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The paper considers a case of brachistrochronic motion of the mechanical
system in the field of conservative forces, subject to the action of
constraints with Coulomb friction. In this case an analogy is made between

the two approaches of solving this problem of the mechanical system with
two degrees of freedom. The mathematical model used to compute the
brachistohrone in this special case of the multibody system with two
deegres of freedom is based on varational calculus. The complete analogy
is made with a solution in relation to material point.
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1. INTRODUCTION

The Bernoulli’s case of brachistochronic motion of a
particle (cf. [1]) was for the first time extended by Euler
in [2] . Euler considered motion of a particle in resisting
medium in which the force of resistance depends only
on velocity of the particle.

The case of brachistochronic motion of a particle in
the field of gravity subject to the action of Coulomb
friction solved by Ashby in [3] presents a special case in
which the power of friction forces is described as linear
function in relation to generalized velocities and
accelerations. The brachistochronic motion of a particle
along a rough surface was treated by Covié and
Veskovi¢ in [4] where the power of friction forces is
given as the sum of two functions, one in relation to
generalized coordinates and velocities and the other
function which is linear in relation to accelerations and
whose coefficients depend on generalized coordinates
and velocities.

The Bernoulli’s brachistochrone problem was
extended to the system of rigid bodies by Covié and
Veskovié in [5].

The brachistochronic motion of a mechanical system
with two degrees of freedom subject to the action of
constraints with Coulomb friction presented by Djuric
in [6] use the form of the power of friction forces given
in [4] but in case when the power of friction forces,
potential and kinetic energy does not depend on
generalized coordinates. In the paper [7] Covi¢ and
Veskovi¢ showed complete analogy between the
brachistochronic motion of a mechanical system with
two degrees of freedom and the brachistochronic motion
of a particle under friction forces where the power of
friction forces is expressed as function in relation to
generalized velocities and accelerations, in a more
general form than in [3] and [4] .

In the paper [8] Salini¢, Obradovi¢, and Mitrovié
considered the case of brachistochronic motion of
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mechanical system with two degrees of freedom in
which ideal bilateral constraints and one unilateral
constrain with Coulomb friction are imposed on the
system.

In this paper, the choice of the functions of
generalized velocities in expression for power of
Coulomb friction shows that in case of mechanical
system with two degrees of freedom of motion the
complete parameterization of differential equations of
motions is similar to Ashby’s frictional brachistochrone
in relation to material particle. However introduced
functions are different than in the papers mentioned
above and this leads to new differential equations of
brachistochronic motion which are solved.

2. FORMULATION OF THE PROBLEM

We consider, in this paper, the motion of a mechanical
system in a stationary field of potential forces with

potential IT=TI(qQ) , subject to the action of real

constraints. The configuration of the system is defined

by the set of  Lagrangian coordinates
q:(ql,qz,...,q”), to which correspond the

generalized velocities § = (ﬁl s ﬁz,..., dn) Lagrangian
function of the system has the form ([2])

L@@ =T@.q-11() (1)

where T is kinetic energy of the system

T = %aaﬂ(q) 067 a.p-12..n. @
Differential equations of motions of the mechanical
system have the well known form (cf.[9])
d oL oL —
an*_a_aq*_a:Qa +Ry, 3)

where Q4 are generalized forces of Coulomb
friction and R, are generalized control forces. Let us

assume that initial position of the system is defined by
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. . —a
the set of given coordinates 9o at moment t=t, ,
which is set in advance, where it was at rest and let final
o . =0
position is defined by the set of coordinates 9 at

moment ! =Y which is unknown. The time the system
needs to move from initial to final position is
determined by relation

I = j(t)l dt. 4)

If we assume that the system moves from initial to final
configuration along one definite trajectory for which
Egs. (4) has minimum value

I = [ldt > inf 5)

we will consider brachistochronic motion. If we now
introduce Bernoulli's condition's (cf.[3]), i.e. the
conditions which do not disturb the principle of work
and energy subject to the action of control forces in
virtue of R qi -0 , we formulate variational problem as

constrained with constraint which represents the
principle of work and energy

T=P¥-11 = T+1-P* =0, (6)

where power of generalized forces of Coulomb friction
has the form

PA=Q)d%, 7
so that relation (5) becomes
I, = [§} Fdt — inf ., )
where

F(/I,ﬁ,ﬁ,ﬁ)=l+/1(f+H—Pﬂ) )

