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On the Onset of Thermosolutal 
Instability in a Layer of an Elastico-
Viscous Nanofluid in Porous Medium 
 
The thermosolutal instability problem in a horizontal layer of an elastico-
viscous nanofluid in porous medium is considered. Walters’ (model B') 
fluid model is employed to describe the rheological behavior of the 
nanofluid and for the porous medium, the Darcy model is employed. From 
the linear stability analysis based upon normal modes analysis method, the 
dispersion relation accounting for the effect of various parameters is 
derived. The onset criterion for stationary convection is analytically 
derived and it is observed that the Walters’ (model B') elastico-viscous 
nanofluid fluid behaves like an ordinary Newtonian nanofluid. The effects 
of solutal Rayleigh Number, thermo-nanofluid Lewis number, thermo-
solutal Lewis number, Soret and Dufour parameter on the stability of 
stationary convection are investigated. 
 
Keywords: Nanofluid; Porous medium; Thermosolutal instability; Walters’ 
(model B') fluid.. 

 
 

1. INTRODUCTION  
 

The thermosolutal instability is an important 
phenomenon that has applications to many different 
areas such as geophysics, soil sciences, food processing, 
oil reservoir modeling, oceanography, limnology and 
engineering, among others. Thermosolutal instability 
problems related to different types of fluids and 
geometric configurations have been extensively studied. 
The thermal instability of a Newtonian fluid under a 
wide range of hydrodynamics and hydromagnetic 
assumptions was discussed in detail by Chandrasekhar 
[1]. The thermal instability of a Maxwellian visco-
elastic fluid in the presence of a magnetic field was 
analyzed by Bhatia and Steiner [2]. Veronis [23] has 
investigated the problem of thermohaline convection in 
a layer of fluid heated from below and subjected to a 
stable salinity gradient. Brakke [4] explained a double-
diffusive instability that occurs when a solution of a 
slowly diffusing protein is layered over a denser 
solution of more rapidly diffusing sucrose. 

Much research in recent years has focused on the 
study of nanofluids with a view to applications in 
several industries such as the automotive, 
pharmaceutical or energy supply industries. A nanofluid 
is a colloidal suspension of nano sized particles, that is, 
particles the size of which is below 100 nm, in a base 
fluid. Common fluids such as water, ethanol or engine 
oils are typically used as base fluids in nanofluids. 
Among the variety of nanoparticles that have been used 
in nanofluids it can be found oxide ceramics such as 
Al2O3 or CuO, nitride ceramics such as AlN or SiN and 
several metals such as Al or Cu. Since the term 
nanofluid was coined by Choi [5] the understanding of 

the so-called anomalous increase in thermal 
conductivity of nanofluids has generated considerable 
research interest. Buongiorno [6] proposed that the 
absolute nanoparticle velocity can be viewed as the sum 
of the base fluid velocity and a relative slip velocity. 
After analyzing the effect of the following seven slips 
mechanisms: inertia, Brownian diffusion, 
thermophoresism, diffusiophoresis, Magnus effect, 
Fluid drainage and gravity, he concluded that in the 
absence of turbulent eddies Brownian diffusion and 
thermophoresis are the dominant slip mechanisms. 

The onset of convection in a horizontal layer heated 
from below (Bénard problem) for a nanofluid was 
studied by Tzou [7]. Alloui et al. [8] performed an 
analytical and numerical study of a natural convection 
problem in a shallow cavity filled with a nanofluid and 
heated from below. These authors reported that the 
presence of nanoparticles in a fluid reduced the strength 
of flow field, being these reductions especially relevant 
at low values of the Rayleigh number. Furthermore, 
they found that there is an optimum nanoparticle 
volume fraction, which depends on both the type of 
nanoparticle and the Rayleigh number, at which the heat 
transfer through the system is maximum. A considerable 
number of thermal instability problems in a horizontal 
layer of porous medium saturated by a nanofluid have 
also been numerically and analytically investigated by 
Kuznetsov and Nield [9,10] and Nield and Kuznetsov 
[11,12,13]. Furthermore, the effect of rotation on 
thermal convection in the nanofluid layer saturating a 
Darcy-Brinkman porous medium has been reported by 
Chand and Rana [14,15].  

