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Viscous Nanofluid in Porous Medium

The thermosolutal instability problem in a horizontal layer of an elastico-
viscous nanofluid in porous medium is considered. Walters’ (model B')
fluid model is employed to describe the rheological behavior of the
nanofluid and for the porous medium, the Darcy model is employed. From
the linear stability analysis based upon normal modes analysis method, the
dispersion relation accounting for the effect of various parameters is

derived. The onset criterion for stationary convection is analytically
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derived and it is observed that the Walters’ (model B') elastico-viscous
nanofluid fluid behaves like an ordinary Newtonian nanofluid. The effects
of solutal Rayleigh Number, thermo-nanofluid Lewis number, thermo-

India solutal Lewis number, Soret and Dufour parameter on the stability of
Stationary convection are investigated.
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1. INTRODUCTION

The thermosolutal instability is an important
phenomenon that has applications to many different
areas such as geophysics, soil sciences, food processing,
oil reservoir modeling, oceanography, limnology and
engineering, among others. Thermosolutal instability
problems related to different types of fluids and
geometric configurations have been extensively studied.
The thermal instability of a Newtonian fluid under a
wide range of hydrodynamics and hydromagnetic
assumptions was discussed in detail by Chandrasekhar
[1]. The thermal instability of a Maxwellian visco-
elastic fluid in the presence of a magnetic field was
analyzed by Bhatia and Steiner [2]. Veronis [23] has
investigated the problem of thermohaline convection in
a layer of fluid heated from below and subjected to a
stable salinity gradient. Brakke [4] explained a double-
diffusive instability that occurs when a solution of a
slowly diffusing protein is layered over a denser
solution of more rapidly diffusing sucrose.

Much research in recent years has focused on the
study of nanofluids with a view to applications in
several industries such as the automotive,
pharmaceutical or energy supply industries. A nanofluid
is a colloidal suspension of nano sized particles, that is,
particles the size of which is below 100 nm, in a base
fluid. Common fluids such as water, ethanol or engine
oils are typically used as base fluids in nanofluids.
Among the variety of nanoparticles that have been used
in nanofluids it can be found oxide ceramics such as
Al,O3 or CuO, nitride ceramics such as AIN or SiN and
several metals such as Al or Cu. Since the term
nanofluid was coined by Choi [5] the understanding of
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the so-called anomalous increase in thermal
conductivity of nanofluids has generated considerable
research interest. Buongiorno [6] proposed that the
absolute nanoparticle velocity can be viewed as the sum
of the base fluid velocity and a relative slip velocity.
After analyzing the effect of the following seven slips
mechanisms: inertia, Brownian diffusion,
thermophoresism, diffusiophoresis, Magnus effect,
Fluid drainage and gravity, he concluded that in the
absence of turbulent eddies Brownian diffusion and
thermophoresis are the dominant slip mechanisms.

The onset of convection in a horizontal layer heated
from below (Bénard problem) for a nanofluid was
studied by Tzou [7]. Alloui et al. [8] performed an
analytical and numerical study of a natural convection
problem in a shallow cavity filled with a nanofluid and
heated from below. These authors reported that the
presence of nanoparticles in a fluid reduced the strength
of flow field, being these reductions especially relevant
at low values of the Rayleigh number. Furthermore,
they found that there is an optimum nanoparticle
volume fraction, which depends on both the type of
nanoparticle and the Rayleigh number, at which the heat
transfer through the system is maximum. A considerable
number of thermal instability problems in a horizontal
layer of porous medium saturated by a nanofluid have
also been numerically and analytically investigated by
Kuznetsov and Nield [9,10] and Nield and Kuznetsov
[11,12,13]. Furthermore, the effect of rotation on
thermal convection in the nanofluid layer saturating a
Darcy-Brinkman porous medium has been reported by
Chand and Rana [14,15].

