Buckling of Stepped Thickness Plates
in the Theory of Plasticity

The problem of buckling has been treated for a long time as a single
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rectangular field with different boundary conditions loaded with inplate
loads and usualy applying Levy method, when two opposite edges were
always simply supported. This paper is concerned with the plastic buckling

of rectangular plates in the region of plasticity. In this paper, it has been
treated the elasto-plastic deformations for two coupled plates with
different thicknesses, loaded with inplane constant forces N, = const.
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1. INTRODUCTION

The problem of buckling has been treated for many
years as one rectangular field with different boundary
conditions loaded with in-plate loads N,, and N, and
usually applying Levy method, when two opposite
edges were always simply supported.

In plastic region A. A. Ilyushin [1] and E. Z. Stowell
[2], using their differential equations solved many
buckling problems in elasto-plastic region, but always
with plates of constant thickness. Now, in this paper, the
author has solved the problem of buckling when two
rectangular plates form the unity, but of different
thicknesses. All sides are simply supported and pressed
along two parallel opposite sides with N, = const.

It is known, Fig. 1, that in the plastic region the angle
oy corresponds to modulus of elasticity (E), elastic
region, and direction ON,, determined by angle ¢ gives

“cutting modulus” of elasticity (E(? ), where the point N,

gives the initial appearance of plasticity [3]. The value of
angle oy gives “tangential modulus of plasticity”.
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Figure 1. Relation between (a, ac, o) and (E, E., Ex)
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The direction ON determines the angle « which
determines primary modulus of elasticity

E'=2. )

£

According to the hypothesis that the radius of the
Mises circle may be written, as it is known, as
generalized stress, effective stress or equivalent
stress.

In the case of complete stresses the intensity of
stress o; and intensity of deformation & are introduced
in the forms

-\/(Gx _o-y)z +(Gy _02)2 +(o, _Gx)z +6(T§y +T)2/Z +f227€) (€)

and

.J(gx —€y)2 +(gy —52)2 +(&, —gx)2 +§(yfy +yf,z +y§x) (4

2. FORMULATION OF THE PROBLEM

In our case we are solving the problem of stability of
plates, when we have small elasto-plastic deformations,
using partial differential equations of A. A. Ilyushin
[1,2]
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(1_31—S0_x]a W+2 1 31—S0x6y+2r

41-r g2 | ox 4l-r 2

dhw [ 31=s0y |t 1=
41—7"Gi2 8);4 1—}"0.

4 4
| o, 53W to, 0 W3 + ! -[1(o,w)=0.(5)
Ox~ 0y oxoy (1—”)D
In (5) is introduced the sign
*w o%w o%w

(o, w)= +2 + .
()= oy T

(6)
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In our case we consider two plates (1) and (2) (Fig.
2), it is plate of dimensions a x b which has contact

along the edge y = 7, (0 < n<b).
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Figure 2. Two coupled plates with load Nx = const.

Now, we have

e plate(1:0<x<a;0<y<p

o plate (2):0<x<a;n<y<bh.

In(S)aregiven: r=1-@,s=1—(@.— @).

Along the edges y = 0 and y = b we could have any
kind of boundary conditions. Along the plates (1) and
(2), for x = 0 and x = a are pressed with forces N, =
const. and they have thicknesses /4, and /,. The other
forces are N, = 0 and N, = 0.

In actual case is used modified differential equation
given by E. Z. Stowell

l_z(l_w_kj o, l_z( @]LZZ

4 Pe 2 ax 4 2 012
_otw l_z[ﬂkj_ a_w_{ wkj.
ox? oy? 40 o o Pc

4 4
| o 83w +o, 0 w3 L’H(O' w)=0 (7)
Ox” 0y Ox0y D,

c

where values for aluminium and for steel are given in

[5].

For our case, given with (Fig. 2), (7) is reduced to:
1 3¢ o*w o*tw  otw o.h *w
27 i s S

Ox ox“oy~ Oy D, ox

=0 (8)

where @, =—-, D.=D!=D, or

D.=D?=D,.

According to Morris-Lavy method, for the plate (1)
and (2) are supposed functions w; and wy:

;mwm%? ©)

wy = fo(y) sin—— . (10)
a

Using (9) and (10), under the load N, = o A, the
plates are going to deflect in x direction in the form of sin
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functions, while the functions f (v) and f, (v) are giving
behaviours of plates (1) and (2) in y direction.