All the studies referred above deal with Newtonian 
nanofluids. However, with the growing importance of 
non-Newtonian fluids in geophysical fluid dynamics, 
chemical technology and petroleum industry attracted 
widespread interest in the study on non-Newtonian 
nanofluids. Although experiments performed by Tom et 
al. [16] revealed that the behavior of a dilute solution of 
methyl methacrylate in n-butyl acetate agrees well with 



 

2 ▪ VOL. 42, No 1, 2014 FME Transactions
 

the theoretical model of Oldroyd [17], it is widely 
known that there are many elastico-viscous fluids that 
cannot be characterized by Maxwell's constitutive 
relations or by Oldroyd's constitutive relations. . One 
such type of fluids is Walters’ (model B') elastico-
viscous fluid having relevance in chemical technology 
and industry. Walters’ [18] reported that the mixture of 
polymethyl methacrylate and pyridine at 250C containg 
30.5g of polymer per litre with density 0.98g per litre 
behaves very nearly as the Walters’ (model B') elastico-
viscous fluid. Walters’ (model B') elastico-viscous fluid 
form the basis for the manufacture of many important 
polymers and useful products. A good account of 
thermal and thermosolutal instabilities problems in a 
Walters’ (Model B') elastico-viscous fluid in a porous 
medium is given by Gupta and Aggarwal [19], Rana and 
Sharma [20], Rana et al. [21], Rana [22] and 
Shivakumara et al. [23]. Sheu [24] used the Oldroyd-B 
fluid model to describe the rheological behavior of the 
nanofluid in his investigation about thermal instability 
in a porous medium layer saturated with a viscoelastic 
fluid.  

The growing number of applications of 
nanofluids, which include several medical fields, such 
as cancer therapy, motivated the current study. Our 
main aim is to study the thermosolutal instability 
problem in a horizontal layer of an elastico-viscous 
nanofluid and Walters’ (Model B') fluid model is used 
to describe the rheological behavior of nanofluid. 
 
2. MATHEMATICAL MODEL 
 

Let ', , , , , , , ,ij ij ij ij i iT e p q xt m m d  and d/dt denote, 

respectively, the total stress tensor, the shear stress 
tensor, the rate-of-strain tensor, the viscosity, the 
viscoelasticity, the isotropic pressure, the Kronecker 
delta, the velocity vector, the position vector and the 
convective derivative. Then the Walters’ (model B') 
elastico-viscous fluid is described by the constitutive 
relations 

 ,ij ij ijT p      

 '2 ,ij ij
d

e
dt

     
 
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e
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.  

The above relations were proposed and studied by 
Walters’ [18]. 

Here we consider an infinite horizontal layer of a 
Walters’ (model B') elastico-viscous nanofluid of 
thickness d, bounded by the planes z = 0 and z = d as 
shown in fig.1. The layer is heated and soluted from 
below, which is acted upon by a gravity force g = (0, 0, 
-g) aligned in the z direction. The temperature, T, 
concentration, C and the volumetric fraction of 
nanoparticles, φ, at the lower (upper) boundary is 
assumed to take constant values T0, C0 and φ0 (T1, C1 
and φ1), respectively. We know that keeping a constant 
volume fraction of nanoparticles at the horizontal 
boundaries will be almost impossible in a realistic 

situation. However, we assumed these conditions, which 
have also been previously adopted by several authors 
(Tzou [7], Kuznetsov and Nield [10], Nield and 
Kuznetsov [13], Sheu [24], Chand and Rana [14,15]) 
because they allow the linear stability analysis to be 
analytically performed.  

g = g(0,0,-g)

Heated and soluted from below

X

Y

Z

Z = 0

Z = d

 Porous Medium

O

Walters’ (model B’)
Nanofluid

T,C ,1 1 Φ1

T,C ,0 0 Φ0

 
Figure.1. Physical Configuration 

 
2.1 Assumptions 
 
The mathematical equations describing the physical 
model are based upon the following assumptions: 

 All thermo physical properties, except for the 
density in the buoyancy term, are constant 
(Boussinesq hypothesis); 

 Base fluid and nano particles are in thermal 
equilibrium state; 