All the studies referred above deal with Newtonian
nanofluids. However, with the growing importance of
non-Newtonian fluids in geophysical fluid dynamics,
chemical technology and petroleum industry attracted
widespread interest in the study on non-Newtonian
nanofluids. Although experiments performed by Tom et
al. [16] revealed that the behavior of a dilute solution of
methyl methacrylate in n-butyl acetate agrees well with
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the theoretical model of Oldroyd [17], it is widely
known that there are many elastico-viscous fluids that
cannot be characterized by Maxwell's constitutive
relations or by Oldroyd's constitutive relations. . One
such type of fluids is Walters’ (model B') elastico-
viscous fluid having relevance in chemical technology
and industry. Walters’ [18] reported that the mixture of
polymethyl methacrylate and pyridine at 25°C containg
30.5g of polymer per litre with density 0.98g per litre
behaves very nearly as the Walters’ (model B') elastico-
viscous fluid. Walters’ (model B') elastico-viscous fluid
form the basis for the manufacture of many important
polymers and useful products. A good account of
thermal and thermosolutal instabilities problems in a
Walters’ (Model B') elastico-viscous fluid in a porous
medium is given by Gupta and Aggarwal [19], Rana and
Sharma [20], Rana et al. [21], Rana [22] and
Shivakumara et al. [23]. Sheu [24] used the Oldroyd-B
fluid model to describe the rheological behavior of the
nanofluid in his investigation about thermal instability
in a porous medium layer saturated with a viscoelastic
fluid.

The growing number of applications of
nanofluids, which include several medical fields, such
as cancer therapy, motivated the current study. Our
main aim is to study the thermosolutal instability
problem in a horizontal layer of an elastico-viscous
nanofluid and Walters’ (Model B') fluid model is used
to describe the rheological behavior of nanofluid.

2. MATHEMATICAL MODEL

Let ﬂjvﬂp%##71”757:]"97:7%' and d/dt denote,

respectively, the total stress tensor, the shear stress
tensor, the rate-of-strain tensor, the viscosity, the
viscoelasticity, the isotropic pressure, the Kronecker
delta, the velocity vector, the position vector and the
convective derivative. Then the Walters’ (model B')
elastico-viscous fluid is described by the constitutive
relations

];j :_pé‘ij +7

v d
rl»j:Z ,u+yE €

o 2 O %4 |
) axj ox;

1

ij>

The above relations were proposed and studied by
Walters’ [18].

Here we consider an infinite horizontal layer of a
Walters’ (model B') elastico-viscous nanofluid of
thickness d, bounded by the planes z = 0 and z = d as
shown in fig.1. The layer is heated and soluted from
below, which is acted upon by a gravity force g = (0, 0,
-g) aligned in the z direction. The temperature, 7,
concentration, C and the volumetric fraction of
nanoparticles, ¢, at the lower (upper) boundary is
assumed to take constant values 7), Cy and @, (T, C;
and ¢,), respectively. We know that keeping a constant
volume fraction of nanoparticles at the horizontal
boundaries will be almost impossible in a realistic
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situation. However, we assumed these conditions, which
have also been previously adopted by several authors
(Tzou [7], Kuznetsov and Nield [10], Nield and
Kuznetsov [13], Sheu [24], Chand and Rana [14,15])
because they allow the linear stability analysis to be
analytically performed.

z
A

= 0(0.0,-
T,C,.0, g=2(0,0,-g) 7ea

!

Walters’ (model B)
Nanofluid

of T 1 1 1f70

Heated and soluted from below
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Y

Figure.1. Physical Configuration

2.1 Assumptions

The mathematical equations describing the physical
model are based upon the following assumptions:

e All thermo physical properties, except for the
density in the buoyancy term, are constant
(Boussinesq hypothesis);

e Base fluid and nano particles are in thermal
equilibrium state;

e Nanofluid is incompressible and laminar;

e Negligible radiative heat transfer;

e Size of nanoparticles is small as compared to
pore size of the matrix;

e Nanoparticles are being suspended in the
nanofluid using either surfactant or surface
charge technology, preventing the
agglomeration and deposition of these on the
porous matrix;

e The temperature, the solute concentration and
the volumetric fraction of the nanoparticles are
constant on the boundaries;

e The base fluid of the nanofluid is a Walters’
(model B') elastico-viscous fluid;

e Nanoparticles do not affect the solute
concentration.

