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Determination of Tooth Clearances at 
Trochoidal Pump 
 
The paper describes the development of a mathematical model of 
trochoidal gearing with clearances. Gearing of a trochoidal pump’s gear 
set with an outer gear having one gear tooth more than an inner gear is 
analyzed. The inner gear tooth profile is described by peritrochoidal 
equidistance and the outer gear profile by a circular arc. Upon the basic 
principles of ideal profile generation, a mathematical model of gearing 
with clearances is developed. Using an analytical model, the calculation 
of the minimal clearance between gear teeth profiles is done. On the basis 
of the analytical calculation conducted on real pump’s gear set, the 
influence of geometrical parameters of the profile on coupling with 
variation of the clearance is analyzed. The obtained results can be used 
for investigation of driving torque pulsation and for calculation of pump’s 
volumetric losses. 
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1. INTRODUCTION 
 

Trochoidal pumps, widely known as a gerotor pumps, 
belong to the group of planetary rotated machines. Their 
kinematics is based on the principle of planetary 
mechanism with the internal gearing. Gerotor pumps are 
generally designed using a trochoidal inner gear and an 
outer gear formed by a circle with intersecting of 
circular arcs. Due to this principle, designers of engines, 
compressors, machine tools, tractors and other 
equipment, which require hydraulic systems, can build 
pump components integrally. 

Trochoidal gearing, due to numerous advantages, 
are in the research focus of many scientists. Ansdale 
and Lockley have derived equations which define 
geometry of trochoidal profiles applied for Wankel 
engine design [1]. Colbourne presented an analytical 
model to calculate the force at each contact point by 
neglecting friction, and by that, the maximum contact 
stress in the gear teeth was obtained. The paper [2] also 
indicated that the main difficulty in calculating the 
contact stress is to determine the force that is 
transmitted through each contact point. Since there are 
many contact points, at any instance, the problem is 
statically indeterminate. Robinson and Lyon analyzed 
modification of epitrochoidal profiles of rotary pumps. 
They showed that equidistance of basic conjugated 
curves satisfies the fundamental law of gearing and that 
it can be applied for the definition of gearing profile 
[3]. Maiti gave detailed analysis of geometric, 
kinematic and functional characteristics of rotating 
machines with gerotor mechanisms [4,5]. He developed 
an analytical method for contact stresses calculation 
that can be applied for epitrochoidal hydraulic pumps 
and engines. The developed theoretical model is 

illustrated by numerical examples. Beard et al. [6] 
derived the relationships that show the influence of the 
trochoid ratio, the pin size ratio and the radius of the 
generating pin on the curvature of the epitrochoidal 
gerotor. Shung and Pennock [7] presented a unified and 
compact equation for describing the geometry, the 
geometric properties of the different types of trochoid 
and the geometric properties of a conjugate envelope. 
Blanche and Yang [8] developed an analytical model of 
the cycloid drive with machining tolerance. They 
investigated the effect of machining tolerance on the 
backlash and torque ripple. Litvin and Feng [9] 
investigated the envelope’s relation to surface family 
by considering the envelopes formed by several 
branches for cycloidal pumps and conventional worm 
gear drives. Demenego et al. [10] developed computer 
program for tooth contact analysis (TCA) and 
discussed avoidance of tooth interference and rapid 
wearing through modification of the rotor profile 
geometry of a cycloidal pump whose one pair of teeth 
is in mesh at every instant. Paffoni [11] used vector 
analysis to precisely describe the geometry of a 
hydrostatic gear pump from which full general 
parametric equations are deduced. Paffoni et al. [12] 
describes the teeth clearance influence on the tooth 
number contact in a hydrostatic pump in which circular 
arc profiles are used. Gamez-Montero et al. [13] 
presented a simplified analytical model of a trochoidal-
type machine when friction at the contact points is 
neglected. The study [13] presented the calculation of 
the maximum normal contact stress by finite-element 
model and then compared it with experimentally 
obtained results on the prototype model through 
photoelasticity measurement techniques. Hwang and 
Hsieh [14] proposed the method of how to correctly 
determine the region of feasible design without any 
undercutting on the outer and inner rotor profiles. The 
non-undercutting equations are derived by the theory of 
gearing and the region of feasible design is determined 
by considering the non-undercutting curves of the inner 
and the outer rotors. 
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The objective of this paper is to develop a 
comprehensive model of trochoidal gearing with 
clearances based on described investigations, which 
can be applied to all teeth at every moment of 
meshing. Besides, by setting up certain kinematic 
relations, the model can be used not only for gearing 
pairs with orbital motion, but also for those with 
stationary axes. The paper deals with kinematic pair 
model with outer element being stationary, while the 
inner one does the planetary motion. It is adopted that 
all deviations from theoretical measures are reflected 
on modification of trochoidal profile of the inner gear. 
Minimum clearances between teeth were analyzed 
subsequently. 