 Nanofluid is incompressible and laminar;  
 Negligible radiative heat transfer;  
 Size of nanoparticles is small as compared to 

pore size of the matrix; 
 Nanoparticles are being suspended in the 

nanofluid using either surfactant or surface 
charge technology, preventing the 
agglomeration and deposition of these on the 
porous matrix; 

 The temperature, the solute concentration and 
the volumetric fraction of the nanoparticles are 
constant on the boundaries; 

 The base fluid of the nanofluid is a Walters’ 
(model B') elastico-viscous fluid; 

 Nanoparticles do not affect the solute 
concentration. 

 
2.2 Governing Equations 
 

Let ', , , , ,p     k1 and q(u, v, w), denote respectively, 

the density, viscosity, viscoelasticity, pressure, medium 
porosity, medium permeability and Darcy velocity 
vector. Then the equations of continuity and motion for 
Walters’ (model B') elastico-viscous fluid 
(Chandrasekhar [1], Gupta and Aggarwal [19], Rana 
and Sharma [20] and Rana et al. [21]) in porous medium 
are: 

 . 0, q  (1) 
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(2) 
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The ρ density of the nanofluid can be written as 
Buongiorno (2006) 

  1p f       (3) 

where φ is the volume fraction of nano particles, ρp is the 
density of nano particles and ρf is the density of base 
fluid. Following Tzou [7] and Nield and Kuznetsov 
[13], we approximate the density of the nanofluid 
by that of the base fluid, that is, we consider ρ=ρf. 
Now, introducing the Boussinesq approximation for the 
base fluid, the specific weight,  ρg in equation (2) 
becomes 

 
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where αT is the coefficient of thermal expansion and αC 
is analogous to solute concentration. 

If one introduces a buoyancy force, the equation of 
motion for Rivlin-Ericksen nanofluid by using 
Boussinesq approximation and Darcy model for porous 
medium (Kuznetsov and Nield [13]) is given by 
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(5) 

The continuity equation for the nanoparticles 
(Buongiorno [4]) is 
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The thermal energy equation for a nanofluid is: 
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where (ρc)m is heat capacity of fluid in porous medium, 
(ρc)p is heat capacity of nanoparticles and km is thermal 
conductivity and is a diffusivity of Dufour type. 

The conservation equation for solute concentration 
(Nield and Kuznetsov [14]) is 

 2 21
. .Sm CT

C
C D C D T

t 


     


q  (8) 

where DSm and DCT are respectively, the solute 
diffusivity of the porous medium and diffusivity of the 
Soret type. 

The boundary conditions:  

 0, 0 00, , 0,         w T T C C at z       (9) 

 1, 1 10, 1.       w T T C C at z       (10)
 

We introduce non-dimensional variables as  
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where 
 

m
m

P f

k

c



  is thermal diffusivity of the fluid 

and 
 
 

P m

P f

c

c





 is the thermal capacity ratio. 

Thereafter dropping the dashes ( ' ) for convenience. 
Equations (1),(5),(6),(7) and (8) in non-dimensional 

form can be written as  
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where we have dimensionless parameters as: 

Thermo-solutal Lewis number: ;   
f
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Thermo-nanofluid Lewis number: ;   m
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Kinematic visco-elasticity parameter: 
'
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Thermal Rayleigh-Darcy Number: 
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Nanoparticle Rayleigh number: 
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Modified diffusivity ratio: 
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Dufour parameter: 
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The dimensionless boundary conditions are:  

 0, , 1, 0 0      w T t C at z     , (16) 

 0, 0, 0, 1 1.        w T C at z      (17) 

 
2.3 Basic Solutions 
 
Following Nield and Kuznetsov [13], and Sheu [24] we 
assume a quiescent basic state that verifies 
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Therefore, when the basic state defined in (18) is 
substituted into equations (11) – (15), these equations 
reduce to: 
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Using boundary conditions in equations (16) and 
(17), the solution of equation (20) is given by 

      1 1 .b b A Az T N N z      (23) 

