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. INTRODUCTION

Torsional Analysis of Open Section
Thin-Walled Beams

The main purpose of this paper is to present one approach to the
optimization of thin-walled I, Z and channel-section beams subjected to
constrained torsion. The displacement constraints are introduced:
allowable angle of twist and allowable angle of twist per unit length. The
area of the cross-section is assumed to be the objective function. Applying
the Lagrange multiplier method, the equations whose solutions represent
the optimal values of the ratios of the parts of the chosen cross-sections
are derived.

Keywords: thin-walled beams, cantilever beam, optimal dimensions,
displacement constraints.

The considered cantilever beam, of the length | is

Many studies have been made on the optimization
problems treating the cases where geometric
configurations of structures are specified and only the
dimensions of members, such as areas of members’
cross-sections, are determined in order to attain the
minimum structural weight or cost [1-5]. Many methods
have been developed for the determination of the local
minimum point for the optimization problem [6-8].
Very often used types of cross-sections, particularly in
steel structures are the I, Z and channel sections.

A series of works appear where the optimization
parameters of various cross-sections, such as I-section
[9], channel-section [10] or Z-section beams [11] have
been determined by Lagrange’s multipliers method.

The starting points during the formulation of the
basic mathematical model are the assumptions of the
thin-walled beam theory, on one hand [12, 13], and the
basic assumptions of the optimum design on the other
[1-5].

Open thin-walled steel sections subjected to twisting
moments are generally prone to large warping stresses
and excessive angles of twist. It is therefore a common
practice to avoid twisting moments in steel assemblies
consisting of steel open sections whenever it is possible.
However, in a number of practical applications, twisting
cannot be avoided and the designer is compelled to
count on the torsional resistance of these members. The
classical formulation for open thin-walled sections
subjected to torsion was developed by Vlasov [13]. The
Vlasov formulation is based on two fundamental
kinematic assumptions: (a) In-plane deformations of the
section are negligible, and (b) shear strains along the
section mid-surface are negligible.

2. BASIC ASSUMPTIONS

The formulation is restricted to the torsional analysis of
open section thin-walled beams.
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subjected to the constrained torsion because of the fact
that its one end is fixed and the other free end is loaded
by a concentrated torque M*. The cross-section (Fig. 1)
is supposed to have flanges of mutually equal widths
and thicknesses b;= bs, t,=t;.

2.1 Objective function

It is very important to find out the optimal dimensions
of cross-sections. The process of selecting the best
solution from various possible solutions must be based
on a prescribed criterion known as the objective
function. In the considered problem the cross-sectional
area will be treated as an objective function. The aim of
the paper is to determine the minimal mass of the beam
or, in another way, to find the minimal cross-sectional
area

A= Amin (1)

for the given loads and material and geometrical
properties of the considered beam.
It is obvious from the Fig. 1 that

A=Ybt, i=123 )

where b; and t; are widths and thicknesses of the parts of
the considered cross-sections.

Figure 1. a) I-section; b) Z-section; c) Channel-section

2.2 Constraints

Only the displacements will be taken into account in the
calculations that follow and the constraints treated in the
paper are the displacement constraints.
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The considered displacement constraints are
allowable angle of twist and allowable angle of twist per
unit length denoted by 6, and 6, respectively.

The ratio

2=h, /by (3)

will be the optimal relation of the dimensions of the
considered cross-sections.

The flexural-torsion cross-section characteristic [5]
is given by the expression

Gl /El, “

where:

- w =t,/t, - the ratios of thickness and length of the
parts of the cross-section

- |; - torsion constant derived for each of the three
considered cross-sections [12],

- |, - sectorial moment of inertia derived for each of the
three considered cross-sections [12],

- E - modulus of elasticity and

- G - shear modulus.

If the constraint is allowable angle of twist 6, the
constraind function (5)

M1 (. Thkl
O0...=0(1)=—]1- <6 5
can be written as

Gl kI

@ =Kl —Thkl - <0. (6)

If the constraint is allowable angle of twist per unit
length &, the constraind function (7)

. | M* 1
emx_e(l)_G—lt(l Chklj ) (7)

can be written as

P = Chkl{l aoe'tj 1<0. (8)
M

2.3 Lagrange multiplier method

The Lagrange multiplier method [2,3,14,15] is a
powerful tool for solving this class of problems and
represents the classical approach to the constraint
optimization.

Applying the Lagrange multiplier method to the
vector which depends on two parameters b;, i = 1,2, the
system of equations (o(bi): 0, 1= 1,2 will be obtained

abi[A(bl ) +A¢0,by)]=0, (i=12) (9

and after the elimination of the multiplier A from (9), it
becomes (10)
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oy o, oo, oy

(10)

3. ANALYTICAL APPROACH

The diagrams of sectorial coordinates [5] are shown in
the Fig.2 for each cross-section separately, where P is
the shear center.