 
2. MATHEMATICAL MODEL OF THEORETICAL 

TROCHOIDAL PROFILES 
 

A theoretical model for generation of gearing with 
peritrochoidal profiles based on double trochoid 
realization theorem is developed in this paper. 
Simultaneously the coupling between all gear teeth is 
obtained at trochoidal gear sets with theoretical gearing 
profiles and it is illustrated by the example of a gear 
pump (Fig. 1). 
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Figure 1. Numeration of teeth and chambers of trochoidal 
pump 

It is necessary to numerate contact points and all 
gear teeth in order to determine which gear teeth are 
coupled during gear teeth modeling and coupling 
simulation. Figure 1 illustrates the numeration of teeth, 
contact points and operating chambers at initial moment 
and for gear set with z = 7 chambers. Thereafter, the 
outer gear teeth are marked with i = 1, 2, …, z, 
corresponding chambers with Ki, while for inner gear 
teeth, marks j = 1, 2, …, z – 1 are adopted. Since 
common normal of the coupled profiles go through 
point C that represents the instantaneous pitch point, it 
means that trochoidal profiles of all inner gear teeth 
simultaneously touch circular profiles of outer gear 
teeth at points P1, P2, ..., Pz. 

At real designs, simultaneous coupling between all 
gear teeth at every moment is not possible for the 
following reasons: 

• real profiles are manufactured with technological 
clearances necessary to prevent the occurrence of 
jams, 

• errors due to assemblage and manufacture may 
cause profiles to interfere, 

• abrasive particles transported by the pump may 
cause wear of the profile, which provokes increase 
of clearances between profiles, as a consequence. 

Although gear teeth clearances are inevitable, they 
may lead to fluid losses and occurrence of additional 
dynamic forces, decrease stability and increase noise 
and vibration, particularly at high speeds. 

Due to reasons mentioned above, this paper deals with 
modeling of coupling between real profiles. Therefore, it 
is assumed that all deviations from theoretical measures 
affect the modification of inner gear’s trochoidal profile. If 
toothing profile of the inner gear would have larger 
dimensions than ideal, a mechanism could not be 
mounted, due to the simultaneous touch between all gear 
teeth. Hence, deviations may be modeled as constant 
decrease along axes normal to ideal trochoidal profile. 
Consequently, the applied coordinate systems will be the 
same as in the mathematical model of theoretical profiles 
and all equations will be developed for trochoid’s 
coordinate system. 

Since there is simultaneous coupling of all teeth at 
trochoidal gearing, general equations of profile points’ 
coordinates applicable to all gear teeth must be 
determined. Generalization of geometrical relations 
between rotation angles of elements of trochoidal gear 
set is necessary for derivation of coordinates of any 
contact point Pi. We adopt the model of kinematical set 
where the outer element (the envelope) is observed as 
fixed, while the inner element (equidistant of a 
peritrochoid) performed planetary motion (Fig. 2). 
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Figure 2. Gear set layout of trochoidal pump with basic 
geometrical variables 

In addition, it is assumed that the driving shaft is 
connected to the inner element through eccentric gear, 
causing that all equations should be expressed as 
functions of the driving angle, labeled as ψ. 

Before analyzing the kinematical relations during 
coupling of ideal trochoidal profiles, the coordinate 
systems and geometrical relations between rotation angles 
in different coordinate systems have to be introduced and 
applied throughout the modeling approach. 