Using boundary conditions (16) and (17), the 
solution of equation (22) is given by 
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Substituting the values of  zφb  and  zCb  

respectively, from equations (23) and (24) in equation 
(21), we get: 
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The solution of differential equation (21) with 
boundary conditions in equations (16) and (17) is 
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According to Buongiorno [ 4 ] , for most nanofluid 
investigated so far  0/  nL  is large, of order 105-

106 and since the nanoparticle fraction decrement 
 01    in not smaller than 10-3 which means 

nL  is 

large. Typical value of NA is no greater than about 10. 
Then, the exponents in equation (20) are small. By 
expanding the exponential function into the power 
series and retaining up to the first order is negligible and 
so to a good approximation for the solution 

 1 , 1- .  b b bT z C z and z     (27) 

These results are identical with the results obtained 
by Kuznetsov and Nield [10], Sheu [24] and 
Nield and Kuznetsov [13]. 
 
2.4 Perturbation Solutions 
 
To study the stability of the system, we superimposed 
infinitesimal perturbations on the basic state, so that  
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Introducing equation (28) into equations (8) – (11), 
linearizing the resulting equations by neglecting 
nonlinear terms that are product of prime quantities and 
dropping the primes ('') for convenience, the following 
equations are obtained:  
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 (33) 

Boundary conditions for equations (29)-(31) are  

 0, 0, 0, 0 0, 1.      w T C at z      (34) 

Note that as the parameter Rm is not involved in 
equations (29)-(33) it is just a measure of the basic static 
pressure gradient.  

The seven unknowns u, v, w, p, T, C and φ can 
be reduced to four by operating equation (30) with 

curl, .curlze which yields  

 2 2 2 2 2 ,D H H H
Rs

w F w R T C Rn
t Le


        


(35) 

where 2
H  is the two-dimensional Laplace operator on 

the horizontal plane, that is: 
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3. NORMAL MODES 
 
We express the disturbances into normal modes of the 
form:  
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where kx,, ky are the wave numbers in the x and y 
direction, respectively, and  is the growth rate of the 
disturbances. 

Substituting equation (34) into equations (35) and 
(31)-(33), we obtain the following eigen value problem: 

 
  2 2 2

2 2

1

0,

DF D a W a R

Rs
k a Rn

Le

   

    
 (29) 

  2 2 2 21 1
0,CTW N D a D a

Le


 

        
 

(30) 

 

 

2 2

2 2

2

0,

B A B

B
TC

N N N
W D D D a

Ln Ln

N
D N D a

Ln

       
 

     

 (31) 

   2 2 2 21 1
0,AN

W D a D a
Ln Ln


 

        
 

(32) 

 20, 0, 0, 0, 0 0        W D W at z         (33) 

and 

 20, 0, 0, 0, 0 1.      W D W at z          (34) 

where /D d dz and a2 = k2
x+ k2

y is the dimensionless 
horizontal wave number. 
 
4. LINEAR STABILITY ANALYSIS AND DISPERSION 

RELATION 
 
The eigen functions fj (z) corresponding to the eigen 

value problem (29)-(34) are fj=sin(jz). Considering 

solutions W, Θ,  and Ф of the form: 

 
   
   

0 0

0 0

sin , sin ,

sin , sin .

  

 

W W z z

z z

 

 

   

       (35) 

Substituting (35) into equations (29) – (32) and 
integrating each equation from z = 0 to z = 1, we obtain 
the following matrix equations 

 

                                                     

  2 2 2 2

02
2

0

02 2

02
2

1

0
1

0 0
,

0
1 0

0
1

0

D

CT

TC

A

Rs
F J a R a a Rn

Le
W

J
J N

Le Le

J J N

N J
J

Ln Ln




 




 

    
                                  
 

 
 

               (35) 

where 2 2 2J a  is the total wave number. 
The linear system (35) has a non-trivial solution if and only if: 

    
 

      

2
2 2 4

2

2 2
2 2 2

2 2 2 4

1

1
- .

