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Identification of the Stress-Strain State
of a Cylindrical Tank with Walls of
Variable Thickness

This paper presents the stress-strain analysis of a cylindrical tank shell
made of two segments with different thickness, loaded by the hydrostatic
pressure of water. Physical and mathematical models relevant for the
analysis of deflection and stresses of the tank shell as a function of
hydrostatic pressure are built. Functions of distribution of deflection,
transverse forces and appropriate moments of the tank shell, i.e. tank
segments, as well as stresses are determined. The mutual influences among
the tank segments, depending on the length and thickness of the plate of
applied segments, are identified, which creates the possibilty of optimum
design of tanks that are symmetrically loaded in relation to the axis. The
results obtained by the analytical procedure correspond to the results of
FEM. Diagrams of distribution of deflection, moments, transverse forces
and stresses are identical, while the maximum deviation of those values

does not exceed 5 %.
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1. INTRODUCTION

This paper presents the identification of the stress-strain
state of a cylindrical tank by the application of the
general theory of cylindrical shells, i.e. theory of
cylindrical shells loaded symmetrically in relation to the
axis. The subject of the analysis is a cylindrical tank
composed of two segments, heights h; and h,, i.e.
thicknesses o) and &, (Fig. 1). The methodology applied
in this example does not reduce the generality of
application in the tanks composed of several segments
made of plates with different thicknesses. Namely, the
conditions that hold in the section of joint between two
segments (section “A-A”, according to Figure 1) are
identical to the conditions, when there are several
segments (e.g. 4, in sections “B-B”, “C-C” and “D-D”,
according to Figure 2). That is why the analysis of the
tank from Figure 1 will be carried out in the further
procedure.

Also, the analysis procedure is based on accurate
expressions, which is very important in the cases when
the thickness of tank segment walls cannot be neglected
in relation to the height and diameter. Then the
application of expressions which hold for an infinitely
long tank according to [1] is not sufficiently correct, and
hence it is necessary to consider the mutual influences
among certain segments of the observed tank. The
theoretical postulates of the mentioned analysis are
given in [1-3]. The tanks made of segments with
different thicknesses and loaded by hydrostatic pressure
are frequently used in practice because of the rational
exploitation of material. The segments that are exposed
to higher hydrostatic pressure are made of thick plates
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(segments closer to the tank bottom), while thin plates
are used for the other segments (closer to the top of the
tank), due to lower pressure. The subject of stress-strain
identification is primarily the tank shell, while the
bottom is supposed to be supported by a sufficient
surface, so that there are no significant deformations,
i.e. the influence of the bottom on the tank shell is
negligible in relation to the load by hydrostatic pressure.
Recent research into cylindrical shells [4-7] shows
modern approaches in the analysis of stress state based
on FEM and experimental testing. In this paper, the
methodology of stress-strain identification of cylindrical
shells, within the mentioned research, points out the
effect of rational exploitation of material. The fact that
utilization of shells with variable thickness has
favourable influences on the phenomenon of local stress
is of particular importance. Stresses at critical points of
the tank can be reduced by inserting reinforcements
(ring), but the consequence would be a negative effect
of local stress in their neighbourhood, which was in
detail analysed in research [2].
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Figure 1. Cylindrical tank with two segments
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Figure 2. Cylindrical tank with four segments

2. METHODOLOGY OF THE THEORETICAL
ANALYSIS

Mathematical modelling of the cylindrical tank shell
will be performed in the example given in Figure 3. As
the tank shell consists of two segments (pos. 1 and 2),
besides the fixed-end reactions (Qq and M), there are
internal reactions in the contact between two segments
(Q; and M), according to Figure 4.
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Figure 4. Internal and external reactions of two segments

The differential equation of the elastic surface of the
cylindrical shell symmetrically loaded in relation to the
axis, according to [1-3], is:

4
dW gt (1)
dx* D
where the coefficient determined according to (2):
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4 Es  31-v?)