Figure 2 shows basic geometrical relations during 
the generation of peritrochoid adopted for definition of 
the basic profile of the considered gear pump. The 
center and the radius of moving (generating) circle are 
denoted with Oa and ra, respectively, while Ot and rt 
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denote the center and the radius of a fixed (basic) circle. 
Peritrochoid eccentricity, e, is a distance between the 
two centers of circles. The coordinate system, Oaxiyi, is 
connected to the center of a moving circle. The 
generating point, Di, is the point that moves along by 
trochoid, located on the xi axis at the distance d from Oa, 
and represents the radius of the trochoid. The line that 
connects the centers Ot and Oa and runs through the 
contact point of the two circles (the pitch point, C) 
determines the reference line. In order to present the 
trochoidal profile in an analytical form, the trochoid’s 
coordinate system Otxtyt is introduced and its origin is 
set at the center of the fixed circle with an abscissa 
running through the initial contact point between the 
presented kinematical circles. The envelope’s 
coordinate system, Oaxaya, is connected to the center of 
the moving circle. All coordinate systems are right-
handed. At the initial moment, the positive part of the xt 
axis of inner gear is connected to the initial gear tooth’s 
top land, while the positive part of the xa axis of the 
outer circle coincides with the centerline of the coupled 
gear tooth. The angles are assumed to be positive when 
measured in counterclockwise direction. 

Since the position of profile points is observed in 
relation to different coordinate systems, the application 
of coordinate systems transformation is necessary and 
the simplest form to describe their equations is the 
matrix form. Generally, transition from Si coordinate 
system to the next, Sn, is determined by the equation of 
coordinate transformation in the form of: 

 r rn ni i= M , (1) 

where: ri is the position vector of profile contact point in 
coordinate system Si, rn is the position vector of the 
same point in coordinate system Sn, Mni is the 
coordinate transformation matrix from coordinate 
system Si to coordinate system Sn. 

The following matrices of the third order are defined 
for coordinate transformation: 
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The angle τi between the centerline of the outer 
gear’s tooth (coordinate axis xi) and coordinate axis xa 
can be expressed in the form of: 

 2 1
i

i
z

τ π ( − )
= , (3) 

while, for the adjacent profile, this angle can be 
calculated by the following expression: 

 1
2 1

i
i
z

τ +
π ( + )

= . (4) 

Generalization of the profile equations of the outer 
gear can be done in the following manner. The gear 
tooth profile i = 1, is defined with the vector equation: 
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, (5) 

where λ is the coefficient of trochoid, λ = d/ez. 
Since teeth are equally spaced, their mutual angular 

distance in relation to the corresponding axis of rotation 
is: 

 2
a z

τ π
= . (6) 

Coordinates of other gear teeth points can be 
obtained by rotation of the already known coordinates 
of points of gear tooth profile for an angle determined 
by the relation (Fig. 2): 

 2
ai i

z
τ π

= . (7) 

Thereby, the position vector of the contact point at 
the profile of the i-th gear tooth of the outer gear is 
defined by matrix equation: 

 ( ) ( )
1 1

r ra a
iP Pi

f = L , (8) 

where Li1 is the transformation matrix of coordinates of 
the contact points P1 to Pi: 

 1
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i ai ai
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L . (9) 

Now, vector equations for the point Di of the center 
of circular gear tooth profile can be written in the 
envelope’s coordinate system as: 
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In the trochoid’s coordinate system, by the use of 
transformation matrix, the vector equation of the point 
Di is: 
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The position vector of the contact point Pi in the 
envelope’s coordinate system can be written in the form 
of the following matrix relation: 

 
[ ]{ }
[ ]{ }
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where c is the equidistant radius coefficient, c = rc/e. 
The angle δi is defined as the gear mesh angle and 
calculated by the following equation: 
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After the application of coordinate transformation, 
(12) has the following form in the trochoid’s coordinate 
system: 
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Derived equations enable modeling of gear set 
meshing during rotation and determination of necessary 
parameters for any teeth couple at an arbitrary moment. 