The conditions on edges x = 0 and x = ¢ must be
satisfied:

2 2
w =0| _, and Dy 0 juva_gvl -0 (11
= Ox oy
X=a
o2 02
wy =0 _, and D[ <2242 | =0f  (12)
- Ox oy rea

which means that plates (1) and (2) are simply
supported on x = 0 and x = @, or the deflections and
moments are equal to zero.

Supposed solutions must also satisfy the differential
equations for plates (1) and (2), respectively:

4 4 4
N,d
[1+3‘”—kj6 L2 62w12 +2 e N (E)
4 4o ) ox ox“oy” oyt Dpox
1 3 (Z)k 8 wy 64W2 84W2 N 5w2
- +2 ot =0.(14)
474 o ) axt ax*oy? ' Dyax?

According to obtained solutions for (13) and (14),
we have to find the derivations of (9) and (10):

m=ﬁ@nam=ﬁwmm%?

2 3 4

mmn mnx 0wy Ow 0w
— = fin)—cos— ; — Ly —L; —1
a a ox ox ox

64 m2n2 . mmX
BN =10 - sin——
ox ay a? a
mnx 6 W 83w1 84w1

= f{(y) sin ; ; ; (15)
8y2 8y3 8y4

»w=ﬁ@vam=ﬁ@mm%?

2 3 4

mm mnx 0w, Ow, 0w
= (0= cos—— ; —=%; —=2; —2
a a Ox ox ox

84 m> TC2 . mmnx
5 5 = f2 ( ) sin——
ox? 8)/ a? a
02 3w, ot
M2 iy sin M, E O T )
oy a oyt o

Using (15) and (16) we obtain:

1 3o
CEEAPRES

. mmx
sin——+
a

2 2
+2_fi"(y)(— T Jsinﬂ+ﬁ”(y)sin@+
a a a
2 2
+f1(y)[—m - }sin%zo. (17)
a

At last from (17) we get:
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2_2
,, T

R -2 =——+

a
4_4 2.2
mn (1 3 N, mn

+h | (—+—¢—"j——x—2 ~0. (18)

a 4 49.) D a

Partial differential equation of forth order is reduced
to ordinal differential equation with constant
coefficients of the same order (18).

The solution for (18) is supposed to be:

i =€V, (19)

From (18) we obtain characteristic equation

2 2 4 4 4 2
14—2%12{’" LA L } (20)

a at a’b?

where x; and k; are:

N b?
Ko :{l+§¢—kJ,and =" Q@D
4 4 Din

Pe

From (20), we get four solutions for A:

2
mT a
11,2’3’4 =i7 1i\/{1+k1 b2 2]-]{0 . (22)
m

. ka*
Asitis xp <1, then 144 —-Kxy>0.
b*m*

One possible combination for resolving our problem

2
11,2 :i%n 1+\/{1+k1b; ZJ—K’O :ial
m

2
/13,4=ii% —1+\/[l+k1bza—2J—K‘0 = B-i.(23)
m

Is:

In this case we obtain our function of deflection:
w = (Cl Cha1y+ C2 Sha1y+
+C3 cosPyy+Cy sinfy) sin 25 (24)
a

For the plate (2) we have:

2 2 22 4.4
14_2ﬂ42_(£ﬁ_ﬂ1ﬁj:0,(25)

a2 D2 a2 a4
For
N, m*n® Nxb2 m*nt Dy Dy m*nt
D, a pr* B D 'Dy 20
introducing the coefficient y-
D
v = D—;. (27)
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The roots of (25) are

2
’ mm a
/11,2,3,424—"7 li\/[Hklbz—zl//J—Ko (28)
m

or

2
, mn a
/ILZZiT li\/[l-i-kl b2 2;{/]—/{0 :iaz

m

2

Ba=2i" |1k ——y [-xg ~1=%if. (29)
' a b"m

The solution for the plate (2) is now:
wy = f5() sin 1™ (Cschayy+Cgshayy +
a
+Cy cosfyy+Cy sinfyy) sin 22 (30)
a

Now we must use the boundary conditions (I, II, ...,
VII, VIII), in order to get unknown coefficients of (24)
and (28):