= 2
4r’D r’s?
where the flexural rigidity of the shell:
3
D= Lz ) 3)
12(1-v7)

The deflection of the round -cylindrical shell,
symmetrically loaded in relation to the axis, is given by
the expression:

w = e [C, cos(Bx) + C, sin(BX)]+
+e7PX[C3 cos(BX) + Cysin(AX)]+Wp(x) . (4)
The particular solution will be assumed in the form:
Wp(X)=Ax+B. 5)

A and B are indefinite coefficients, which are
obtained according to (6) and (7) by substituting (4) in
(1), we obtain:

48% (Ax+ B):—w 6)
@ptax=%x=a=L3_ )
D 45°D
apip =PI B:—@. ®)

45°D

The particular load (wp) which corresponds to the
load by hydrostatic pressure (Z) has the form:

_ P =x) _ pg(h—x) >
P ©)

The general solution of (1) has the form:
w(x) = e”X[C, cos(3x) +C, sin(x)] +

+e X [Cy cos(8X) + Cy sin(ﬂx)]—%gx)rz - (10)
Since the tank is composed of two segments, with
different stiffnesses, it is necessary to form two different
distributions of the elastic surface in each tank segment.
On the basis of that, we have:
o for: 0<x<h

w; (x) = &A% [C, cos(X) +C, sin(fx)] +
P [C5 cos(Bx)+Cy sin(ﬂx)]_%rz
1

(In

ie.
] fOI‘Z—thXSO
W, (X) = 872X [C5 cos(BX) + Cq sin(Bx)] +

_p9(h —x) 2

+e72X[C; cos(fix) + Cg sin(5X)]
ES,

(12)

The constants of integration (C;, C,, ... Cg) are
determined from the contour conditions at the ends of
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the tank (for X = h; and x = —h,), as well as in the
section of joint between two segments of the tank
(section “A-A”, for X = 0, according to Figure 1).

The contour conditions are:

d2
(My)yety =~ Dl{ WIJ =0 (13)
x=h

dx?
Qo -0y W] g (14)
xJx=h 1 03 )
x=hy
(Wp)x=0 = (W3)x=0 (15)
EIREI
dx ¥=0 dx =0

2 2
dx e dx e

-D, d3W1 __p,| 4% (18)
ax X0 a X0

(WZ)X=—h2 =0 (19)

dw, j o
—= =0. (20)
( dx x=—hy

The tank from Figure 3 is loaded by hydrostatic
pressure of water, i.e. we have:

Z=-pg(h —x). 1)

The tank dimensions relevant for calculation are as
follows: r = 4625 mm; h; = 7200 mm; h, = 3600 mm;
0, =6.0mm; & =7.8 mm.

The coefficients £, and 3 are determined according
to:

gD G 30 )
r=o r? 2
The derivatives of the function
w(x) = 7% [C, cos(8x) +C, sin(X)] +
e PX[Cy cos(Bx) + Cy sin(px)] - 29T 12 (23,

Eo

arce:
%N = ﬂeﬂx [(—Cl +C,)sin(Bx) +(C; + Cz)cos(ﬁx)] +

+e PX[(~C ~Cy)sin(Bx) + (~Cs +Cy) cos(BX)] +

2
PIr
+ Es 24)
((11\2, 23 eﬁx[ —C; sin(X) + C, cos(8x) |+
X

+2,8e7PX[Cy sin(8X) — Cy cos(X)] (25)

dSw
= =2 [(-C, ~C,)sin(X) + (~C; +C,) cos(BX)] +

+28%€ 77X [(~C3 +Cy)sin(BX) +(C3 + Cy ) cos(BX)] . (26)

When the function w; (X) is used, then there are the
coefficients: C;, C,, C; and C,.

When the function w; (X) is used, then there are the
coefficients: Cs, C4, C; and Cg.

Substituting (20) to (25) in (12) to (19), taking care
that (10) holds on segment “1”, i.e. (11) on segment “2”,
we obtain:

C {—eﬁlhl sin(A, hl)} +C, {eﬁlhl cos(ﬂlhl)} +Cy {e‘ﬂlhl sin(4, hl)} +C, {—e‘ﬂlhl cos(ﬂlhl)} =0 @7)

Cy {~e/1M [sin(iy) + cos(Bi) ]} + C [ [cos(y) —sin( )]} +

Cs {e M [cos(iy) —sin(Bi)]} + Cy (&AM [sin(iy) + cos()]} = 0 (28)
IS L R
C, +C3-C5-C, = = {51 52} (29)

CH{B+Co{ B +C3{=B} +Ca (B} +Cs{-La} +Co {=Pa} +C { fo} + Ca (-1} = _&rz{i_i} (30)

5 s
c, {2ﬂ12}+C4 {—2/312}+c6 {—2§ﬁ§}+c8 {2??@2}:0 (1)

C {—2/313} +C, {2;?13} +Cy {2/313} +Cy {2,313} +Cs {22—?@}“:6 {—255—?/}3}&7 {—2?—?@3}“:8 {—256—?/35’} =0 (32)

2
Cs {—e‘ﬁ2h2 cos(—f, h2)} +Cq {e‘ﬁ2h2 sin(— /s hy )} ‘G, {eﬂ2h2 cos(~foh, )} +Cq {eﬁ2“2 sin(— /s hy )} _ PO a5
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Cs {ﬂze_ﬂzhz [cos(—f,hy) —sin(—frh, )]} +Cs {ﬂze_ﬂzhz [sin(—f,hy) +cos(= oy )]} +

_ pgr?