2.2 Governing Equations

Let p, i, ,u', D, &, ki and q(u, v, w), denote respectively,

the density, viscosity, viscoelasticity, pressure, medium
porosity, medium permeability and Darcy velocity
vector. Then the equations of continuity and motion for
Walters’ (model  B'") elastico-viscous  fluid
(Chandrasekhar [1], Gupta and Aggarwal [19], Rana
and Sharma [20] and Rana et al. [21]) in porous medium
are:

V.q=0, (1)

plogq 1 1[ vaj
LA (qV)q|=-Vp+pg——| u-u < |q, 2
e[at g(q )q} P+ pg el q. (2)
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The p density of the nanofluid can be written as
Buongiorno (2006)

p=gp,+(1-0)ps 3)

where ¢ is the volume fraction of nano particles, p, is the
density of nano particles and p, is the density of base
fluid. Following Tzou [7] and Nield and Kuznetsov
[13], we approximate the density of the nanofluid
by that of the base fluid, that is, we consider p_p,
Now, introducing the Boussinesq approximation for the
base fluid, the specific weight, pg in equation (2)
becomes

pe=(op, +(1-0):
.{p(l—aT (T—To)_aC (C_CO))})g

where o is the coefficient of thermal expansion and oc
is analogous to solute concentration.

If one introduces a buoyancy force, the equation of
motion for Rivlin-Ericksen nanofluid by using
Boussinesq approximation and Darcy model for porous
medium (Kuznetsov and Nield [13]) is given by

0=-Vp+
(gopp +(1—(p){p(l—aT (T—TO)—aC(C—CO))})g(S)

~ 1[ vajq

A
The continuity equation for the nanoparticles
(Buongiorno [4]) is

4)

% qVp=DyVip+ 2T (©6)
ot T

The thermal energy equation for a nanofluid is:
orT P
(pc), E-i—(pc)f qVT =k, V°T+

D
+&(pc) (DBV¢.VT+—TVT.VT]+
p T
()
+pcDrV?C

where (pc),, is heat capacity of fluid in porous medium,
(pc), is heat capacity of nanoparticles and k,, is thermal
conductivity and is a diffusivity of Dufour type.

The conservation equation for solute concentration
(Nield and Kuznetsov [14]) is

aa—f'quVC DSmV C+DCTV T. (8)

where Dg, and Dcr are respectively, the solute
diffusivity of the porous medium and diffusivity of the
Soret type.

The boundary conditions:

WZO,T:TO,¢:§DO ,C: CoatZ:O, (9)
WZO,T:TLC:C1§0:¢1 at z=1. (10)

We introduce non-dimensional variables as
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<x’,y',z’,>=(wj,(u',v', w) =22 g,
d Ky,

L S (0-m)
od mn (21— 90)
_(r-%) . (c-q)
(h-1) (G-G)
where &, = Fin is thermal diffusivity of the fluid
(pep )f
and o= (per )m is the thermal capacity ratio.
(,DC'P )f

Thereafter dropping the dashes (') for convenience.
Equations (1),(5),(6),(7) and (8) in non-dimensional
form can be written as

V.q=0, (11)

0=-Vp- (1 Fqu Rmeé_+RpT e, —Rngpeé,,(12)

1 6(p 1 1 2 NA 2
+—q.Vp=—V p+—-V-T, 13
o Ot gq Ln ¢ Ln (13)
6—T+qVT \Y T+N—V¢VT+
+MVT.VT+NTCV2C,
Ln
1oC 1 1
——+—q. VC:—V ¢+NCTV T, (15)
oot ¢

where we have dimensionless parameters as:
K f

Thermo-solutal Lewis number: Le =—— ;
S
Thermo-nanofluid Lewis number: Ln = g—m ;
B
y Ky,
uod 27