I condition:

w =0 =0 31
means that deflection for y = 0 is zero.
II condition:
2
a_flwa_vg =0 (32)
oy Ox

y=0

means that the moment is equal to zero.
Using (31) and (32) we get:

I: (C; ch0+C, sh0+ C3 cos0+Cy sin0) sin—— = £;(0) =0
a
Cl + C3 =0
II: wy =(Cy chayy+Cyshayy +

+C3 cosPy +Cysinfy) sin 25
a

% = (aICI Shaly + a1C2 Chaly —

. . mmX
=Gy sinfy +Cy By cosfpy) sin——
a2W1 2 2
—=(a Cychayy+a’Cyshayy -
ayz 1 1
—C3,[312 sinfy + C4ﬁl2 cosﬂly) sin 27 (33)
a
Including (33) into (32) we obtain:

(claf ch0+ Cya2 sh0—Cy B cos0— Cy B -0) :

22

-sinw+f1(0)(—m i
a

a

v sin@J =0. (34)
a
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Taking into account (I), f; (0) = 0, condition (II) is
reduced to:

Ciaf = C37 =0. (35)
Multiplying by a12 , and subtracting (I) and (I):
—C1a12 —C2a12 + C1a12 + C3ﬁ12 =0
(af + B )3 =0, af + 2 #0 = C3=0. (36)

Then from (I):

C,=-C;3=0
C1:C3:O. (37)

The function w, is now
wi =(Cy shayy+Cysinfyy) sin e (38)
a

where ¢, and £ are given with (23).

The conditions (IIT) and (IV) at the end of plate (2)
are for y = b, the deflection and the moment are also
equal to zero.

I1I condition for plate (2):

W, = 0|y=b. (39)

IV condition:
0? 0?
D2 ‘/;2 +Vv —‘/;2
oy Ox

. . mmx
From the function w, = f,(y)sin——, we have:
a

=0. (40)

y=b

Wy = (C5 Cha2y+ C6 shazy +
+Cy cosfyy+ Cysinfyy) sin 2
a

% =(Csay shayy + Cgary chayy —
y

~Cyfysinfry +Cgfpr cospry) Sin%

62
v;z = (C5a22 cha,y+ C6a22 shayy—
oy

. . mmnx
—C7ﬂ22 cosfry — C8,822 s1n,82y) smT . 4D

From (IIT) we obtain:

wy = f5(b)sin =
a

=(Cs chayb+ Cq shayb+
y=b

+C; cosfab+ Cy sinfyb) sin
a

So(b)=0=Cschayb+Cqshayb+
+C; cosfrb+ Cgsinfrb =0 (42)

and from IV:
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Pw  ’w
—2 + V—2 =0
oy ox yeb
12(0) fo(X)+Vv f2(b) f5(x) = 0
Wy = (C5 chazy + C6 shazy +
+Cy cosfyy +Cy sinfy y) sin 2
a
6w2
E =(Csay shayy + Cgary chayy —
. . mmx
~C7 B, sinfry + Cg 55 cosfpr y) sin—"-

82
VZZ = (C5a22 chayy +Cgars shay y — Cy B3 cosfyy —
oy

—C8ﬂ22 sinﬂzy) sin 27 (43)
a
Condition IV gives us:
(C5a22 chayb+ C6a22 shayb—

~C1 83 cosyb— Cy B3 sinfiyh |
2.2

sin | BT g (hysin =0, (44)
a a? a

Taking into account condition (III): £ (b) = O,
condition (IV) is reduced to:

C5a22 chayb+ C6a22 shayb—
~C; /33 cosfByb— Cy B3 sinfByb =0 . (45)

When condition (III) is multiplied first by a22 and

then by ﬁ22 , and in combination with condition (IV), by
addition and subtraction we get:

Cs (a22 +,322)Ch012b+(a22 +/322 ) shayb=0
a3 + 2 #0 = Cschayb+Cqshayb=0
chayb

Ce=—-C . 46
6 S shayh (46)

— M- a3 +1V:

-G (a22 + ,822 ) cosfrb—Cqg (a22 + ﬁzz) sinf,b =0

Cg = - C7 —C_OSﬂzb . (47)
sinf,b

When introducing (46) and (47), from (41) we get

hayb
Wy = {CS sha,y—Cs % shayy+Cq cosfry—
shayb
¢, S0b Gy | sin I
sinfb a
sha, (b— sinf, (b—
wy =2 (60) o sinba(b=0) g
shayb sinayb
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Now, having functions w; (x,y) and w, (x,y):
w = f1(0)fo(x) = (Cy shayy + Cy sinpy) fo(x)
wy = fo(»)fo(x) =

[ heaa(b-y) |, - sinfy(b-y)
> shayb ! sinayb

Jfo(X)- (49)
Now, we use the condition at y = 7. Along the edge
y = n, deflections between (1) and (2) are equal
w e |, =m ], - (50)
The condition (50) is reduced to:

KW, =W,
Cyshayn+Cy sinfyn =

ha, (- i b-
oS o ( 77)+C7 smﬂ?z( 77)’ 51
shayb sinf,b
or
he, (b-
C,y shaqn + Cy sinffyn —Cs M—
shayb
. b
o, SA () (52)
sinfyb

Condition VI: We need the derivatives of (49):

0 .
% =(Cyaq chayy +Cy By cospyy) sin 22
y a
aZVﬁ 2 2 . . mx
—= (Czal shayy —Cyu 35 s1nﬁ1y) sin——
8y2 a
83w1 3 3 . mTX
—= (C2a1 choyy—Cyfi cosﬂly) sin——
8y3 a
ow ch, (b- cosp, (b— )
—2=| -Cso 2(6-)) -G b /?2 (b-2) sin 7>
shayb sinfByb a

= (Csazz w_q 2 WJ sin 77

52 wy
o’ shayb sinBb a

o3 he, (b -
T [ phat-y),
6y3 Shazb

(53)

h—
+C7/5’§ COS[?Z ( y) sin e .
sinf,b a

Condition VI is: the slope of plate (1) is equal to the
slope of plate (2) for y = #:

ow(x,y)
oy

_ oy (%)

, 54
o (54)

y=n

y=n
this means that using (53) we come to f{(7) = f5(n) , or

cha, (b-17) .

Cyoq chayn + Cy By cosfin + Csay
shayb

(35)
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Condition VII: Along the line of discontinuity, the
moment of plate (1) is equal to the moment of plate (2),

fory=rn:
2 2 2 2
Dlawl_H/GWI :Dzﬁvgzﬂ/amz/z
oy Ox

.(56
R (56)

y=n y=n

D
Using (53), and notation D—I:t//, and having
)

derivatives we get:

22

u{ff’(y) —v%ﬁ(y)} sin % =

a

m*n?

{fz"(y)—v a fz(y)} sin S (57)

a

or

l/’{(alzcz shayn —Cy i Sinﬂlﬂ) -

m*n?

-v " (Cyshayn +Cy sinﬁm)} =

_ {wazz sha, (b—7) _c. 2 5B (b—ﬂ)}_

shayb 772 sing,b
. m*n? {C sha, (b-n) c sing, (b—7)

) sha,b T sinByb

}. (58)

The final form is:

2 2 2,2
Czy/(alz—vm ;[ ]shaln—C41//[/312+vm ;T sinﬂln]—
a

a

2_2
sha, (b—
-C;s azz—vm I 2( ’7)+
2 sha,b

a
n12n2 }Sinjgz(b'—77)

+C 24y
7 [ﬁ 2 2 sinfByb

(59)

Condition VIII: Sharing forces along the contact of
plate (1) and (2), for y = 17 must be equal:

(60)

which can be written, introducing ; in the form

m*n?

. mTX
sin—— =
a2 a

% {fl”'(y)—(Z—V) ﬁ'(y)}

y=n

m*n?

{fz’"(y)—(z—v) fi(y)}sin% (61)

a2
or, using necessary derivatives (16), for (60), we obtain:
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m*n?

