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Thickness Variation Parameter in a
Thin Rotating Disc by Finite
Deformation

Seth’s transition theory is applied to the problems of thickness variation
parameter in a thin rotating disc by finite deformation. Neither the yield
criterion nor the associated flow rule is assumed here. The results
obtained here are applicable to compressible materials. If the additional
condition of incompressibility is imposed, then the expression for stresses
corresponds to those arising from Tresca yield condition. It has been
observed that effect of thickness for incompressible material of the rotating
disc required higher percentage increased in angular speed to become
Sfully plastic as compared to rotating disc made of compressible materials.
For flat disc compressible materials required higher percentage increased
in angular speed to become fully plastic as compared to disc made of
incompressible material. With effect of thickness circumferential stresses
are maximum at the external surface for compressible materials as
compared to incompressible materials whereas for flats disc
circumferential stresses are maximum at the internal surface for

incompressible material as compared to compressible materials.

Keywords Stresses, displacement, disc, angular speed, thickness,

deformation.

1. INTRODUCTION

Disc plays an important role in machine design. Stress
analysis of rotating discs has an important role in
engineering design. Rotating discs are the most critical
part of rotors, turbines motor, compressors, high speed
gears, flywheel, sink fits, turbo jet engines and
computer’s disc drive etc.

The analysis of thin rotating discs made of isotropic
material has been discussed extensively by Timoshenko
and Goodier [1] in the elastic range and by Chakrabarty
[2] and Heyman [3] for the plastic range. Their solution
for the problem of fully plastic state does not involve
the plane stress condition, that is to say, we can obtain
the same stresses and angular velocity required by the
disc to become fully plastic without using the plane
stress condition (i.e. 7.,=0).

Seth’s transition theory [4] does not require any
assumptions like an yield condition, incompressibility
condition and thus poses and solves a more general
problem from which cases pertaining to the above
assumptions can be worked out.

This theory utilizes the concept of generalized strain
measure and asymptotic solution at critical points or
turning points of the differential equations defining the
deformed field and has been successfully applied to a
large number of problems [5, 6-9, 11-28].

Seth [5] has defined the generalized principal strain
measure as,
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where 7 is the measure and ; , is the Almansi finite
strain components. For n =-2, -1,0, 1, 2 it gives Cauchy,
Green Hencky, Swainger and Almansi measures,
respectively.

Here we investigate thickness variation parameter in
a thin Rotating Disc by finite deformation by using
Seth’s transition theory. The thickness of disc is
assumed to vary along the radius in the form:

h=hy(r/b)™" ©)

where A, is the thickness at » = b and £ is the thickness
parameter. Results obtained have been numerically
analyzed and depicted graphically.

2. GOVERNING EQUATIONS

Consider a thin disc of variable thickness with inner
radius a and outer radius b respectively. The disc is
rotating with angular speed @ of gradually increasing
magnitude about an axis perpendicular to its plane and
passed through the center of the disc as shown in figure
1. The disc is thin and is effectively in a state of plane
stress, that is, the axial stress 7.=0 is zero. The
displacement components in cylindrical polar co-
ordinate are given by [5]:

u=r(1-4),v=0, w=dz 3)

where g is function of = ,/x?+ 2 only and d is a
constant.
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Figure 1. Geometry of Rotating Disc

The finite strain components are given by [5] as
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where g’ = dp/dr
Substituting equation (4) in equation (1),
generalized components of strain are:
1 , n 1 7
e = 1-(7'+ B [seon = [1-"]
n n (5)

1
22[1_(1_d)n:|;er9 =eg, =e; =0

The stress —strain relations for isotropic material are
given by [10]:

= A0yl +2uey; (6)

where T; and eij are the stresses and strain components,
A and p are lame’s constants and /,=¢y is the first strain
invariant, J;is the Kroncecker’s delta.

Equations (6) for this problem become,

2 u
= A+2u I:err+699:|+2:uerw
Top = /1 by [err+600]+2e€6a (7
TFQ_TQZ_TZ}’:Tzzzo

Using equation (4) in equation (7), the strain
components in terms of stresses are obtained as [11]:
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where E is the Young’s modulus and C is
compressibility factor of the material in terms of Lame’s
constant, there are given by E=u(3A+2u)/(A+un) and
C=2u/(A+2u) Substituting equation (5) in equation (7),
we get the stress as:

T, :27#[3—2C—ﬂ"{1—C+(2—C)(P+1)"H;

Tpo :27’”[3—2C—ﬂ”{2—C+(1—C)(P+1)”H, ©)

and 7,9 =Ty, =T, =T,, =0,where rf3' = SP.