Kinematic visco-elasticity parameter: F' =

Thermal Rayleigh-Darcy Number:

_ pgadk (Ty-T;) |
P s ’

Solutal Rayleigh Number:

s = P8k (%o-1) :

HK
Density Rayleigh number:
Pt p(l-g)ghd

m >
My

R

Nanoparticle Rayleigh number:

(Pp—p)(01-00)ghd

b
HiKy

Rn =
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Modified diffusivity ratio:
_ Dr(%-1)
A= 7 >
DyTi (21 - )
Modified particle- density ratio:

(pc), (@1-90)

v (pc)l I ’
Soret parameter:
v = Pre(G=6)
“r Km (TO - Ti ) ’
Dufour parameter:
_Der(f-1)
"k (G-a)

The dimensionless boundary conditions are:
w=0,T=t,C=1, ¢p=0at z=0, (16)

w=0,T=0,C=0, ¢o=1 at z=1. (17)

2.3 Basic Solutions

Following Nield and Kuznetsov [13], and Sheu [24] we
assume a quiescent basic state that verifies
u=v=w=0, p=p(z),
C=Cy(2), T=T;(2), p=g5(2).
Therefore, when the basic state defined in (18) is

substituted into equations (11) — (15), these equations
reduce to:

(18)

—dpb—(z)—Rm +RpT, (z)+
dz (19)

R
+L—2Cb (z)—Rn(pb (z),

0=

dz(ﬂb(z)
dz?

d’T, (Z)+&d¢’b(z) dTb(Z)+
=2 Ln dz dz

+N, =0, (20)

) 5 21
L NaNg [ dTy(2) + Nye d°Cy(2) _o,
Le dZ dzz
1 d*Cy(z) a7y (z)
N, =0, 22
Lo 4.2 +Ner 2 (22)

Using boundary conditions in equations (16) and
(17), the solution of equation (20) is given by

o (2)=(1-T, )N +(1-Ny)z. (23)

Using boundary conditions (16) and (17), the
solution of equation (22) is given by
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Cy(2)=(1-T,)LeN¢y —(1+ LeNgp )z +1. (24)

Substituting the values of ¢, (Z ) and C, (Z )
respectively, from equations (23) and (24) in equation
(21), we get:

d’T, (z),_ (=N4Np _dT(z)

dz>  Ln(1+NpcNerple) dz

=0. (25

The solution of differential equation (21) with
boundary conditions in equations (16) and (17) is
_e-(1-zv A)Np(1=z)/Ln(1+NycNerLe)

! .26)

Ty (z)= l_e_(l—NA)NB/Ln(1+NTCNCTLe)

According to Buongiorno [4], for most nanofluid
investigated so far [ /(p—¢,) is large, of order 10°-

10° and since the nanoparticle fraction decrement
(¢1 _%) in not smaller than 10~ which means L, is

large. Typical value of N, is no greater than about 10.
Then, the exponents in equation (20) are small. By
expanding the exponential function into the power
series and retaining up to the first order is negligible and
so to a good approximation for the solution

T, =1-2z,Cy =1-z and @y =z. 27
These results are identical with the results obtained

by Kuznetsov and Nield [10], Sheu [24] and
Nield and Kuznetsov [13].

2.4 Perturbation Solutions

To study the stability of the system, we superimposed
infinitesimal perturbations on the basic state, so that

q(u,v,w)zO—i—q"(u,v,w),
T=(1-2)+T, G, =(1-2)+C, (28)
¢)=Z+(0",p=pb +p".

Introducing equation (28) into equations (8) — (11),
linearizing the resulting equations by neglecting
nonlinear terms that are product of prime quantities and
dropping the primes (") for convenience, the following
equations are obtained:

Vq=0, (29)
0——Vp—(l—F§]q+
! (30)
+RpT e, +&Céz —Rng é,,
Le
N
109 1, Ly, Nayep 31)
oot ¢ Ln Ln
t2 n 2z z (32)
_ZNaNp O | v2c.
Ln 0z

FME Transactions



1 11
toc 1, = —V2C+NgpV2T. (33)
oot ¢ Le

Boundary conditions for equations (29)-(31) are
w=0,T=0,C=0, p=0atz=0, 1. (34)

Note that as the parameter Rm is not involved in
equations (29)-(33) it is just a measure of the basic static
pressure gradient.