VA |

Figure 2. Sectorial coordinates for the |, Z and Channel
cross-section

The expressions of torsion constant and sectorial
moment of inertia are derived for each of three
considered cross-sections according to (11)

Itzézm?, |, = [&’dA (11)

A

3.1 I cross-section

The expressions of torsion constant and sectorial
moment of inertia for the I-section are:

b1t1(2+v1 z) .1 ——blbztl (12)

Applying the Lagrange multiplier method, the
equations (13) according to allowable angle of twist
(&), and (14) according to allowable angle of twist per
unit length (é") are obtained:

-6 — constraint:

Gl t ) N

—_— -3Th kI+ t7(2+y”z
Ekb12b3[ M * bll( ‘// )
-(8—41//Z+21//3Z—31//422)—

—G—e*okltf ((//2—1)(//:0 (13)
M|

- — constraint:

2Thk 312 Sl ;S bt (2+472) |
bibyt; EK| M

~(—8+41//z—21//3z+3y/422)+

+%(1 w )1// 0. (14)
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In the considered case when the | — beam is the
object of the optimization the equations (13) and (14),
combined with (6) and (8) are reduced to the equation

2
D gz'=0 (15)
i=0

where the coefficients C; are given in the form (16) if the
constraint is allowable angle of twist (&), i.e. (17) if the
constraint is allowable angle of twist per unit
length(6h"):

-6 — constraint:

CO = 8,
2
C =2y|2-y2 +2 _— !
kI —KITh2kl —Thk
kI —Thkl
¢, =3yt (16)
- — constraint:
CO = _8,
_ 2., vl
G =W 2V I |
1-Chkl
¢, =3yt (17)

3.2 Z cross-section

The expressions of torsion constant and sectorial
moment of inertia for the Z-section are:

1, .3 3 1 ,3,21+2p2z
I =—bt’ (2+p°2),1, =—bb2 Y2 (18
t 3b11( v ) 0= S (18)

Applying the Lagrange multiplier method, the
equations (19) and (20) are obtained
-6, — constraint:

Ot
Ek b2b2

8+221//Z+21// Z+1// 2 +51// 72
(1+21//Z)

+—41//323—41//523—31//6Z4 _
(1+2p2)
1G6,
: —Th2kI+——0b1tl3 2+y°z }—
{ 3ImMI ( )

2G4,
3MH

KIbit? (1 ~1) wz =0. (19)

-6— constraint:
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athig S
Ek b7by

| 8+22pz+2p 2 +y 2% + 527 .
(1+2p2)°

N —41//323 - 4{//523 —31//624
(1+2:,//z)2

{—1 ;G Obltl (2+z// z)}

2G4,
3IM*

byt (w2 ~1)w =0 (20)

In the considered case when the Z-beam is the object
of the optimization the equations (19) and (20),
combined with (6) and (8) are reduced to the equation

4
gz '=0, 1)
i=0

where the coefficients C; are:
-6 — constraint:

CO = 8,
2_
C =2y 11+,/,2_2'/’—1
. KITh?KI
kI —Thkl
2_
¢ =y 145y —10—¥ L
_ KITh?k
kI — Thk
2
v -1
Cy=—dy’ | 14yl +—L —
’ ~ KITh%
kI — Th
¢y = -3/°. (22)
—65' — constraint:
Cy=-38,
¢ =2w|1l+y?-2Y — v -1
1==2p | ey KIThKI |’
L 1—Chkl
o :—!//2 1+51// —-10—=1 W 1
2 KIThkl |’
L 1-Chkl
2
43 2, w1
G =4 oy T |
1-Chkl
cy =3/ (23)
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3.3 Channel cross-section

The expressions of torsion constant and sectorial
moment of inertia for the channel-section are :

It =lb1t13 (2+y/32),

- 1 12 e 2wz 1+2y2
12 2+pz’

24

Applying the Lagrange multiplier method, the
equations (25) and (26) are obtained
-6 — constraint:

Rel th
VB b?b3
| 12+ 422 +18p° 213y 2 — 3yt
(3+2y12)2
s ~4y323-16y°7 -3y 7*
(3+2l//2)2
G6,
{ Thkl + 1 Obltl( )}—
266 32 N\
—EM— l//Z'bltl (l// —1)—0. (25)

- — constraint:

2
2TthG—|t1—~
EK b3
72— 42y - 18y 2+ 13y % 2% + 3y 22
(3+2yz)
N +41//3z3 +161//523 +3y/6z4
(3+2yz)’
G
[ 1 00 (2+ )]+
3 M
2 3 2\
+3 (1—;” )_0. (26)

In the considered case when the channel-section is
the object of the optimization the equations (25) and
(26), combined with (6) and (8) are reduced to the
equation

4
D> gz'=0 (27)

e & — constraint:
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CO = 72,
2
=6y 7+3V/2—6V/—1 ,
- KITh2KI
L kI —Thkl
w2 -1
5 _
C, =—y?|13+3y2 +30— ,
. KITh?kI
i kI — Thk
2 —_—

