering experience will 
be an advantage in the method application. 
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РЕДУКЦИЈА РЕДА СИСТЕМА КРОЗ 

УРАВНОТЕЖЕЊЕ СА ГЛЕДИШТА МЕТОДЕ 
СИНГУЛАРНИХ ПЕРТУРБАЦИЈА 

 
Добрила Шкатарић, Нада Ратковић Ковачевић 

 
У раду је представљено неколико техника за 
редукцију реда система, познатих из литературе, 
које су све засноване на уравнотежењу система уз 
примену методе сингуларних пертурбација. Ове 
технике имају исту робусност тачности израчунату 
у складу са H∞ нормом система редукованог реда 
као и две технике познате под називом директно 
одсецање и метод балансиране резидуализације. 
Модификација ових техника задржава тачну 
вредност појачања једносмерног сигнала каква је 
код оригиналног система и даје апроксимацију од 
веома добре до одличне тачности на нижим и 
средњим учестаностима. Ефикасност приказаних 
техника за редукцију реда модела дата је на реалном 
примеру. 

 
 