The seven unknowns u, v, w, p, T, C and ¢ can
be reduced to four by operating equation (30) with

e..curl curl, which yields
202 25 Rs o o 2
Viw=F=V2w+ RyVHT +——CV3% — RnV30, (35)
ot Le
where v2, is the two-dimensional Laplace operator on

the horizontal plane, that is:

0 0
=t —

3. NORMAL MODES

We express the disturbances into normal modes of the
form:

v, 7.C, o] =[W (). ©(=). T().0(2)]

(34)
-exp(ikxx +iky,y+ a)t),
where k. k, are the wave numbers in the x and y
direction, respectively, and o is the growth rate of the
disturbances.
Substituting equation (34) into equations (35) and
(31)-(33), we obtain the following eigen value problem:

(1-0F)D*=a® )W +a’Rp® +
(29)

RS 2pae - 0,
Le

Y s Ny (p? —a2)®+l[02 e —erzo, (30)
& Le o

W+(D2 +%D—2N;+NBD—CP —wj@—

N
~2B Db+ Ny (D2 —az)r =0,
Ln

éW—%(Dz —a2)®—[ﬁ(D2 —az)—gjq) =0,(32)

W=0DW=0T=0,0=00=0at z=0(33)
and
W=0,DW=0,T=0,0=0,d=0at z=1. (34)

where D=d/dzand @’ = K.+ K, is the dimensionless
horizontal wave number.

4. LINEAR STABILITY ANALYSIS AND DISPERSION
RELATION
The eigen functions ]; (z) corresponding to the eigen
value problem (29)-(34) are fj:sinO'z). Considering
solutions W, O, I" and ® of the form:
W =W,sin(zz) , © = Qg sin(7z),

[ =Tgsin(7z),P =P\ sin(7zz). (35)

Substituting (35) into equations (29) — (32) and
integrating each equation from z = 0 to z = 1, we obtain
the following matrix equations

R
(l—a)F)J2 —aZRD g2 a’Rn
Le W 0
1 5 72w 0
— JNep —+—= 0 |le 0
£ T Ie olLe - , (35)
2 2 Lol |0
-1 J +o -J NTC 0
s D, 0
1 N
- Y4 52 0 J__,_Q
L & Ln Ln o]
where J2 = 72 +4? is the total wave number.
The linear system (35) has a non-trivial solution if and only if:
(1-0F)Jer( » 2 4
—2[(.1 +o)(0? + o)+ oLeNreNerJ J
a
1 R
Rp=—— ——x +Rs0'[gNCTJ2 (2 +w)}2LX (36)
eoJ” +we+ NypcJ  Leo oJ” +wln
(0]2 + a))((J2 + a))Ln +N Ang) + NyeJ*Lea (N 4+ LnN¢y )
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Equation (36) is the required dispersion relation
accounting for the effect of thermo-solutal Lewis
number, thermo-nanofluid Lewis number, kinematic
visco-elasticity parameter, solutal Rayleigh Number,
nanoparticle Rayleigh number, modified diffusivity
ratio, Soret and Dufour parameter on thermosolutal
instability in a layer of Walters’ (model B') elastico-
viscous nanofluid saturating a porous medium

5. THE STATIONARY CONVECTION

For stationary convection, putting ® = 0 in equation
(36) reduces it to

1

Rhn=—rn—rvo-o"——
D NyelLe |
(7 e} e 67
x —2 (1+L€NTcNCT)+RS(€NCT—1) .