 

3. MATHEMATICAL MODEL OF TROCHOIDAL 
PROFILES WITH CLEARANCES 
 

Geometrical and kinematical model of trochoidal gear 
set with theoretical profiles described in the previous 
section are used as the basis for the analysis of real 
profile’s meshing. Real profile of the inner gear will be 
generated as equidistant of a basic trochoid with 
equidistant radius greater than the theoretical one by a 
clearance size ε: 

 c cr r ε∗ = + . (15) 

Thereby, equations of the trochoidal profile with 
tolerances have the following form in the coordinate 
system of trochoid: 
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where is ε* = ε/e. 
At gear sets with theoretical profiles and ideal 

geometrical measures, the transfer of motion is done 
with constant ratio. However, as operating elements of 
the pumps are manufactured with tolerances, the 
existing clearances in the mechanism make the input 
shaft to rotate for an angle before the inner gear begins 
to rotate. That is, the real position of the gear with 
trochoidal profile delays (demonstrates „lagging“) after 
its theoretical position during rotation. 
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Figure 3. Kinematical model of a gear set with clearances 
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The angle between the theoretical and real position 
of the inner gear is called the lag angle [8], and is 
denoted as ∆θi (Fig. 3). 

Usually, it is not known in advance which gear tooth 
of the outer gear is in contact with the trochoidal gear. 
Therefore, in order to determine the lag angle, it is 
necessary to identify the gear tooth that, for a given 
angle of rotation of the input shaft, ψ, would get in 
contact and then to determine a corresponding lag angle. 
The change in value of the rotation angle induces the 
change of the gear tooth engaged and the lag angle. 

In further analysis it is assumed that the engaged gear 
tooth is known and that it is necessary to determine the 
gear lag angle. Geometrical relations that apply to the 
real profile are given in Figure 3. Based on presented 
relations, necessary equations for determination of the 
lag angle can be derived. At the initial moment, the inner 
gear is in position concentric with the position of the 
theoretical profile. The vector of the centre of a circular 
gear tooth profile arriving to contact is marked as ( )r t

Di
. 

In order to simplify the analysis, an imaginary gear tooth 
of a circular shape is introduced. This imaginary tooth 
rolls over the trochoidal gear surface until the intensity 
of the vector ( )r t

Di
∗  that defines the position of its center 

in trochoid’s coordinate system, reaches the intensity of 
the vector ( )r t

Di
. Then, the relative position of imaginary 

and trochoidal gear tooth corresponds to the position that 
real gear tooth with circular profile and trochoidal gear 
will take at the moment the contact is achieved. Since 
trochoidal gear rotates in the direction opposite to the 
direction of the rotation angle of input shaft, the lag 
angle will have the same direction as input angle. 

To determine the position of the center of the 
imaginary gear tooth, we analyze the moment when the 
contact with the trochoidal gear is achieved. At that 
moment, gears are in contact and have a mutual normal 
that runs through the center of the circular profile. 
Furthermore, it is clear that the center of the circular 
profile is located at the normal that runs through the 
contact point of the real trochoidal profile, at the 
distance rc from the contact point. Taking this fact into 
account, as well as the (14), the equation that defines the 
position of the center of imaginary gear tooth at the 
moment of contact can be defined as: 
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As it was mentioned before, in order to make a 
contact, it is necessary that vectors, defined by (11) and 
(17), have the same intensity si, which is described by: 

 
2 2( ) ( ) 2r rt t

iD Di i
a∗= = . (18) 

The expression for determination of the position 
vector intensity of the real gear tooth center that comes 
in contact is obtained from (11) in the following form: 

 [ ]{ }2 2 2 21 2 cos iD i
r e z zλ λ τ ψ= + − − . (19) 

Similarly, based on (17), an expression for 
determination of the position vector’s intensity of the 
imaginary gear tooth center that comes in contact is 
obtained in the following form: 

{2 2 2 2 2( ) 1 ( ) 2 cosD i iir e z zλ ε λ τ ψ∗ ∗ ∗⎡ ⎤= + + − − −⎣ ⎦   

 }2 cos 2 cosi i i izλε δ ε τ δ ψ∗ ∗ ∗ ∗ ∗⎡ ⎤− + + −⎣ ⎦ . (20) 

Substituting the (19) and (20) in (18), the final 
equation for determination of the imaginary angle iψ ∗  that 
represents the angle of rotation during generation of the 
contact point of the real trochoidal profile, is formed as: 
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2i i i iz
ετ ψ τ ψ ε δ
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 cos 0i i iz
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Equation (21) is transcendent trigonometric equation 
and angle iψ ∗  cannot be explicitly expressed, but the 
solution is gained by iterative procedure. Then, the 
solution of (21) is used to determine the lag angle. 