TC CT

D CT
TC

A TC A CT

F J
J J LeN N J

a
Rn

R Rs N J J
J N J Le J Ln

J J Ln N J N J Le N LnN

 
   

  
    

    

         
              
 

     
  

  (36) 

 

 



 

6 ▪ VOL. 42, No 1, 2014 FME Transactions
 

 

Equation (36) is the required dispersion relation 
accounting for the effect of thermo-solutal Lewis 
number, thermo-nanofluid Lewis number, kinematic 
visco-elasticity parameter, solutal Rayleigh Number, 
nanoparticle Rayleigh number, modified diffusivity 
ratio, Soret and Dufour parameter on thermosolutal 
instability in a layer of Walters’ (model B') elastico-
viscous nanofluid saturating a porous medium 
 
5. THE STATIONARY CONVECTION 
 
For stationary convection, putting  = 0 in equation 
(36) reduces it to 

 
   

 

22 2

2

1

1 1 .

D
TC

TC CT CT

A TC A CT

R
N Le

a
LeN N Rs N

a

Rn Ln N N Le N LnN



 




 


 
     

 
       

(37) 

Equation (37) expresses the thermal Darcy-Rayleigh 
number as a function of the dimensionless resultant 
wave number a and the parameters NTC, NCT, RS, Ln, Rn, 
Le, NA. Since the elastico-viscous parameter F vanishes 
with  so the Walters’ (model B') elastico-viscous 
nanofluid fluid behaves like an ordinary Newtonian 
nanofluid fluid. Equation (37) is identical to that 
obtained by Kuznetsov and Nield [13], and Chand and 
Rana [14]. Also, in equation (37) the particle increment 
parameter NB does not appear and the diffusivity ratio 
parameter NA appears only in association with the 
nanoparticle Rayleigh number Rn. This implies that the 
nanofluid cross-diffusion terms approach to be 
dominated by the regular cross-diffusion term. 

In the absence of the Dufour and Soret parameters 
NTC, NCT, and equation (37) reduces to 

 
 22 2

2
,D A

a Rs Ln
R N Rn

a



 

      
 

  (38) 

which is identical with the result derived by Kuznetsov 
and Nield [10]. 
In the absence of the stable solute gradient parameter 
Rs, equation (38) reduces to 

 
 22 2

2
,D A

a Ln
R N Rn

a





     
 

 (39) 

Equation (39) is identical with the results derived by 
Sheu [24] and Chand and Rana [14]. 

The critical cell size at the onset of instability is 

obtained by minimizing DR  with respect to a. Thus, the 

critical cell size must satisfy: 

 0,D

a ac

R

a 

    
  

Equation (37) which gives 

 3.1416ca   . (40) 

And the corresponding critical thermal Darcy-Rayleigh 
number (RD)C on the onset of stationary convection is 
given by: 

 

 

   
 

2

1

4 1 1
.

D c
TC

TC CT CT

A TC A CT

R
N Le

LeN N Rs N

Rn Ln N N Le N LnN



  



 


     
       

 (41) 

It is noted that if Rn is positive then RD is minimized 
by a stationary convection. The result given in equation 
(41) is a good agreement with the result derived by Sheu 
[24] and Chand and Rana [14] in the absence of the 
Dufour, Soret and stable solute gradient parameters, 
NTC, NCT and Rs respectively. 
 
6. RESULTS AND DISCUSSIONS 
 
The critical thermal Darcy-Rayleigh number on the 
onset of stationary convection is given by (41) and does 
not depend on viscoelastic parameter and it takes the 
same value that the one obtained for an ordinary 
Newtonian fluid.  

Furthermore, the critical wave number, ac, defined 

by equation (40) at the onset of steady convection 
coincides with those reported by Tzou [7], Kuznetsov 
and Nield [10] and Chand and Rana [14]. Note that this 
critical value does not depend on any thermo physical 
property of the nanofluid. Consequently, the 
interweaving behaviors’ of Brownian motion and 
thermophoresis of nanoparticles does not change the 
cell size at the onset of steady instability and the critical 
cell size ac is identical to the well known result for 

Bénard instability with a regular fluid [1].  
It is noted that the absence of the Dufour and Soret 

parameters TCN  and CTN  and nonoparticles, one 

recovers the well-known results that the critical thermal 

Darcy-Rayleigh number is equal to 24  as obtained by 
Sheu [24]. Thus the combined effect of Brownian 
motion and thermophoresis of nanoparticles on the 
critical Rayleigh number is reflected in the third term in 
equation (41). From equation (41), it can be concluded 
that for the case of top-heavy distribution of 
nanoparticles