a
~Rn[ Ln+N 4&+ NycLe(N 4+ LnNcr ) |

Equation (37) expresses the thermal Darcy-Rayleigh
number as a function of the dimensionless resultant
wave number a and the parameters Ny¢, Ncr, R, L,, Rn,
Le, N,. Since the elastico-viscous parameter F' vanishes
with @ so the Walters” (model B') elastico-viscous
nanofluid fluid behaves like an ordinary Newtonian
nanofluid fluid. Equation (37) is identical to that
obtained by Kuznetsov and Nield [13], and Chand and
Rana [14]. Also, in equation (37) the particle increment
parameter Np does not appear and the diffusivity ratio
parameter N, appears only in association with the
nanoparticle Rayleigh number R,,. This implies that the
nanofluid cross-diffusion terms approach to be
dominated by the regular cross-diffusion term.

In the absence of the Dufour and Soret parameters
Nr¢, Ner, and equation (37) reduces to

2
2 2
To+a
v #R_[L_N)R o5
a & &

which is identical with the result derived by Kuznetsov
and Nield [10].

In the absence of the stable solute gradient parameter
Rs, equation (38) reduces to

2
(7T2+a2) Ln
Ry 2—2—(—+NAjRn, (39)
a &

Equation (39) is identical with the results derived by
Sheu [24] and Chand and Rana [14].
The critical cell size at the onset of instability is

obtained by minimizing R, with respect to a. Thus, the
critical cell size must satisfy:

[aRDj o
Oa a=a ’

Equation (37) which gives

6=VOL. 42, No 1, 2014

a. = =3.1416. (40)

And the corresponding critical thermal Darcy-Rayleigh
number (Rp)c on the onset of stationary convection is
given by:

1

R -
(Rp), e+ NyeLe

47%¢ (14 LeNycNey )+ Rs(eNep —1) @0
X

~Rn[Ln+ N 46+ NycLe(N 4 +LnN¢r)]|

It is noted that if Rn is positive then Rp is minimized
by a stationary convection. The result given in equation
(41) is a good agreement with the result derived by Sheu
[24] and Chand and Rana [14] in the absence of the
Dufour, Soret and stable solute gradient parameters,
Nrc, Ncrand Rs respectively.

6. RESULTS AND DISCUSSIONS

The critical thermal Darcy-Rayleigh number on the
onset of stationary convection is given by (41) and does
not depend on viscoelastic parameter and it takes the
same value that the one obtained for an ordinary
Newtonian fluid.

Furthermore, the critical wave number, a - defined

by equation (40) at the onset of steady convection
coincides with those reported by Tzou [7], Kuznetsov
and Nield [10] and Chand and Rana [14]. Note that this
critical value does not depend on any thermo physical
property of the nanofluid. Consequently, the
interweaving behaviors’ of Brownian motion and
thermophoresis of nanoparticles does not change the
cell size at the onset of steady instability and the critical
cell size a c is identical to the well known result for

Bénard instability with a regular fluid [1].
It is noted that the absence of the Dufour and Soret

parameters N, and N, and nonoparticles, one
recovers the well-known results that the critical thermal

Darcy-Rayleigh number is equal to 4% as obtained by
Sheu [24]. Thus the combined effect of Brownian
motion and thermophoresis of nanoparticles on the
critical Rayleigh number is reflected in the third term in
equation (41). From equation (41), it can be concluded
that for the case of top-heavy distribution of
nanoparticles (¢ ;>¢) and Pp >p), which corresponds to

positive values of Rn, the value of the steady critical
Rayleigh number for the nanofluid is smaller than that
for an ordinary fluid, that is, steady convection sets
earlier in these kinds of nanofluids than in an ordinary
fluid. This implies that thermal conductivity of ordinary
fluids is higher than that of nanofluids with top-heavy
distribution of nano particles. On the contrary, for the
case of bottom-heavy distribution of nano particles
(p;<¢q and Pp >p), which corresponds to negative

values of Rn, the value of the critical Rayleigh number
for the nanofluid is larger than that for an ordinary fluid,
that is, convection sets earlier in a ordinary fluid than in
a nanofluid with bottom-heavy distribution of

FME Transactions



nanoparticles. This implies that thermal conductivity of
this kind of nanofluids is higher than that of ordinary
fluids.