3. GENERAL PART

Let us consider a case of brachistochronic motion
presented in [7] in which the power of forces of
Coulomb friction (cf. (7)) has the form:

P =@ +oy@ 0, (10)
and let us assume now that functions p(7,q) and
75 g) have the form

7@0H=-by @7 dp@DH=-dyp@g*, (1)
where the following
7(@.8), 54 C°, (12)
holds.

Our aim is to obtain differential equations of
brachistochrinic motion of the system. For that reason,
we are able to minimize the integral (4) but in order to
avoid second order functional we introduce the
following constraints in terms of varational calculus
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: _ = a B _
g -u’ =0, 2T—aa/),u u” =0,

(13)
and the integrand of functional (9) gets the form

F =1+/1[f+mua —y—gPuP ]+
aq”

1o, @ —ua)+9(2'l'_—aaﬂ u® uﬂ). (14)

where

B

e O TR WD)

and where A=A(t) , §=6(t) and o, =0, () are
Lagrange's multipliers.
Assuming that conditions

oF

ar " 19

are further satisfied (cf[6]), we shall apply
transformation to coordinates

a% =ky q”, k; =const, & k,é, (17)

_ a
b4 yr =85 Ky

where S is Kroneker delta simbol.

This transformation leads to a new integrand of
functional (8)

F'= 1+/”L(T*+C;a)y+b;a)7+d;/a)” a')7)+
10T -5, 0 o +o (@7 - o) (18)

where

T =1s o’'w", c =c kI’
2 1 7

a Ny o
by =b, ks, d; =d,kIk”, (19)
4 =o’, o,=0,k;.

Euler's equations for (18) are given in [6].

4. MECHANICAL SYSTEM WITH TWO DEGREES OF
FREEDOM

Let us consider a special case of motion of mechanical
system with two degrees of freedom. Assuming that
condition (16) is further satisfied and having in mind

(17

1o 01 12 2 21 .22
O =k +kya". a=kja+kyaq.  (20)
where
D e I N L
1SR et Tk sk
a,,+a 21
a=aj;+2a), +ay,, s=-——1 12 12, 0
adiH +a
12 +32

b:a11+25a12+s2 a5y, Ay +ay #0.

Taking into account (21), kinetic energy of the
system considered (cf. (2)) can be written in the form
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T:év2, vZ-gl+as. (22)
Potential energy (cf. (16)) get the form
o =c;‘ q1+c; q2, (23)
where (cf. (19), (21))

* 1 * 1
C :ﬁ(clJrCZ)’ czzﬁ(cl+scz). (24)

Power of generalized forces of Coulomb friction (cf.
(10)) obtain the form (cf. (20))

U —pfd —apata), =12 (s

where (cf. (19))

1 * 1 51
bl =7a(bl+b2)’ b2=f(bl—fb2),

Ja B

(dn +djp +dyy +d22)

(26)

x 1 ! *12

dpp = Ay =5 W #dy P+ (7 dp )
2 2

S =81 s

s, =5+,

we are able to eliminate the velocities ql and q2 by the
following relations

02 =V 1,, 27)

v=yai+a3.  (28)

The choice of functions f, i f, gives the different

.1
q =V f,

where

form of the principle of the work and energy (6).
Furthermore we introduce the functions with
parameter z = z(t)