C; {ﬁzeﬂzhz [sin(=,hy) +cos(= 1, )]} +Cg {ﬁzeﬂzhz [cos(—f,hy ) —sin(—Srh, )]} = . (34)

The previous system of algebraic equations can be
written in the matrix form:

{Ci} [K]={Q}. (35)

The column matrix {C;} is determined on the basis
of the matrix equation:

(ciy=[]"{Q} (36)
where:

{Gi}={C, C, C C4 C5 C¢ C Cs}T(37)

Kl= 38
-3 ki3 Kz k3 ki kg kg g
0
0
pghr { 11 }
E ] )
_par {L_L}
E o O
{Q)= b (39)
0
0
pghr?
Es,
_par’
Es,

The matrix coefficients (37) are given in Table 1.
By solving (35), we obtain the required coefficients:

0
C 0
C
21 1331107
C, )
c,| |-1352:10 !
c 1-1489-104[\m )’ (40)
s ]-1.489-107 [(m
Ce 1.352-107°
G 1.198-10713
Cs -14
5.197-10

On the basis of the values of these coefficients, the
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diagrams of distribution of deflections w; (X) and w;, (X)
can be formed.

Table 1. Coefficients of introduced replacements

ki —ePMsin(Bhy)

k2 eﬂlhlcos(ﬂlhl)

ks e ANsin(ghy)

Ky —e AN cos(Bhy)

ks ~e/1M [sin(ihy) + cos(Ay)]

ke e/ [cos(Ahy) —sin(fhy)]

ks e /M [cos(Bhy) —sin(Bh)]

ks e /M [sin(4ihy) +cos(Aihy)]

ko A

Kio ¥é5)

ki 287

Kis 28, /8683

ki3 28

Kis 28,165

Kis —e /2" cos(- )

Kig e P2Msin(—p,hy)

K7 2 cos(-yhy)

kis /2 sin(-p,h,)

Kig poe P2 [cos(—f,hy) —sin(-,)]
ka0 pre 2 [sin(=S,hy) +cos(— 1y )]
Kay BreP2m [sin(—f,hy) +cos(— )]
k2 Bo6"2" [cos(- By ) —sin(— o)

_wix) - deflection of the tank shell
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Figure 5. Diagram of distribution of deflections of the tank
shell

The moment of the cylindrical shell of the tank is
determined from the expression:
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x>

2
M, =—D(8—WJ. 41)

The transverse force of the cylindrical shell of the
tank is determined from the expression:

*w
Qx=- (—6X3 ] (42)
The moment in the circular direction (M) is:
M, =vM,. (43)

The moment for segment “1” of the tank is:

=20, 82 {eﬂlx [~Cy sin(B,%)+Cy cos(4x)] +
+e AX[Cy sin(BX) - Cy cos(B; x)]} RV
The transverse force for segment “17 of the tank is:
(Q), = 2D/ (e [(C) ~Cy)sin(4 0+
+H(=Cy +Cy) cos(fX)]+ & PX[(~C5 +Cy ) sin( B x) +
+(C3+Cy)eos(AX)]) 45)

The moment for segment “2” of the tank is:

(M), =—Dz[aZW2J:

x>
= 2D, 2 {eﬂz" [~Cs sin(B,X) + Cg cos( %) +
+e/2X[C; sin(,%) - Cg cos(ﬂzx)]} . 46)

The transverse force for segment “2” of the tank is:

(Qx), =2 D, {eﬂgx [(—C5 —Cg)sin(B,x) +
+(—Cs +Cg) cos( B X)] + g~ F2X [(-C7 +Cg)sin(B,X) +

+(Cy +Cg)cos(fx)]] @7)

The diagrams of distribution of moments, transverse
forces and stresses are given in Figures 6, 7 and 8,
respectively.
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Figure 6. Diagram of distribution of the bending moment
(M) of the tank shell
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Figure 7. Diagram of distribution of the transverse force
(Qy) of the tank shell

140 0(%) - equivalent stress of the tank shell
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Figure 8. Diagram of distribution of the equivalent stress
(o) of the tank shell