The dispersion relation (37) is analyzed numerically.
Graphs have been plotted by giving some numerical
values to the parameters to depict the stability
characteristics.
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Figure 2. The variations of thermal Rayleigh-Darcy number
Rp with the wave number a for different values of the
solutal Rayleigh numbers Rs = 10, Rs = 50 and Rs = 100.

The variations of thermal Rayleigh- Darcy number

R p Wwith the wave number a for three different values

of the solutal Rayleigh number, namely, Rs = 10, 50
and 700 is plotted in Fig. 2 and it is observed that the
thermal Rayleigh- Darcy number increases with the
increase in solutal Rayleigh number so the solutal
Rayleigh number stabilizes the system. In Fig. 3, the

variations of thermal Rayleigh- Darcy number R,, with

the wave number a for three different values of the
thermo-nanofluid Lewis number, namely, Lrn = 500,
1000 and 1500 which shows that thermal Rayleigh-
Darcy number increases with the increase in thermo-
nanofluid Lewis number. Thus thermo-nanofluid Lewis
number has stabilizing effect on the system.
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Figure 3. The variations of thermal Rayleigh- Darcy number
Rp with the wave number a for different values of the
thermo-nanofluid Lewis number Ln = 500, Ln = 1000 and Ln
=1500.

The variations of thermal Rayleigh- Darcy R, with

the wave number a for three different values of the
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thermosolutal Lewis number, namely, Le= 500, 1000
and 7500 is plotted in Fig. 4 and it is found that thermal
Rayleigh- Darcy number decreases with the increase in
thermosolutal Lewis number so the thermosolutal Lewis
number has destabilizing effect on the system.
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Figure 4. The variations of thermal Rayleigh- Darcy number
Rp with the wave number a for different values of the
thermosolutal Lewis number Le =500, Le = 1000 and Le =
1500.

In Fig. 5, the variations of thermal Rayleigh- Darcy
number R, with the wave number a for three different

values of the Soret parameter, namely Ntc = 5, 10, 15
which shows that thermal Darcy-Rayleigh number
increases with the increase in Soret parameter. Thus
Soret parameter has stabilizing effect on the system.

The variations of thermal Rayleigh- Darcy number R,

with the wave number a for three different values of
Dufour parameter, namely Ntc = 5, /0 and 15 is plotted
in Fig. 6 and it is found that thermal Darcy-Rayleigh
number increases with the increase in Dufour parameter,
so the Dufour parameter has stabilizing effect on the
onset of stationary convection in a layer of Rivlin-
Ericksen elastico-viscous Nanofluid saturating a porous
medium. The system becomes more stable when the
values of Soret and Dufour parameters are equal. The
results obtained in figures 2 to 6 are in good agreement
with the result obtained by Chand and Rana [14,15],
kuznetsov and Nield [13] and Sheu [24].

2050
1850 Ncr=15
1650

1450

NT1c=5, Rs= 10, Ln=200
Le=500, Rn=-1, Na=5,e=0.4

1250 Ngr=10
S1os0
850
650
450

250

50

a

Figure 5. The variations of thermal Rayleigh- Darcy number
Rp with the wave number a for different values of the Soret
parameter Ntc =5, Nrc =10, Ntc = 15.
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1550

1350

NcT=5, Rs= 10, Ln=200
Le=500, Rn=-1 ,Na=5,e=0.4

1150

350

Figure 6. The variations of thermal Rayleigh- Darcy number
Rp with the wave number a for different values of the
Dufour parameter Ntc = 5, Ntc =10, Ntc =15

7. CONCLUSION

Thermosolutal instability on the onset of stationary

convection in a layer of Walters’ (model B') elastico-

viscous Nanofluid in a porous medium is investigated
by wusing a linear stability analysis. The main
conclusions are:

e  For the case of stationary convection, the Walters’
(model B') nanofluid behaves like an ordinary
Newtonian nanofluid.