Equations of equilibrium are all satisfied except:
%(rhTW)—the + pa*r?h =0 (10)

where p is the density of the material of the rotating
disc. Using equation (9) and (10), we get a non- linear
differential equation in [} as:

(2-C)np"™'p(P+ 1)”‘1£ =

’2’[3 20- " {l—C+(2—C)(P+1)"H+
(11)

2.2
npw-r
L np
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+ﬂn[1—(P+1)n —nP{I_CJr(z_C)(PH)nH

where f’=df/dr ( P is function of § and S is function of
r only). From equation (11), the transition points of f
are P=-1 and + o0,

Boundry conditions: The boundary conditions are:

T.,=0atr=a;T,.=0atr=>0 (12)

3. SOLUTION THROUGH THE PROBLEMS

It has been shown [5,6-9,11-28] that the asymptotic
solution through the principal stress leads from elastic
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state to plastic state at transition point, we define the
transition function R as:

R=nTyg/2u=[(3-2C)-

_ﬁ”{Z—C+(1—C)(P+1)”H )

By taking the logarithmic differentiation of equation
(13) with respect to r and using equation (11), we get:

d(logR)  np"P )
dr r

(2—C)+(1—C)(P+1)n1(P+1+ﬂ31;j (14)

r[S—2C—ﬂ”{2—C+(1—C)(P+1)"}]

Taking the asymptotic value of equation (14) at
P — +oo and integrating, we get:

_ Dy
R ; (15)
where v=(1-c¢)/(2-c) is Poisson’s ratio in terms
compressibility factor and D is a constant of integration
and can be determined by the given boundary condition.
From equation (13) and (15) and using equation (2),
we get:

v+k=1; -k
T - 24 JR (16)

Substituting equations (16), (2) in equation (10) and
integrating, we get:

-k 2.2 -k
T, = 2ub Dlrv+k71 _por n D2b_k 17
thO (3 - k) rhor

where D, is a constant of integration and can be
determined by the given boundary condition.

Using boundary condition from equation (12) in
equation (17), we get:

. pa)znvh()(b3_k—a3_k)bk'
- 2,u(3—k)(bv —av)

(b3—k _a3—k)
NG

Substituting the values of Djand D, in equations (16)
and (17), we get the transitional stresses and
displacement as:

- pe’hy | 3k
(3-4)

14
a

P w3k _ a3—k)
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2k (b3—k _5k

7 PO
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Too =

(rv —a'/)—r3_k +a3_k} (19)
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Substituting equation (18) and (19) in second equation
of (8), we get:

2 -1 (b3*" —a3*k)

_ 2vporr
(o =a')

E(3-k)
where E=2u(3-2C)/(2-C) is the Young’s modulus in
term of compressibility factor can be expresses as.
Substituting the value g equation (3), we get
displacement components as:

PRI S

A=

u=r—

2 k-1 [(b”‘ —a3_k)
_ 2vpw’r & 4

E(3-k) [ (o -a")

3k _ 3k | (20)

4. INITIAL YIELDING:

From equation (18), it is seen that | 7| is maximum at
the external surface (that is at » = b) for £>0.7,
therefore yielding of the disc takes place at the internal
surface of the disc and equation (18) can be written as:

‘pa)zv(b3_k _a3—k)

|To0l,_, :‘ (3_k)(bv _av)

The angular speed necessary for initial yielding is given
by:

bV+k*1 — Y(Say)

, (3»—k)(bv—a")b2
Qi = )l/ Tyl (b3—k _a3—k)

and o, =(Q; /b)Y / p.

5. FULLY - PLASTIC STATE

ey

The disc becomes fully plastic (C—0 or v—1/2) at the
internal surface (that is at » = a) and equation (18)
become:

pw2(b3—k_a3—k) p L

|T90|r=a:‘2(3—k)(\/3—ﬁ)a 2=y (say)

The angular speed required for fully plastic state is
given by:

pa)jcb2 2(3—k)(\/3—\/5)b2

Q= = (22)

*

1
Y S (b3—k _a3—k)

where o, = (Qf /b)«/Y* /p.