71—22 212

fi = , f, = , 29
! 1+z2 2 1+z2 ( )

wherefrom the principle of the work and energy (6) has
the form

gpl+1//1\/ +p1VZ=O (30)
and integrand (9) gets the following form

F=1+A(g; +y |V +pV2)+

k] k2
+07 (@ V) +65(q7 ~Vf,)=0 (D
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where
vy = 25—z + 11222 +15 (1+2°),
py =207 (-2 41, 20-2%)-4(d]y -2d5 )2
o =N +(2r2+r1 z)z+(4r2—r1 z)z3 +@2nr-n z)z5 (32)
[=b+e, p=hy+e,
p=dyrdy f=di-dy,
ro=l+d), T =30/ +4d5,
Formulating Euler's equations for (31) in relation to 91 ,
9 ,v iz, weget(cf.(19))
df =0 > crr =Cl* = const.,
d; =0 —> 0'; = C; =const., (33)
Oy + Ay +(yj—p)2A =0,
V(@ + Ao+ AN (g ~ui )+ of1=0,

where
x4z %2(1-12)
6 =-GC 22+C2 PN
1+z°) 1+z
2
02:(:1*1 z +C; 22 i (34)
2 2
1+z 1+z

i =216 (1+222) 2+ 253(1 - 52%)+ 615 2°,

2 2

# =20 1+62% +52H 2 0-222 -32%)2

The condition of transversality at the right end-point
gets the form

[1+ 21 =,V g—) = O (35)

and Euler's equations (33) have the first integral

1+4p -0,V =C, C=0. (36)

Taking into consideration that ¥V and Z is not
prescribed in the final position of the system, the end-
conditions have the following form

oF

oF
=ty =0 )=t =0 (37)

wherefrom we get
Mty =4 =0 (38)
Eliminating Vv by (30), from Euler's equation (cf.

(33)) in relation to z we are able to eliminate i from
Euler's equation (cf. (36)) in relation to ¥ , wherefrom

we get (cf. (36))
V- vid +h o —vi)
~Q Ay +O v+ (2 —yDI

(39)

%P -0y

A= .
‘91(P1W1+92[—|//1‘/7i +(P1(—2p1 +'//i)]

(40)
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In order to obtain the equations of motion of the
system considered (cf. (32),(34) ) the differential
equations (27) can be written in the form

1 2

dg dg 41
A 4 f —— =y f5. ( )
dz X1 dz X1

where

_ BB Koty (535 -5 )]

50

G=vioi+oQp -V % =9 -po.

K =vio +v o]+ ol Qo —vD+ o o~y (42)
H=G -pio-pops K =960,-0 0,
F=810,+ 80, -0,y -0 91y O oy

5. SOLUTION

Suppose that the mechanical system considered has a
velocity V(ty) =0 at the start position then equation (39)

gives
2 =a*p (43)
where
* £
Y n+dyy)—dj, 1

*
dyofi =150

* * 2
- (n (1+d22)—d12 ry) .

ﬂ = % 2
(A =T51y)

(44)

Taking into account conditions (37) at the final
position of the system considered, equation (40) gives
(cf.(38))

* *
C1 = KCZ’ (45)
where

2 *
5 (1-z1)+2d,y, 7

= : 46
20+dyy)z + dy (-20) (46)
Integration of differential equations (41) yields to
general solutions
r__ 1 2 _ 1 47)
q = (1)1 + Al’ q- = (1)2 + A2
(©3)? (C3)?
where
q)l(Zl,Z)= JZI fle, (132(21,2)= -[Zl fde,
i0 0 _ i (48)
A =0"-—=d, a7 =d@,
€3)?
CDIO = (Di(Zl, Zo), i =12,
in which (cf.(46))
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; 1+ 9[8 8 - §a+2 ]
7 4
5 =-2pd 8 + a1+ )05 71 %,
By = py 1+ 222 91y —2p1 oy (1 2 )y —4papyf.
A=+ P b =wid+vid . (49)
Y1=P3% +2P A ¥is
p1=—1+2Kz+22,
() :—22+K(—1+22),
p3:K—Kz4+22(1+22),

P4 =—K—3z+3Kz2 +z3.