V/{[Czaf chayn —Cy iy 005/3177}—(2—‘/) 5
a

[eqCy chayn + B1Cy cosﬂm]} sin% =

)|~ schay(b- 77) 3 cosf (b—1) Y
- { G5t shayb rGb sinf,b ~(27v)

cosﬂz(b—n)}}.

sinf,b

Y12

sin 2 (62)
a

Form (62) can be written

y/{Cz {aﬁ -(2-v)y ~

a

22
T
5 } choyn -

2 2
-4 {ﬂf +H2-v) B }COSﬂm} -
a

22
~ 3 m*n* |cha, (b—n)
=—Cs {az -(2-v)e, . } shayh +

or

2.2
I
l//C2|:a1 -(2-v)a— :|Cha177_
a
3 szC2
—wCy| B +(2-v) By ——— | cosBin +
a

m*n? } chay (b-1)
2

+Cs {ag -(2-v)e, ol
2

a

=0.(64)

22 _
—C, {ﬁz3+(2—V)ﬁ2 = }Cosﬂz (6=n)

a Sinﬂzb

We have obtained 4 homogeneous algebraic equations
with unknown constants C,, Cs;, Cs and C;. As those
systems have trivial solution when all constants are equal
to zero, the solution could be obtained only in the case
when the determinant of the system (65) is equal to zero.

3. CONCLUSION

The determinant (65) has given solutions for critical
coefficient & for different ratios of a/b (Fig. 3), for 3
cases: m = 1, 2 and 3. Minimum value of buckling force
is obtained for m = 1 and a/b = 0.8 using the relation

m>n? |cosp, (b B2 (o) b2
o {/}’23+(2—v),b’2 2 } gi,gzb D o k1=(N23f°“i—z=( xl))jr;cflb (66)
G G G G
: shog (b-7) sinf%(b-1)
V —_— L
" Y s s
chay(b—7) s (b-7)
Vi oj chagn Boosfin ) Ssh @W =0
_ e nfre | _ ﬁ shoy (b1} nfre singb(b-7)
VI a{a{z v ]shoqﬂ *{ﬁzﬂ/ > ]Sm/iﬂ {05 J o ( e
(2" Rl nfre |choy(b-1) ntre sy (b—1)
VI “’{04" a(2-v) 2 chayry W{ﬁ" A2 V)aZOOSOéU:I {2—“2(2—")612}51%1) {ﬂgt@(z_v)azsinﬂzb
G G G G
chayry sinf47 ~shag (b—1) ~sin(b-1)
g chayy Acosfin o chay(b-1) Brocsfy(b-17) =0. (65)

a/{Of "zf]show

i

s

( +v”i§2jsinﬂz(b—77)

W{Of —%(Z—V)Wiﬂdw W{ﬁf +A4(2- V;OOSOﬁU:l [aé ~0(2-v) aﬂdlaz(b 7

=

{ﬁ%ﬂz(%ﬁniﬂwsﬂz(b—ﬂ)

46 = VOL. 39, No 1, 2011

FME Transactions



or the critical stress in the plate (1)

_ Dlezkl
(O-x)cri - h1b2 5 (67)
E 3
where D; =——— for aluminium.
12 (l - V)
K
80.0 \\
60.0 \ \
40.0 \ m=3
\n -2
20.0
m=1 N
\ ——

02 04 06 08 10 12 14 16 1.8 2.0 22 24 26 a/b

Figure 3. Final solution for critical force as a function of (a/b)
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IMPOBJIEM CTABMJIHOCTU CTEIIEHACTHUX
IIVIOYA Y IINTACTUYHOJ OBJIACTH

Momunio dymunh

VY obmacti CTaOMIHOCTH MPAaBOYTaOHUX CTEIEHACTHX
Io4a, y IIOCIeAlBEe Bpeme, oOpaljleHn cy MHOTH
npobiemu y enactuyHoj obnactu. Ta mpoOiiemarnka
jour Huje oOpahuBaHa y IIacTHYHO] 00JacTH, OWIO Y
o0TacTH Manux eNacTo-IUIACTHYHHX Jedopmaryja,
O0mno y obnacté Tedema. Y OBOM paay ce TOBOPH O
npobiiemy  ryOMTKa  CTaOWJIIHOCTH  CTEleHacTe
MpaBoyraoHe Iio4a (ca aBe neOJbHHE) Y IUIACTUYHO]
30HM Jedopmucama, onrepeheHe mnpurHckyjyhom
CHJIOM y paBHHM IUIOYE Koja Jeidyje AyX HBHLA IO
KOjuMa ce Mema 1e0JbHHA.
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