Cy = 4y’ | 1+ 4y Jr‘/’—1
KITh?kI
kI —Thkl

¢, =-3p°. (28)
- — constraint:
CO = —72,
I I W v 1
1= v’ KIThKI |’
1 - Chkl
c 2113432 430 L
2=V v’ kITth :
1-Chkl
2
a3 2,y -1
G =4 I S e |
1 - Chkl
¢, =3yl (29)
4. ANALYSIS AND DISCUSSIONS
The following expressions will be introduced
_ p’ -1
KI —Thkl —KITh?kl
KI —ThkI
2
_y -1
Di == i (30)
1—Chk

The calculation is made for the cantilever beam of
chosen section of the length 0.25 < I < 200 cm. Values
kI are calculated using data for standard profiles and
ratio = ty/t; is taken as = 0.5; 0.75; 1.

The results for ratios (3) z= b,/b, are presented
graphically in Figs. 3-5.
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Figure 3. I-beam - the optimal ratios: a) & — constraint, b)

&’ -constraint
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Figure 4. Z-beam - the optimal ratios: a) &,— constraint, b)

&’ -constraint
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Figure 5. Channel-section beam - the optimal ratios: a) &, —
constraint, b) 8,"-constraint

After the calculations, it can be concluded that the
increase of the expressions D, e.i. D, will decrease the
optimal relations z.

I —beam:

e Optimal values z for strain constraint 6,
-y=1=>D;=0=z=const=1.33,
-w=0.75=022<D;<4375=1.78>22>0,
-w=0.5=038<D;<750=2.67>2>0.

The calculations show that the optimal values of z
for the I-section beam are very small for the lengths
I > 100 cm. Because of that it is possible to say that the
application of this criterion makes sense for following
lengths:

- for =0.5: 1 *90cm = z>0.51 and

- for =0.75: 1 =95cm = z2>0.45.

e Optimal values z for strain constraint 66

The optimal values of z are for the lengths
1<100 cm

-y=1=>D;=0=z=const=1.33,

- =0.75:1295cm, D; <5 =z >0.4549,

- =0.5:1290 cm, D; <7 =2z >0.5049.

Forl>100cm:z=hb,/b;<0.4.

Z — beam:

e Optimal values z for strain constraint 6,
-y=1=>D;=0=z=const=1.72,
-w=0.75: 12150 cm,D <6 =z >0.4532,
-=0.5:1~120cm, D <8 =2z >0.50688.
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The optimal values of z are for the lengths
<150 cm.

e Optimal values z for strain constraint 6,
-y=1=>D;=0=z=const=1.72,
- w=0.75:1 48 cm, D; <5 =72 >0.5372,
- w=0.5:1~47 cm, D; <8 =z >0.50688.
The optimal values of z are for the lengths | <50 cm.
Channel section — beam:
Calculations show that optimal values z, for the

constraints 6, and 6, are for the lengts | <200cm .

5. CONCLUSION

This paper presents an approach to the optimization of
thin-walled open-section cantilever beams, using the
Lagrange multiplier method. Selecting the cross-section
area as the objective function and deformation
constrains for constraint functions, optimal ratios of
cross-section individual parts (webs and flanges) are
determined.

Based on the obtained results (Figs. 3, 4 and 5), it
can be seen that some differences exist between
coefficients C; calculated using the criteria 6, or 6, and
a minimum disagreement between obtained values for z
is observed. Optimal values z obtained by using
criterion the &, are slightly higher than values obtained
by the 6, criterion.

On the bases of the proposed optimization
procedure, it is possible to calculate the optimal ratios
between the parts of the considered thin-walled profiles
in the a very simple way.
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TAHKO3U U OTBOPEHU ITOIIPEYHHA
MNPECEIIA U310 KEHU OT'PAHUYEHOJ
TOP3UJHN

H. Anhenuh

OCHOBHH IIWJb OBOT paJia je J1a NpUKaXKe jeaH MIPUCTYII
ontuMm3anju TaHKO3UAHUX I, Z m U KOH30IHHX
KOHCTPYKIIMOHUX €JIEMEHaTa OTBOPEHMX IIONPEYHHUX
mpeceka  M3JIOKEHWX  OrPaHHYCeHO] TOp3Wju. 3a
KPUTEpUjyM OrpaHHYema ojaabpaH je KpUTEpPHjyM
orpaHuyema aedopmanuja: 103B0JbEHH Yrao yBHjama
JI03BOJbEHE Yrao YBHjama IO jeJUHUNN IyXXHHE. 3a
GbyHKIM]y LHiba onabpaHa je TMOBPIIMHA IOIPEYHOT
npeceka Hocaya. I[lpumenHom wmertone JlarpanxoBor
MHOXXHTEJbA M3BEICHE Cy jeIHAYWHe dHuja pelema
NIpeACTaBbajy  ONTUMaJHE  OJHOCE  JIMMEH3Hja
TONIPEYHOT Tpeceka n3adpaHor o0JIrKa.
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