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Torsional Analysis of Open Section 
Thin-Walled Beams 
 
The main purpose of this paper is to present one approach to the 
optimization of thin-walled I, Z and channel-section beams subjected to 
constrained torsion. The displacement constraints are introduced: 
allowable angle of twist and allowable angle of twist per unit length. The 
area of the cross-section is assumed to be the objective function. Applying 
the Lagrange multiplier method, the equations whose solutions represent 
the optimal values of the ratios of the parts of the chosen cross-sections 
are derived. 
 
Keywords: thin-walled beams, cantilever beam, optimal dimensions, 
displacement constraints. 
 

 
1. INTRODUCTION  

 
Many studies have been made on the optimization 
problems treating the cases where geometric 
configurations of structures are specified and only the 
dimensions of members, such as areas of members’ 
cross-sections, are determined in order to attain the 
minimum structural weight or cost [1-5]. Many methods 
have been developed for the determination of the local 
minimum point for the optimization problem [6-8]. 
Very often used types of cross-sections, particularly in 
steel structures are the I, Z and channel sections. 

A series of works appear where the optimization 
parameters of various cross-sections, such as I-section 
[9], channel-section [10] or Z-section beams [11] have 
been determined by Lagrange’s multipliers method. 

The starting points during the formulation of the 
basic mathematical model are the assumptions of the 
thin-walled beam theory, on one hand [12, 13], and the 
basic assumptions of the optimum design on the other 
[1-5]. 

Open thin-walled steel sections subjected to twisting 
moments are generally prone to large warping stresses 
and excessive angles of twist. It is therefore a common 
practice to avoid twisting moments in steel assemblies 
consisting of steel open sections whenever it is possible. 
However, in a number of practical applications, twisting 
cannot be avoided and the designer is compelled to 
count on the torsional resistance of these members. The 
classical formulation for open thin-walled sections 
subjected to torsion was developed by Vlasov [13]. The 
Vlasov formulation is based on two fundamental 
kinematic assumptions: (a) In-plane deformations of the 
section are negligible, and (b) shear strains along the 
section mid-surface are negligible. 
 
2. BASIC ASSUMPTIONS 
 
The formulation is restricted to the torsional analysis of 
open section thin-walled beams. 

The considered cantilever beam, of the length l is 
subjected to the constrained torsion because of the fact 
that its one end is fixed and the other free end is loaded 
by a concentrated torque M*. The cross-section (Fig. 1) 
is supposed to have flanges of mutually equal widths 
and thicknesses b1= b3, t1= t3. 
 
2.1 Objective function  
 
It is very important to find out the optimal dimensions 
of cross-sections. The process of selecting the best 
solution from various possible solutions must be based 
on a prescribed criterion known as the objective 
function. In the considered problem the cross-sectional 
area will be treated as an objective function. The aim of 
the paper is to determine the minimal mass of the beam 
or, in another way, to find the minimal cross-sectional 
area 

 minAA   (1) 

for the given loads and material and geometrical 
properties of the considered beam. 

It is obvious from the Fig. 1 that 

 1,2,3i    ,   iitbA  (2) 

where bi and ti are widths and thicknesses of the parts of 
the considered cross-sections. 

 
Figure 1. a) I-section; b) Z-section; c) Channel-section 

2.2 Constraints 
 
Only the displacements will be taken into account in the 
calculations that follow and the constraints treated in the 
paper are the displacement constraints. 
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The considered displacement constraints are 
allowable angle of twist and allowable angle of twist per 
unit length denoted by 0 and 0

’ respectively.  
The ratio  

 12 bbz   (3) 

will be the optimal relation of the dimensions of the 
considered cross-sections. 

The flexural-torsion cross-section characteristic 5 
is given by the expression 

 tk GI EI  (4) 

where: 
- 12 tt - the ratios of thickness and length of the 

parts of the cross-section 
- It - torsion constant derived for each of the three 
considered cross-sections [12], 
- I - sectorial moment of inertia derived for each of the 
three considered cross-sections [12], 
- E - modulus of elasticity and 
- G - shear modulus. 