Taking into account that at final position the
following relations

A(z)) = AgAD, —AD| = 0, (50)
holds where (cf.(48))
ADj = Dy — Djg, i =12,
1 S (51)
A
ag==1 aq =q' g,
Aq

we get a value of the parameter z; at moment t; , and
%
constant €2 (cf.(51))

275 (52)

6. EXAMPLE

Let us consider the motion of the mechanical system
which consists of three prismatic rigid bodies and
moves in homogeneous field of gravity. The
configuration of the system is defined by the set of

coordinates §' :(ﬁl,q2)~ System starts from position

. 1 =10 =2 -20
defined by coordinates 0 (tp) =0~ and G (t)) =1
where it was at rest.
Final position is set by:

_1 11
a)=0 and

CRCIEL R
The coefficient of Coulomb friction on the rough
inclined side (at angle « to horizontal) of prism P is 1y
The coefficient of friction on rough vertical plane is .,

and the coefficient of friction on rough horisontal plane
is 14 (fig 1.). Let m, denote the mass of the prism P>

m, denote the mass of the prism P, and let my denote
the mass of the prism P3 in a suitable system of unites.
Prisms P and P, are attached for the rope. Rope passes

over drum without friction. The rotation of the drum is
not resisted by friction.
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P, P

=1

q
2l N

5 ON py_

Figure.1 An example of the mechanical system

Taking into account that the differential equations of
motion of the system considered (fig.1) have the form

N
aiqu:Qi -7ty >
6q i, ] = 1,2, (53)
where

[ =—1;,(Mg — Mﬁz),

. )
Qél =—pumg cosoH—(,ulm1 smaf,uzmz)q N

6—2:0, %:9'\"1, (4
aq aq

the relations (19) get the form

* 1 * gs
¢, =—=M,, ¢, =-——FM
1 [a | |

Voo
* 1
bl = ﬁ(gM Mg+ My cos @),
* 1
b2 = ﬁ(gM M3 + sy gy cos ),
* 1 .
dy; = g(_m2"2+mlﬂl sina —3M)),

*

1 .
dy = EPmZNZ + My sina —susMy),

1
%

d = — [y M +S(=M, 1, + M, 1 sin @),
21 /ab 371 272 141

d;z = i[(fmz,u2 + My sina) - M1, (55)
where
M =m +m,+m,,
M, =m;sina—-m,,
a=M+m,+m(1+2cosa),
b=M +(m,+m,)s’ +2mscosa,

M +m, cosa

Y —m3+m1cosa.(56)
If azf’ m =£, m, =m, sin «, m :ﬂ
6 1 3 2 1 3 0
= 21*0 > Hy =%, Uy =% then the relation gives the

value of parameter z(t) (at t:to) 2o = 0.4187046. If
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1 2 .
a(t)=879 and 9" () =41 (at t:tl) then relation

(50) gives the value of the parametar 7 =1.23232.

q2
al

2 1 & s al

Figure.2 Brachistohrone of the mechanical system
considered

0: 4 0‘_ B r] : £ i : 2
Figure.3 The graph of velocity V(z)

The graph in (Fig.2) is showing the brachistochone
a?=f@") and graph in (Fig.3) is showing v =V (z)
(cf.(39)) of the system considered.

7. CONCLUSION

The paper considers a case of the brachistochronic
motion of the mechanical system in the field of
conservative forces, subject to the action of constrains
with Coulomb friction. The constraint represents the
modified form of the principle of work and energy (30)
obtained in [6] and the new Euler's equations are
formed. The complite analogy is made among solution
obtained in the example considered, solution in [6] and
the solution in relation to material point in [3].
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BPAXNCTOXPOHO KPETAIBE MEXAHNYKOT
CHUCTEMA CA PEAJTHUM BE3AMA

JAparyrun Bypuh

Y oBOM pajy pa3MaTpaHo je OpaXHCTOXPOHO KPEeTame y
CIELMjaJITHOM CJIy4ajy CUCTeMa ca JIBa CTelieHa cioboe
KOju ce Kpehe y moJby KOH3EpBATMBHHMX CHJIa TOA
nejctBoM Be3a ca KynoHoBum TpemeMm. M36opom
¢yHKIMja TeHepaJucaHMX Op3WHa M3BpIIEHA je
rapameTpu3anyja JrdepeHIHjaTHIX jeaHaunHa
Kperama. PopMUpaH je HOB MATEMATHYKH MOJEH KOjH
je xopumhen 3a goOujame OpaxuCTOXpoHE |
HampaBJbeHA j& aHAJIOTHja ca MaTeMaTHYKUM MOJIEINMa
KOjH Ccy m3IIokeHH y panoBuma [3], [4], [5] u [6].
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