 
(φ1>φ0 and ρp >ρ), which corresponds to 

positive values of Rn, the value of the steady critical 
Rayleigh number for the nanofluid is smaller than that 
for an ordinary fluid, that is, steady convection sets 
earlier in these kinds of nanofluids than in an ordinary 
fluid. This implies that thermal conductivity of ordinary 
fluids is higher than that of nanofluids with top-heavy 
distribution of nano particles. On the contrary, for the 
case of bottom-heavy distribution of nano particles 
(φ1<φ0 and ρp >ρ), which corresponds to negative 

values of Rn, the value of the critical Rayleigh number 
for the nanofluid is larger than that for an ordinary fluid, 
that is, convection sets earlier in a ordinary fluid than in 
a nanofluid with bottom-heavy distribution of 
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nanoparticles. This implies that thermal conductivity of 
this kind of nanofluids is higher than that of ordinary 
fluids.  

The dispersion relation (37) is analyzed numerically. 
Graphs have been plotted by giving some numerical 
values to the parameters to depict the stability 
characteristics. 

 
Figure 2. The variations of thermal Rayleigh-Darcy number 
RD

 
with the wave number a for different values of the 

solutal Rayleigh numbers Rs = 10, Rs = 50 and Rs = 100. 

The variations of thermal Rayleigh- Darcy number 

DR
 
with the wave number a for three different values 

of the solutal Rayleigh number, namely, Rs = 10, 50 
and 100 is plotted in Fig. 2 and it is observed that the 
thermal Rayleigh- Darcy number increases with the 
increase in solutal Rayleigh number so the solutal 
Rayleigh number stabilizes the system. In Fig. 3, the 

variations of thermal Rayleigh- Darcy number DR
 
with 

the wave number a for three different values of the 
thermo-nanofluid Lewis number, namely, Ln = 500, 
1000 and 1500 which shows that thermal Rayleigh-
Darcy number increases with the increase in thermo-
nanofluid Lewis number. Thus thermo-nanofluid Lewis 
number has stabilizing effect on the system.  

 
Figure 3. The variations of thermal Rayleigh- Darcy number 
RD

 
with the wave number a for different values of the 

thermo-nanofluid Lewis number Ln = 500, Ln = 1000 and Ln 
= 1500. 

The variations of thermal Rayleigh- Darcy DR
 
with 

the wave number a for three different values of the 

thermosolutal Lewis number, namely, Le= 500, 1000 
and 1500 is plotted in Fig. 4 and it is found that thermal 
Rayleigh- Darcy number decreases with the increase in 
thermosolutal Lewis number so the thermosolutal Lewis 
number has destabilizing effect on the system. 

 
Figure 4. The variations of thermal Rayleigh- Darcy number 
RD

 
with the wave number a for different values of the 

thermosolutal Lewis number Le = 500, Le = 1000 and Le = 
1500.  

In Fig. 5, the variations of thermal Rayleigh- Darcy 

number DR
 
with the wave number a for three different 

values of the Soret parameter, namely NTC = 5, 10, 15 
which shows that thermal Darcy-Rayleigh number 
increases with the increase in Soret parameter. Thus 
Soret parameter has stabilizing effect on the system. 

The variations of thermal Rayleigh- Darcy number DR
 with the wave number a for three different values of 

Dufour parameter, namely NTC = 5, 10 and 15 is plotted 
in Fig. 6 and it is found that thermal Darcy-Rayleigh 
number increases with the increase in Dufour parameter, 
so the Dufour parameter has stabilizing effect on the 
onset of stationary convection in a layer of Rivlin-
Ericksen elastico-viscous Nanofluid saturating a porous 
medium. The system becomes more stable when the 
values of Soret and Dufour parameters are equal. The 
results obtained in figures 2 to 6 are in good agreement 
with the result obtained by Chand and Rana [14,15], 
kuznetsov and Nield [13] and Sheu [24]. 