If the constraint is allowable angle of twist 0 , the 

constraind function (5) 

  max 01
t

M l Thkl
l

GI kl
  

      
 

 (5) 

can be written as  

 1 0 0tGI kl
kl Thkl

M l
 


    . (6) 

If the constraint is allowable angle of twist per unit 
length 0

`, the constraind function (7) 

  ' ' '
max 0

1
1

t

M
l

GI Chkl
  

      
 

 (7) 

can be written as  

 '
2 01 1 0tGI

Chkl
M

 


 
    

 
. (8) 

 
2.3 Lagrange multiplier method 
 
The Lagrange multiplier method 2,3,14,15 is a 
powerful tool for solving this class of problems and 
represents the classical approach to the constraint 
optimization. 

Applying the Lagrange multiplier method to the 
vector which depends on two parameters bi, i = 1,2, the 
system of equations   ,0ib  i = 1,2 will be obtained 

  1 2 1 2( , ) ( , ) 0,    ( i 1,2)
i

A b b b b
b

 
  


 (9) 

and after the elimination of the multiplier  from (9), it 
becomes (10) 

 1 2 1 2 1 2 1 2

1 2 2 1

( , ) ( , ) ( , ) ( , )A b b b b A b b b b

b b b b

    
  

   
 (10) 

 
3. ANALYTICAL APPROACH 
 
The diagrams of sectorial coordinates [5] are shown in 
the Fig.2 for each cross-section separately, where P is 
the shear center. 

 
Figure 2. Sectorial coordinates for the I, Z and Channel 
cross-section 

The expressions of torsion constant and sectorial 
moment of inertia are derived for each of three 
considered cross-sections according to (11) 

 31
,

3t i iI b t   2

A

I dA    (11) 

 
3.1 I cross-section 
 
The expressions of torsion constant and sectorial 
moment of inertia for the I-section are: 

  3 3
1 1

1
2

3tI b t z  , 3 2
1 2 1

1

24
I b b t   (12) 

Applying the Lagrange multiplier method, the 
equations (13) according to allowable angle of twist 
(0), and (14) according to allowable angle of twist per 
unit length (0´) are obtained: 

-0 – constraint: 

 

 
 
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-0
' – constraint: 
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    (14) 
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In the considered case when the I – beam is the 
object of the optimization the equations (13) and (14), 
combined with (6) and (8) are reduced to the equation  

 
2

0

0i
i

i

c z


  (15) 

where the coefficients ci are given in the form (16) if the 
constraint is allowable angle of twist (0), i.e. (17) if the 
constraint is allowable angle of twist per unit 
length(0´): 

-0 – constraint: 

 

0

2
2

1 2

4
2

8,

1
2 2 2 ,

3 .

c

c
kl klTh kl Thkl
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 
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-0
' – constraint: 
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3.2 Z cross-section 
 
The expressions of torsion constant and sectorial 
moment of inertia for the Z-section are:  

  3 3 3 2
1 1 1 2

1 1 1 2
2 ,

3 12 2t
z

I b t z I b b
z





  


 (18) 

Applying the Lagrange multiplier method, the 
equations (19) and (20) are obtained 

-0 – constraint: 
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 -0
'– constraint: 
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In the considered case when the Z-beam is the object 
of the optimization the equations (19) and (20), 
combined with (6) and (8) are reduced to the equation 
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where the coefficients ci are: 
-0 – constraint: 
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-0
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3.3 Channel cross-section 
 
The expressions of torsion constant and sectorial 
moment of inertia for the channel-section are : 

 

 3 3
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Applying the Lagrange multiplier method, the 
equations (25) and (26) are obtained 

-0 – constraint: 
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-0
' – constraint: 

 

 

 

 

 

2
1
2 2
1 2

3 2 2 4 2

2

3 3 5 3 6 4

2

´
3 30

1 1

´
3 20

1 1

2

72 42 18 13 3

3 2

4 16 3

3 2

1
1 2

3

2
1 0.

3

tGl
Thkl

Ek b b

z z z

z

z z z

z

G
b t z

M

G
zb t

M

   



  







 







      
 

    
 

 
    
  

    (26) 

In the considered case when the channel-section is 
the object of the optimization the equations (25) and 
(26), combined with (6) and (8) are reduced to the 
equation 
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 0 – constraint: 
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-0
' – constraint: 
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4. ANALYSIS AND DISCUSSIONS 
 
The following expressions will be introduced 

 
2
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kl Thkl klTh kl

kl Thkl

 
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 
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,  
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D
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 (30) 

The calculation is made for the cantilever beam of 
chosen section of the length 0.25  l  200 cm. Values 
kl are calculated using data for standard profiles and 
ratio  = t2/t1 is taken as  = 0.5; 0.75; 1. 