e  Kinematic viscoelasticity has no effect on the
onset of stationary convection.

e  The solutal Rayleigh Number, thermo-nanofluid
Lewis number, Soret parameter and Dufour
parameter have stabilizing effects on the stationary
convection as shown in figures 2, 3, 5 and 6,
respectively.

e The thermo-solutal Lewis number has
destabilizing effect on the stationary convection of
the system as shown in figure 4.
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O ITOYETKY TEPMO-PACTBOPJbUBE
HECTABIWJIHOCTH Y CJIOJY EJJACTUYHO-
BUCKO3HOT HAHO®JIYHJIA ¥V IOPO3HOM

MEJIUIYMY

G.C.Rana, R.C.Thakur, S.K.Kango

VY pany ce pasMarpa mpoOieM TepMO-pacTBOPJHUBE
HECTaOMIHOCTH Y XOPU30HTAITHOM CJIOjy HaHO(IyHIa y
Mopo3HOM MeaujymMy. BanrepcoB (momen B') mozmen
¢Gnynna ce KOPHCTH 32 ONUCHBAKE PEOJOLIKOT
moHamama HadHoduynna a J[apcuje wmomenm 3a
OIMCUBaC¢ TIOPO3HOT MeAWjyMma. Penanmja mucrep3uje
KOjOM ce o0jallmaBajy  yTUIAjU  pa3IMuUTHX
napaMerapa U3BeJCHA je W3 aHaNu3e JIMHeapHe
CTaOMJIHOCTH HA OCHOBY METOZAE aHANW3¢ HOPMAIHHX
cTama. [[oYeTHH KTUTEPHjyM 3a CTAIIMOHAPHO CTPYjarbe
j€ M3Be/ieH aHAMTUYKK U yTBpheHo je aa ce Banrepcos
(Mogen B') enmacTUYHO-pacTBOPJEUBH  HAHODIYH
MoHaNIa Kao 0O0WYaH HbYTOHOBCKH HaHo(yna. Y pamy
Ce HCTpaxyje Kako Ha CTaOWIHOCT CTalHOHAPHOT

CTpyjama yTHUY Pejnujes KOEe(HUIHjeHT
pactBopspuBOCTH, JlymcoB — koeduImjeHT — TepMo-
HaHO(DIyHAa, Jlyuncos KOe(UIIHjeHT TepMO-

pactBopserBocTH U CopeoB u udopos mapamerap

FME Transactions

NOMENCLATURE

Ner
Nrc
p

Pr

q

Rp
(Rp)c
Rm
Rn
Rs

t

T
(u,v,w)
(xyz)

Wave number

Specific heat

Thickness of the horizontal layer
Diffusion coefficient (m*/s)
Thermophoretic diffusion coefficient
Kinematic visco-elasticity parameter
Acceleration due to gravity (m/s?
Gravitational acceleration vector
Thermal conductivity (w/mK )
Thermosolutal Lewis number
Thermo-nanofluid Lewis number
Modified diffusivity ratio

Modified particle-density ratio

Soret parameter

Dufour parameter

pressure (Pa)

Prandtl number

Darcy velocity vector (m/s)

Thermal Darcy-Rayleigh number
Critical Thermal Darcy-Rayleigh number
Basic-density Rayleigh number
Concentration Rayleigh number
Solutal Rayleigh number

time (s)

temperature (K)

Darcy velocity components

space co-ordinates (m)

Greek symbols

ar
ac

Solute volumetric coefficient
Thermal volumetric coefficient (1/K)
Nanoparticles volume fraction

Effective thermal diffusivity of porous

medium (m/s)

Viscosity of the fluid(Ns/m?)
Viscoelasticity

Kinematic viscosity

Kinematic viscoelasticity

Density of fluid (kg/m’)
Nanoparticle mass density (kg/m’)
Growth rate of disturbances

Superscripts

Non-dimensional variables

f "
Subscripts
p Particle
f Fluid
b Basic state
0 Lower boundary
1 Upper boundary
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