Equivalent stress (Fig. 8), is:

O, I\/O')%+G£—O'XO'¢+3T12nax <O4oy- (48)
For é<<1:
r
6Mx. 6M¢7 . 3Qx
O'X—F,O'w—é‘—z,‘[max—g. (49)

The importance of analytical methods in stress
identification, especially in highly stressed tanks [8], is
evident primarily in establishing correlations between
certain parameters of the tank (e.g. between the lengths
and heights of tank segments, depending on the
pressure). The knowledge of such regularities is
significant for determination of the stress-strain state,
particularly in the zones of change of section, such as
the transition from the spherical into the elliptical shape
[9,10], but also for the optimum design of tanks [11]. In
addition to analytical identifications of tank stress, there
are significant results obtained by using FEM, [12-18].
A lot of engineering problems are solved by using this
method. However, it is not suitable for the optimisation
process, because it requires a large number of iterations,
which extends the design period. The key activity in the
application of FEM is the generation of a finite element
mesh, and the triangle mesh [19] is most suitable for
cylindrical shells.

3. RESULTS OBTAINED BY FEM

By using ANSYS software, which is based on FEM, the
analysis of stress and strain, i.e. the analysis of
deflection of the tank shell was carried out for the
purpose of verifying the applied theory and the
performed methodology of the identification considered.

VOL. 39, No 1, 2011 = 29



The subject of analysis by applying FEM is the tank
shell composed of 2 segments of different thicknesses.
The value of hydrostatic pressure of water to which the
tank shell is exposed as well as its dimensions are
identical to the values used in the theoretical analysis,
while the connection between the tank shell and the
base is represented by fixed-end reactions. The FEM
model is thus, with respect to load, geometry and
constraints, identical to the theoretical model. The
tetrahedral finite elements, size 22 mm, were applied for
generation of the FEM model. Software calculation of
the stress-strain state was performed on the basis of the
model created, while the values read are presented in
comparative diagrams of deflection and equivalent
stress (Figs. 11 and 12). The trends of distribution of
deflection and comparative stress, obtained by means of
FEM, are in accordance with the trends of the same
distributions calculated by the analytical procedure.

TANSYS

Noncommercial use only

2492011 2:02 PM
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0.0011995
0.00104595

0, 00059953
0.00074956
0.00059959
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Figure 9. Total deformation tank of the shall (ANSYS)
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Figure 10. Equivalent stress (o)
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The FEM results for deflection and equivalent stress
are presented in Figures 9 and 10, respectively.

3.1 Comparative analysis of the calculation
procedure and the finite element method

By using the diagrams presented in Figures 11 and 12,
the comparative analysis for the tank loaded by
hydrostatic action of water, shown in Figure 1, can be
carried out. The key values that are the subject of
comparison are the deflection w (x) and the bending
stress o (X) of the tank shell.

wix) - deflection of the tank shell
0.2

0.0
02 2 4 5 7 & Aﬁ,-'l

-~

-0.4

-0%
-0.8
10 1
-1.2 = /
<14 ’/

18

Theoretical

———=FEM

Deflection of the fank shell fmm]

Height of the tank [mf

Figure 11. Diagram of deflections of the tank shell obtained
by FEM

arx) - equivalent stress of the tank shell
12
10

o the tank shell

4 — heoretical
] AN S S (N N A S EN
$= 2 o~
T I Sy Py
3 [ H == v
= 2 1 7 3% 4 5 & 7 9 10 11
33 .4

Height of the tank [mf

Figure 12. Diagram of distribution of equivalent stress of
the tank shell obtained by the application of FEM

Table 2. Comparative analysis of the value

Analytical iati
Name of the value| procedure FEM DeV;athll
(max. value) (max. value) [%]
Shell deflection 1.41 1.35 4.2
W (X) [mm]
Equivalent stress
o [kNem?] | 1148 e 3'6

4. FINAL CONSIDERATIONS

The previous presentation shows the analysis of the
stress-strain state of the tank with two segments, where,
on the basis of the diagram of the equivalent stress (Fig.
12), it can clearly be established that there is
insufficiently rational exploitation of the material for the
given dimensions of the tank. Therefore, in the
considered case we should tend towards the increase in
the number of segments in order to have the optimum
tank structure. The increase in the number of segments
for the constant height of the tank results in a more
uniform distribution of the equivalent stress oy (without
larger oscillation, i.e. peaks). It provides more rational

FME Transactions



exploitation of the material inserted. Also, the influence
of the tank bottom on the stress-strain state of the tank
shell is not taken into account and such an analysis
gives results on the side of safety. Namely, if a certain
deformation of the tank bottom were allowed, then it
would be transferred to the shell through the
corresponding moments, and the deformation would be
smaller than in the case considered. By analyzing the
stress diagram (Fig. 12), three characteristic zones of the
tank shell can be established, i.e.:

1. The zone of joining between two segments
(section “A-A”, according to Figure 1);

2. The zone immediately before joining with the
tank bottom (according to the case considered, it
is the zone around the value x =— 3.4 m);

3. The zone of joining between the tank shell and
the tank bottom (X = —3.6 m), where the
maximum value of stress occurs.