 
Figure 5. The variations of thermal Rayleigh- Darcy number 
RD

 
with the wave number a for different values of the Soret 

parameter NTC = 5, NTC = 10, NTC = 15.  
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Figure 6. The variations of thermal Rayleigh- Darcy number 
RD

 
with the wave number a for different values of the 

Dufour parameter NTC = 5, NTC = 10, NTC = 15 

 
7. CONCLUSION 
 
Thermosolutal instability on the onset of stationary 
convection in a layer of Walters’ (model B') elastico-
viscous Nanofluid in a porous medium is investigated 
by using a linear stability analysis. The main 
conclusions are: 
 For the case of stationary convection, the Walters’ 

(model B') nanofluid behaves like an ordinary 
Newtonian nanofluid. 

 Kinematic viscoelasticity has no effect on the 
onset of stationary convection. 

 The solutal Rayleigh Number, thermo-nanofluid 
Lewis number, Soret parameter and Dufour 
parameter have stabilizing effects on the stationary 
convection as shown in figures 2, 3, 5 and 6, 
respectively. 

 The thermo-solutal Lewis number has 
destabilizing effect on the stationary convection of 
the system as shown in figure 4. 
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O ПОЧЕТКУ ТЕРМО-РАСТВОРЉИВЕ 

НЕСТАБИЛНОСТИ У СЛОЈУ ЕЛАСТИЧНО-
ВИСКОЗНОГ НАНОФЛУИДА У ПОРОЗНОМ 

МЕДИЈУМУ 
 

G.C.Rana, R.C.Thakur, S.K.Kango 
 

У раду се разматра проблем термо-растворљиве 
нестабилности у хоризонталном слоју нанофлуида у 
порозном медијуму. Валтерсов (модел Б') модел 
флуида се користи за описивање реолошког 
понашања нанофлуида а Дарсијев модел за 
описивање порозног медијума. Релација дисперзије 
којом се објашњавају утицаји различитих 
параметара изведена је из анализе линеарне 
стабилности на основу методе анализе нормалних 
стања. Почетни ктитеријум за стационарно струјање 
је изведен аналитички и утврђено је да се Валтерсов 
(модел Б') еластично-растворљиви нанофлуид 
понаша као обичан њутоновски нанофлуид. У раду 
се истражује како на стабилност стационарног 
струјања утичу Рејлијев коефицијент 
растворљивости, Луисов коефицијент термо-
нанофлуида, Луисов коефицијент термо-
растворљивости и Сореов и Дифоров параметар 

 

NOMENCLATURE  

a  Wave number 
c Specific heat  
d Thickness of the horizontal layer 
DB Diffusion coefficient (m2/s) 
DT Thermophoretic diffusion coefficient 
F Kinematic visco-elasticity parameter 
g Acceleration due to gravity (m/s2) 
g Gravitational acceleration vector 
k Thermal conductivity ( w / mK ) 
Le Thermosolutal Lewis number 
Ln Thermo-nanofluid Lewis number 
NA Modified diffusivity ratio 
NB Modified particle-density ratio 
NCT Soret parameter 
NTC Dufour parameter 
p pressure (Pa) 
Pr Prandtl number 
q Darcy velocity vector (m/s) 
RD Thermal Darcy-Rayleigh number 
(RD)C Critical Thermal Darcy-Rayleigh number 
Rm Basic-density Rayleigh number 
Rn Concentration Rayleigh number 
Rs Solutal Rayleigh number 
t time (s) 
T temperature (K) 
(u,v,w) Darcy velocity components 
(x,y,z) space co-ordinates (m) 

Greek symbols 

αT Solute volumetric coefficient 
αC Thermal volumetric coefficient (1/K) 
φ Nanoparticles volume fraction 

κm Effective thermal diffusivity of porous 
medium (m/s2) 

μ Viscosity of the fluid(Ns/m2) 
μ' Viscoelasticity 
ν Kinematic viscosity 
ν' Kinematic viscoelasticity 
ρ Density of fluid (kg/m3) 
ρp Nanoparticle mass density (kg/m3) 
 Growth rate of disturbances 

Superscripts 

' Non-dimensional variables 
f ' ' 

 

Subscripts 

p Particle 
f Fluid 
b Basic state 
0 Lower boundary 
1 Upper boundary 

 

 