The lag angle is determined as a difference of the 
angles iΘ  and iΘ ∗  between the coordinate axis xt and 

vectors ( )r t
Di

 and ( )r t
Di
∗ , respectively (Fig. 4): 

 i i i∆θ Θ Θ ∗= − , (22) 

where 
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x
Θ

∗
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∗
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Consequently, potential values of lag angles can be 
determined by variation of the ordinal number of the 
gear tooth with the circular profile, i = 1, 2, ... , z. A real 
value of the lag angle will be the one that defines the 
minimum distance wi between the circular gear tooth 
profile and the real trochoidal profile in theoretical 
position, for a given angle of rotation, ψ. That distance 
can be determined according to the following relation: 
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2

i
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= , i = 1, 2, ... , z. (25) 
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Figure 4. Geometrical relations for determination of the lag 
angle 

Comparing the calculated values of the distance and 
identifying the minimum one, a gear tooth of a circular 
profile that is in contact with the trochoidal gear and the 
corresponding lag angle will be known, for every value 
of the rotation angle of the input shaft as: 

 1 2min ( , , ..., )zw w w w ∆θ∆ =  → . (26) 

Now, we can determine the minimal value of the 
clearance between the gear tooth profiles. We analyze 
the moment when the contact between real profiles is 
achieved, as shown in Figure 5. 
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Figure 5. Geometrical relations for determination of the 
minimal clearance 

Identification of the gear teeth that are in contact is 
conducted for the given values of the reference angle ψ, 
and the corresponding angle ∆θ is determined. Between 
the other teeth pairs there exist the clearances, defined 

by a mutual distance between points Pt and Pa at the 
gear teeth profiles of the inner and outer gear, 
respectively. This distance of the points will be minimal 
at the position where the profile tangents are parallel to 
each other, that is, when these points lay on the common 
normal of the profiles. Since the outer gear teeth profile 
is circular, its normal always runs through the center of 
the circular arc (point Di). Considering this, it is 
necessary to define the axis that is perpendicular to 
trochoidal profile and runs through the point Di. Firstly, 
the general form of the equation of normal to the 
trochoid curve is defined. Then, the value of the angle 
that defines the position of the point Pt of the trochoidal 
profile, through which the common normal runs, is 
identified by variation of angle ψi for the observed gear 
tooth i of the outer gear. 

In the case when the curve is expressed in a 
parametric form, the equation of the normal at point 
Pti (xt, yt) of that curve is defined in the following manner: 

 
d d

( ) ( )
d d

t t
n t n t

y x
y y x x

ψ ψ
− = − − , (27) 

where: xn and yn are the coordinates of the point of 
where the normal cuts modified trochoid, xt and yt are 
the coordinates of the point-form modified trochoid, 
defined by (16). 

It is necessary to determine the coordinates of the 
circular profile center in trochoid’s coordinate system, 
after its rotation by the angle ∆θ. 

Coordinate transformation in the form of matrix 
equation is applied: 

 ( ) ( )r rt t
D Dtti i

∆
∆

⎡ ⎤= =⎢ ⎥⎣ ⎦
M   

 

cos cos
1 1

sin sin
1 1
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⎢ ⎥⎧ ⎫⎡ ⎤ ⎛ ⎞= ⎢ ⎥+ − − −⎨ ⎬⎜ ⎟⎢ ⎥− −⎣ ⎦ ⎝ ⎠⎢ ⎥⎩ ⎭
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (28) 

where the coordinate transformation matrix is: 

 
cos sin 0
sin cos 0

0 0 1
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∆θ ∆θ
∆θ ∆θ∆

⎡ ⎤
⎢ ⎥⎡ ⎤ = −⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

M . (29) 

Starting from (27) and (16), considering (13), the 
final equation for determination of angles ψi that define 
the position of points Pti can be written as: 
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where ( )t
n Di

x x
∆

= , ( )t
n Di

y y
∆

= , 
d
d

i
i

δ
δ

ψ
′ = . 