In the example considered, with two segments, there
is a very uneven distribution of stresses, with
pronounced peaks, and hence such a solution cannot be
regarded as economical. The aspect for its improvement
is seen in the increase of the number of segments (e.g. 4,
according to Figure 2), so that segment no. 4 would
have the role of elimination of the peak with the value
11.464 (kN/cm®), and segment no. 3 would eliminate
the value — 2.416 (kN/cm?). Selection of plate thickness
of certain segments defines the bending stress as well as
the mutual influence between the segments. The
optimum dimensions of the tank imply that the
equivalent stress oy (Fig. 12) has a relatively uniform
shape (close to the rectilinear line, without significant
peaks) and the value immediately below the allowed
stress (Oyoy)-

Generally, the methodology used in tanks with two
segments can be successfully applied to tanks with
several segments, which is especially significant in
design of tanks with large overall dimensions, where the
techno-economic aspect cannot be neglected. Thus the
condition for optimum design of the tank is provided.
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NOMENCLATURE
W (X,y) deflection of the tank shell
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load symmetrically in relation to the axis of

z the cylinder
E modulus of elasticity
r radius of the tank

W, (X)  particular integral of equation (1)

constants of integration

C3, C4

g acceleration of gravity

h height of the tank

h; height of segment “1”

h, height of segment “2”

My bending moment in the direction X
M, moment in the circular direction
Qx transverse force in the direction X

Greek symbols

B coefficient

v Poisson’s ratio

o thickness of the tank shell plate
o thickness of segment “1”

) thickness of segment “2”

P

fluid density
Oy bending stress in the direction X
O, stress in the circular direction
Tiax maximum shear stress
O. equivalent stress
Odoz allowed stress
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NIEHTUOUKALINJA JEP@POPMAIINJCKO
HAIIOHCKOI' CTABA IMWJINHAPUYHOI'
PE3EPBOAPA CA 3UJJOBUMA ITIPOMEH/bUBE
JEBJbUHE

Mupxo Benomesuh, [Iparan Ilerposuh, Muiian
Buxnh

VY oBoM pany je u3BplIeHa Je(opMalijcKO-HAIOHCKa
aHanM3a ~ OMOTada  [WIMHAPUYHOT  pe3epBoapa,
n3zpahleHOr W3 JBa CErMeHTa pa3IUuuTUX JeOJpHHa,
ontepeheHOr  XWMAPOCTAaTHYKMM  IPUTHCKOM  BOJE.
@dopmupann cy QUMUK M MaTeMaTHYKHd MOJEIH
MEpOJaBHM 3a aHAIM3y Yruba M HaloHa OMoOTada y
GyHKIMjH o XuapocTaTHukor mputucka. Oxpehene cy
¢yHKUMje pacmogene yruda, TpPaHCBEP3AIHUX CHIIA H
oarosapajyhux MoMeHaTa oMoTada OJHOCHO CerMeHaTa
pesepBoapa, Kao W HamoHa. MpeHTH(QHUKOBaH je
MehycobaH yTHIa] TOjeqMHOT cerMeHTa pe3epBoapa Ha
ocTane, y 3aBUCHOCTH OJ AyKHHE U JcOJbHHE JMMa
MIPUMEBEHUX CerMEeHaTa, YUMe je CTBOpeHa MOryhHoOCT
ONITHIMAJIHOT IIPOjEKTOBama pe3epBoapa CHUMETPUUHO
ontepehennx y ongHocy Ha ocy. JloOujeHH pe3ynraTu
QHAIUTHYKAM TOCTYIKOM Cy Yy CarjacHOCTH ca
pesynratuma MKE, nmjarpamm  pacrogene  yruoa,
MOMEHATa, TPAaHCBEP3aJHUX CHJIa W HANOHA Cy
UJIEHTUYHY, JOK MAaKCUMajHO OJACTyName THX
BENMYMHA He mpenasu 5 %.
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