We introduce the following non-dimensional
components R=r/b, Ry=a/b, 0,=T,,/Y, o6= Tee/Y, U=u/b,
@=pw’b’/Y and H=Y/E. Elastic-plastic transitional
stresses, angular speed and displacement from equations
(18), (19), (21) and (20) in non-dimensional form
become:
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Stresses, displacement and angular speed for fully plastic state (C—0 or v—1/2), are obtained from equations (18) -

(21)in non-dimensional form as:

. Q}(l—Rgf")R 2

- 2(3-k)(1-yRy ) "7 (3'—k) (1=, )

24
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6. PARTICULAR CASE
For a flat disc (k = 0) elastic-plastic transitional stresses

and displacement from equation (18), (19) and (20)
become:

pa)zv (b3 -a )

Tyo = 3(1;V——aV)rH (25)
1, = ’0;;2 %(l’y —av)—r3 +a (26)
—a
u=r-—
w? |(P-2) L @

a tr-—a

_Er(S—k) (bv—a")

From equation (25), it is seen that | 7| is maximum at
the internal surface and yielding take place at the bore,
we have

pwzv(b3 -a )

—av—l = Yl
3(bV—aV)

\T0l,, = (say)

The angular speed necessary for initial yielding is given
by:

o = parb® 3(bv _av)bz

l i - V(b3 —a3)av_l 29

Elastic-plastic transitional stresses, displacement and
angular speed from equations (25) —(28) in non-
dimensional form become:
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(29)

For fully-plastic state (C—0 or v—1/2) at the
external surface (» = b) and equation (25) becomes:

pa)2 (b3 —a’ ) "

\Toal,.—, GO i

The angular speed required for fully plastic state is
given by:

272 _ 2
?: pa)fb _ 6\/3(\/5 \/a_)b
. Yl* (b3 _ a3)
Stresses, displacement and angular speed for fully
plastic state (C—>0 or Vv —>1/2), are obtained from

equations (25) - (28) and (29) in non-dimensional form
as:

(30)
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Table 1. Angular speed required for initial yielding and fully plastic state
Variable thickness Compressibility of Angular speed Angular speed Percentage increase in
k material required for initial required for fully- angular speed
C yielding plastic state o2
S
Q? o} Q—iz—l x100
(e}
— 0 0 1.420161 2.008410643 18.9207025 %
; Flat Disc 0 0.25 1.383601 2.008410643 20.4816269 %
Vv 0 0.5 1.336737 2.008410643 22.5753868 %
2 1 0 1.562097 2.209138999 18.9207178 %
1 0.25 1.599129 2.209138999 17.5356928 %
1 0.5 1.650396 2.209138999 15.6957591 %
2 0 1.171573 3.313708499 68.1792741 %
2 0.25 1.199347 3.313708499 66.2205535 %
2 0.5 1.237797 3.313708499 63.6185117 %

7. NUMERICAL RESULT AND DISCUSSION

For calculating the stresses, angular speed and
displacement based on the above analysis, the following
values have been taken as C = 0.00, 0.25, 0.5; E/Y=H =
0.15, k= 0 (Flat Disc), 0.25, and 0.5 respectively. It can
also be seen from Table I that with effect of thickness
for incompressible material of the rotating disc required
higher percentage increased in angular speed to become
fully plastic as compared to rotating disc made of
compressible materials.

For flat disc (say k=0) compressible materials
required higher percentage increased in angular speed to
become fully plastic as compared to disc made
ofincompressible material. From figure 2 and 3, curves
have been drawn between stress and displacement at the
elastic-plastic transition state and fully plastic state of
rotating disc having variable thickness (k= 1, 2) and flat
disc (k= 0).

From figure 2 it has been seen that with the effect of
thickness variation parameter circumferential stresses is
maximum at the external surface for compressible
materials as compared to incompressible materials,
whereas for flat disc circumferential stresses are
maximum at the internal surface for incompressible
material as compared to compressible materials.

From figure 3, it can be seen that effect of thickness
variation increases the values of circumferential stress at
the external surface for fully plastic state.

8. CONCLUSION
It has been observed that effect of thickness for

incompressible material of the rotating disc required
higher percentage increased in angular speed to become

100 = VOL. 41, No 2, 2013

fully plastic as compared to rotating disc made of
compressible materials.