This equation is transcendent and it can be solved by 
iterative procedure. Obtained solution is used for 
determination of normal distance between points Di and 
Pti, which is defined by the well-known relation from 
analytical geometry: 

 
1

2 2 2( ) ( )i ti D P D Pi ti i tiD P y y x x⎡ ⎤= − + −⎣ ⎦ . (31) 

Finally, minimal clearance between gear teeth 
profiles can be calculated as follows: 

 min( )i i ti ch D P r= − , i = 1, 2, ... , z. (32) 

By using the analog procedure, the values of the 
observed parameters can be determined for every value 
of the angle of rotation, ψ. 

The corresponding programs for calculation of the lag 
angle and the value of the minimal clearance between the 
gear teeth profiles are formed based on presented 
mathematical model [15]. The programs are tested for 
given values of geometrical parameters and the value of 
technological clearance. Based on calculated values, the 
diagrams of the variation of clearance height during 
rotation are drawn. Graphical interpretation of the 
obtained results is given in the following section. 

 

4. TEST RESULTS OF THE PROGRAM FOR 
CLEARANCE CALCULATION 
 

In this section of the paper, the influence of the rotation 
angle, ψ, trochoid coefficient, λ, and technological 
clearance, ε, to the clearance height, hmin, between the 
non-contacting teeth profiles of the gear pump with 
trochoidal gearing is given. For that purpose, the 
program for identification of gear teeth in contact and 
calculation of the minimal clearance height between the 
gear teeth profiles is tested for two different gear sets 
with the geometrical parameters given in Table 1. 
Table 1. Parameters of the trochoidal pump’s gear sets 

Parameters for both gear sets: 
z = 6, e = 3.56 mm, ε = 0.07 mm, rs = 26.94 mm 

 Gear set I Gear set II 
λ 1.375 1.575 
c 2.75 3.95 

 
Variation of the clearance height is analyzed for a 

period of one revolution. In the case when the criterion 
hmin ≤ 0.001 mm is satisfied the program assigns the 
height of hmin = 0 to the computational clearance height. 

Graphical presentation of the results analysis is 
given in Figure 6. Periodical variation of the clearance 
height is noticeable on the graphical presentation and 
the variation period corresponds to one revolution of the 
driving shaft. In addition, it can be noticed that chart 
flows of clearance height variation are equal for all 
chambers, and only shifted in phase. 

The value of phase angle is equal to the value of the 
angle that defines one phase of fluid distribution in the
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Figure 6. Variation of clearance height during one revolution (left) and one phase (right): (a) λ = 1.375 and (b) λ = 1.575 

(a) 
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chamber and in concrete example, it is equal to ψ0 = 2π/z = 
60°. Thereby, variations of clearance and other 
characteristics can be observed only for a period from 0 to 
ψ0. Figure 6 presents chart flows of clearance variation in 
all chambers during that period. From the given graphical 
presentation, the clearance value can be read and some 
conclusions can be drawn. The same gear couple stays in 
contact during one phase – the couple whose ordinal 
number is greater than ordinal number of fluid distribution 

phase by one. Consequently, in a short angular interval, 
there is simultaneous meshing of two adjacent gear teeth. 
Diagrams show peaks, the first and the most expressive of 
them taking place at the moment when the contact between 
adjacent couple of gear teeth ends, while the second of 
them takes place after a period that corresponds to one 
phase angle. Further decrease in clearance has nearly linear 
character with noticeable deviation at the moment when a 
new couple of gear teeth comes into contact. 
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Figure 7. Comparative diagrams of minimal clearance height variation: (a) gear tooth 1, (b) gear tooth 2, (c) gear tooth 3, (d) 
gear tooth 4, (e) gear tooth 5 and (f) gear tooth 6 
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Comparative diagrams of the influence of parameter 
λ on the clearance height are provided in the Figure 7 as 
well. Diagrams in Figures 7a, 7d and 7f show that the 
clearance height at the first and the fourth teeth couple 
increases with the increase of parameter λ in the first 
half of the phase period, and decreases at the sixth gear 
teeth couple. At the second half of the phase period, the 
situation is inverse. Diagrams in Figures 7b, 7c and 7e 
show that decrease of parameter λ induces greater 
clearances at the second and the third gear teeth couple 
and smaller clearances at the fifth couple. Diagrams in 
Figure 7a show that the length of the interval of double 
couplings are bigger for smaller values of parameter λ. 