The results for ratios (3) z = b2/b1 are presented 
graphically in Figs. 3-5. 
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Figure 3. I-beam - the optimal ratios: a) 0 – constraint, b) 
0´-constraint 

 

Figure 4. Z-beam - the optimal ratios: a) 0 – constraint, b) 
0´-constraint  

 

Figure 5. Channel-section beam - the optimal ratios: a) 0 – 
constraint, b) 0´-constraint  

After the calculations, it can be concluded that the 
increase of the expressions D, e.i. D1 will decrease the 
optimal relations z. 

I – beam: 
 Optimal values z for strain constraint 0   

-  =1  D1 = 0  z = const = 1.33, 
-  =0.75  0.22  D1  437.5  1.78  z  0,  
-  =0.5  0.38  D1  750  2.67  z  0. 
The calculations show that the optimal values of z 

for the I-section beam are very small for the lengths 
l > 100 cm. Because of that it is possible to say that the 
application of this criterion makes sense for following 
lengths: 

- for  =0.5: cml 90 51.0 z and 

- for  =0.75: cml 95 45.0 z . 

 Optimal values z for strain constraint '
0   

The optimal values of z are for the lengths 
l ≤ 100 cm 

-  =1  D1 = 0  z = const = 1.33, 
-  =0.75: l  95 cm, D1  5  z  0.4549, 
-  =0.5: l  90 cm, D1  7  z  0.5049. 
For l  100 cm: z = b2 / b1  0.4. 
Z – beam: 
 Optimal values z for strain constraint 0   

-  =1  D1 = 0  z = const = 1.72, 
-  =0.75: l  150 cm,D  6  z  0.4532, 
-  =0.5: l  120 cm, D  8  z  0.50688. 
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The optimal values of z are for the lengths 
l ≤ 150 cm. 

 Optimal values z for strain constraint ´
0   

-  =1  D1 = 0  z = const = 1.72, 
-  =0.75: l  48 cm, D1  5  z  0.5372, 
-  =0.5: l  47 cm, D1  8  z  0.50688. 
The optimal values of z are for the lengths l ≤ 50 cm. 
Channel section – beam: 
Calculations show that optimal values z, for the 

constraints 0  and ´
0  are for the lengts cml 200 . 

 
5. CONCLUSION  
 
This paper presents an approach to the optimization of 
thin-walled open-section cantilever beams, using the 
Lagrange multiplier method. Selecting the cross-section 
area as the objective function and deformation 
constrains for constraint functions, optimal ratios of 
cross-section individual parts (webs and flanges) are 
determined. 

Based on the obtained results (Figs. 3, 4 and 5), it 
can be seen that some differences exist between 
coefficients ci calculated using the criteria o or o

’, and 
a minimum disagreement between obtained values for z 
is observed. Optimal values z obtained by using 
criterion the o are slightly higher than values obtained 
by the o

’ criterion. 
On the bases of the proposed optimization 

procedure, it is possible to calculate the optimal ratios 
between the parts of the considered thin-walled profiles 
in the a very simple way. 
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ТАНКОЗИДИ ОТВОРЕНИ ПОПРЕЧНИ 
ПРЕСЕЦИ ИЗЛОЖЕНИ ОГРАНИЧЕНОЈ 

ТОРЗИЈИ 
 

Н. Анђелић 
 
Основни циљ овог рада је да прикаже један приступ 
оптимизацији танкозидних I, Z и U конзолних 
конструкционих елемената отворених попречних 
пресека изложених ограниченој торзији. За 
критеријум ограничења одабран је критеријум 
ограничења деформација: дозвољени угао увијања и 
дозвољене угао увијања по јединици дужине. За 
функцију циља одабрана је површина попречног 
пресека носача. Применом методе Лагранжовог 
множитеља изведене су једначине чија решења 
представљају оптималне односе димензија 
попречног пресека изабраног облика. 

 