For flat disc compressible materials required higher
percentage increased in angular speed to become fully
plastic as compared to disc made incompressible
material. With effect of thickness circumferential
stresses is maximum at the external surface for
compressible materials as compare to incompressible
materials whereas for flats disc circumferential stresses
is maximum at the internal surface for incompressible
material as compared to compressible materials. Effect
of thickness variation increases the values of
circumferential stress at the external surface for fully
plastic state.
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BAPUJALINJA ITAPAMETPA JTEB/bUHE
TAHKOI' POTAIUOHOI' JUCKA IOMORY
KOHAYHUX JE@OPMALINJA

Iankaj Txakyp, Cunrx C.B., Jarunaep Kayp

CeroBa TeopHja TpaH3UIIH]jE je IPUMCHEHA Ha TPOOIeM
Bapujaije  AcO/bMHE TAaHKOr poTHupajyher ucka
nomohy koHayHux jaedopmanuja. Huje npernocraBibeH
HU KPUTEPUjyM MONYLITakha Kao HHU MPAaBUIIO TEYCHA.
Jobujern  pe3yaratd  Cy  NPUMCHJBMBH  Ha
KOMIIpecuOWIHE Matepujajie. YKOJIUKO Cy NMPUMEHEHH
YCIOBU HEKOMIIPECHOUIIHOCTH, U3pa3d 3a HAIOHE
ONTOBapajy OHHM JOOWjeHHNM TIpeMa KpUTEPHjyMy
Tpecka. Ilpumeheno je nma yrtumaj nmeOpHHE KOX
HEKONpPeCHOMIIHUX ~Marepujaia poTtupajyher ancka
3axTeBa Behy yraoHy Op3uHy Oa OW ce MOTJIM cMaTpaTH
IACTHYHUM Yy mopehely ca  KOMIPECHOMIHHM
matepujamuma. Ca edektoM neObuHEe 000THH HAMOHH
UMajy MaKCHMyM Ha CIIOJbHUM TIOBpIIMHAMa 3a
KOMIIpecuOWIIHE Martepujajie, JOK je KOJ JIHMCKOBa
HAMpPaB/bEHUX Ol HEKOMIPECHUOMIHUX Marepujaia
000/IHH HANOH Ha CBOM MaKCHMYMy Ha YHYTpAIlHbUM
MOBPILIHHAMA JHCKA.
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Meaning: sigma theta O, (circumferential stress); sigma r- O, (Radial stress) and displacement-U

—+—Lk =1, sigmatheta,C=0 —®—k=1, sigmar,C=0

—&— k=1, displacement,C=0 —— k=2 sigma theta, C=0

—#—k=2,s1gmar,C=0 —&— k=2 displacermnent,C=0 —+—sigmatheta C=0 —®—sigmar, C=0
k=1,sigma theta,C=0.25 k=1,sigmar,0=0.25 —#*—displacement, C=0 —=—sigmatheta, C=0.25

—— k=1,displacermnent,C=0.25 —+— k=2 sigma theta, C=0.25

—8— =2 sigmar,C=0.25 —#— k=2 displacement, C=0.25 sigmar, C€=0.23 displacernent, ©=0.25

—<— k=1 sigma theta C=0.5 —+—k=1,sigmar, C=0.5 sigma theta,C=0.5 sigmar, C=0.3
k=1,displacement, C=0.5 — k:2,sl.gma theta, C=0.5 displacement,0=0.5
k=2,sigmar, C=0.5 k=2 displacernent, C=0.5

12 19 k=10 (Flat disc)
1 4 *

[=}
@

Stresses distribution for initial yielding state
o o
N o

02 4
-
. _,45"-—
= /
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o 02z 04 12 0 02 n4 0& ng 1 12

R=1/b

Figure 2 Stresses and displacement at the elastic-plastic transition state in a thin rotating disc having variable thickness (k =
1, 2) and flat disc (k =0) with respect to radii ratio R = r/b.

Meaning: sigma theta &, (circumferential stress); sigma r- &, (Radial stress) and displacement-U

—de—k=1,sigmar =—i—k=1,sigmatheta == k=2,sigmatheta Flat Disc ( k =0)
—@—k=2,sigmar k=1, displacement k=2, displacement

3 —f=sigmar ===sigmatheta displacement

2.5

1.5

Stresses distribution for fully plastic state

0.5

P
0 .&. / \

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
R=r/b

Figure 3 Stresses and displacement for fully plastic state of rotating disc having variable thickness (k = 1, 2) and flat disc (k
=0) with respect to radii ratio R =r/b
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