The values obtained through the presented analysis 
can be used for calculation of volumetric losses of the 
pump and for the analysis of their influence on pressure 
variation in chambers. 

 
5. CONCLUSION 

 
The following conclusions summarize the research 
results: 

• Generalization of gear tooth profile equations 
enables modeling of gear set meshing during 
rotation and determination of necessary 
parameters for any tooth couple at any moment; 

• Mathematical model of toothing profiles with 
clearance enables identification of teeth that are in 
contact and determination of instantaneous minimal 
clearance height between gear teeth profiles; 

• Computer program for modeling and simulation 
of meshing of gear sets with real profiles is 
written based on mathematical model. Thus, 
mutual position of gear set elements in different 
mesh phases can be followed and analyzed; 

• The program was tested on real example and 
graphical interpretation of obtained results shows 
that trochoid coefficient has an influence on 
double coupling interval; 

• Developed mathematical model can be used in 
the analysis of the influence of technological 
clearance height on functional characteristics of 
the pump. 
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NOMENCLATURE 

Oax1y1 
coordinate system attached to the 
generating point 
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Otxtyt 
coordinate system attached to the internal 
gear 

Oaxaya 
coordinate system attached to the external 
gear 

Ofxfyf fixed coordinate system 

Ot, Oa 
center of the internal gear and the external 
gear, respectively 

C pitch point 
D generating point 
z teeth number of the external gear 
z – 1 teeth number of the internal gear 

e center distance between the internal and 
external gear (eccentricity) 

rt 
radius of pitch circle of the internal gear 
rt = e (z – 1)  

ra 
radius of pitch circle of the external gear 
ra = ez 

rc radius of equidistance 
c equidistant coefficient 

d distance joining the generating point D 
and the center of the external gear 

Pt, Pa 
contact point on the profile of the internal 
gear and the contact point on the profile of 
the external gear, respectively 

K chamber 

a intensity of the position vector of the 
generating point D 

w distance between the circular gear tooth 
profile and the real trochoidal profile 

h clearance height 

Greek symbols 

φ generating rotation angle 
λ trochoid coefficient 
δ leaning angle 
ψ referent rotation angle 

τi 
angle between coordinate axis xi and 
coordinate axis xa 

  

τa angular pitch 
ε technological clearance 
θ angle from the axis xa to the axis xt 
∆θ lag angle 
Θ position angle of point D 

∗
iΘ  position angle of point D* 

Superscripts 

t trochoide 
a envelope 
f fixed 
* with tolerances 
∆ in contact 

 

 
ОДРЕЂИВАЊЕ ВЕЛИЧИНЕ ЗАЗОРА ИЗМЕЂУ 

ЗУБАЦА ТРОХОИДНЕ ПУМПЕ 
 
Лозица Т. Ивановић, Милан Д. Ерић, Блажа Ж. 

Стојановић, Андреја Б. Илић 
 
У овом раду је описан развој математичког модела 
трохоидног озубљења са зазорима. Анализирано је 
озубљење зупчастог пара трохоидне пумпе, код 
којег спољашњи зупчаник има један зубац више од 
унутрашњег. Профил унутрашњег зупчаника је 
описан еквидистантом перитрохоиде, а спољашњег 
кружним луком. Полазећи од основних принципа 
генерисања идеалног профила развијен је 
математички модел озубљења са зазорима. На 
основу добијених аналитичких израза прорачунате 
су минималне висине зазора између профила зубаца. 
На конкретном примеру анализиран је утицај 
геометријских параметара профила на процес 
спрезања и ток промене висине зазора. Добијени 
резултати могу да се користе за испитивање 
пулзација погонског момента, као и за прорачун 
запреминских губитака пумпе. 

 
 


