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On Brachistochronic Motion of a 
Multibody System with Two Degrees of 
Freedom with Real Constraints 
 
The paper considers a case of brachistrochronic motion of the mechanical 
system in the field of conservative forces, subject to the action of 
constraints with Coulomb friction. In this case an analogy is made between 
the two approaches of solving this problem of the mechanical system with 
two degrees of freedom. The mathematical model used to compute the 
brachistohrone in this special case of the multibody system with two 
deegres of freedom is based on varational calculus. The complete analogy 
is made with a solution in relation to material point. 
 
Keywords : Brachistochronic motion, Coulomb friction. 

 
 

1. INTRODUCTION  
 
The Bernoulli’s case of brachistochronic motion of a 
particle (cf. [1]) was for the first time extended by Euler 
in [2] . Euler considered motion of a particle in resisting 
medium in which the force of resistance depends only 
on velocity of the particle.  

The case of brachistochronic motion of a particle in 
the field of gravity subject to the action of Coulomb 
friction solved by Ashby in [3] presents a special case in 
which the power of friction forces is described as linear 
function in relation to generalized velocities and 
accelerations. The brachistochronic motion of a particle 
along a rough surface was treated by Čović and 
Vesković in [4] where the power of friction forces is 
given as the sum of two functions, one in relation to 
generalized coordinates and velocities and the other 
function which is linear in relation to accelerations and 
whose coefficients depend on generalized coordinates 
and velocities.  

The Bernoulli’s brachistochrone problem was 
extended to the system of rigid bodies by Čović and 
Vesković in [5].  

The brachistochronic motion of a mechanical system 
with two degrees of freedom subject to the action of 
constraints with Coulomb friction presented by Djuric 
in [6] use the form of the power of friction forces given 
in [4] but in case when the power of friction forces, 
potential and kinetic energy does not depend on 
generalized coordinates. In the paper [7] Čović and 
Vesković showed complete analogy between the 
brachistochronic motion of a mechanical system with 
two degrees of freedom and the brachistochronic motion 
of a particle under friction forces where the power of 
friction forces is expressed as function in relation to 
generalized velocities and accelerations, in a more 
general form than in [3] and [4] . 

In the paper [8] Šalinić, Obradović, and Mitrović 
considered the case of brachistochronic motion of 

mechanical system with two degrees of freedom in 
which ideal bilateral constraints and one unilateral 
constrain with Coulomb friction are imposed on the 
system.  

 In this paper, the choice of the functions of 
generalized velocities in expression for power of 
Coulomb friction shows that in case of mechanical 
system with two degrees of freedom of motion the 
complete parameterization of differential equations of 
motions is similar to Ashby’s frictional brachistochrone 
in relation to material particle. However introduced 
functions are different than in the papers mentioned 
above and this leads to new differential equations of 
brachistochronic motion which are solved. 

 
2. FORMULATION OF THE PROBLEM 

 
We consider, in this paper, the motion of a mechanical 
system in a stationary field of potential forces with 
potential ( )q    , subject to the action of real 

constraints. The configuration of the system is defined 
by the set of Lagrangian coordinates 

,),...,2,1( nqqqq   to which correspond the 

generalized velocities ),...,2,1( nqqqq    Lagrangian 

function of the system has the form ([2])  

 )(),(),( qqqTqqL    (1) 

where T  is kinetic energy of the system  

 ,)(
2

1 
 qqqaT  .,...,2,1, n  (2) 

Differential equations of motions of the mechanical 
system have the well known form (cf.[9]) 

 ,

 RQ

q

L

q

L

dt

d












 (3) 

where 

Q  are generalized forces of Coulomb 

friction and R  are generalized control forces. Let us 

assume that initial position of the system is defined by 
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the set of given coordinates 

0q  at moment 0t t  , 

which is set in advance, where it was at rest and let final 

position is defined by the set of coordinates 

1q  at 

moment 1tt  , which is unknown. The time the system 
needs to move from initial to final position is 
determined by relation  

 .10 dttI   (4) 

If we assume that the system moves from initial to final 
configuration along one definite trajectory for which 
Eqs. (4) has minimum value  

 1 inf0
t

I dt   (5) 

we will consider brachistochronic motion. If we now 
introduce Bernoulli's condition's (cf.[3]), i.e. the 
conditions which do not disturb the principle of work 
and energy subject to the action of control forces in 
virtue of 0iqiR   , we formulate variational problem as 

constrained with constraint which represents the 
principle of work and energy  

 ,0 
PTPT   (6) 

where power of generalized forces of Coulomb friction 
has the form  

 ,



qQP   (7) 

so that relation (5) becomes 

 .,inf101  FdttI  (8) 

where  

  .1),,,(
 PTqqqF    (9) 

 
3. GENERAL PART  
 
Let us consider a case of brachistochronic motion 
presented in [7] in which the power of forces of 
Coulomb friction (cf. (7)) has the form: 

 ,),(),(



qqqqqP    (10) 

and let us assume now that functions ),( qq   and 

),( qq 
  have the form 

 ( , ) ( ) , ( , ) ( ) ,q q b q q q q d q q            (11) 

where the following 

 ,2),(),,( Cqqqq 
  (12) 

holds. 

Our aim is to obtain differential equations of 
brachistochrinic motion of the system. For that reason, 
we are able to minimize the integral (4) but in order to 
avoid second order functional we introduce the 
following constraints in terms of varational calculus  

 ,02,0  


 uuaTuq  (13) 

and the integrand of functional (9) gets the form  

 1F T u u
q

   
       
  

     

  ( ) 2 .q u T a u u         (14) 

where 

 ,)(
~ 

 ubuq   ,)(~ 


 uduq   (15) 

and where )(t   , )(t   and )(t    are 

Lagrange's multipliers. 
Assuming that conditions  

 ,0



q

F
 (16) 

are further satisfied (cf.[6]), we shall apply 
transformation to coordinates 

 .,, constkqkq  





  ,




 kka  (17) 

where   is Kroneker delta simbol. 

This transformation leads to a new integrand of 
functional (8)  

 
 

   ,2

1



























qT

dbcTF




 (18) 

where 

 

.,

,,

,,
2

1

























kq

kkddkbb

kccT















 (19) 

Euler's equations for (18) are given in [6]. 

 
4. MECHANICAL SYSTEM WITH TWO DEGREES OF 

FREEDOM 
 
Let us consider a special case of motion of mechanical 
system with two degrees of freedom. Assuming that 
condition (16) is further satisfied and having in mind 
(17)  

 ,22
2

12
1

2,21
2

11
1

1 qkqkqqkqkq   (20) 

where 

 

.02212,22
2

12211

,
2212

1211,2212211

,1
2

2
2,1

1
2
1,

11
2,

11
1










aaasasab

aa

aa
saaaa

kskkk
b

k
a

k

 (21) 

Taking into account (21), kinetic energy of the 
system considered (cf. (2)) can be written in the form 
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 .2
2

2
1

2,2

2

1
qqVVT    (22) 

Potential energy (cf. (16)) get the form  

 ,2
2

1
1 qcqc   (23) 

where (cf. (19), (21)) 

 ).21(
1

2),21(
1

1 csc
b

ccc
a

c 
 (24) 

Power of generalized forces of Coulomb friction (cf. 
(10)) obtain the form (cf. (20)) 

 ,2,1,, 
ji

j
qiqijdiqibP 

 (25) 

 where (cf. (19)) 
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,22122
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],22
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1
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1
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1
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1
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1
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,22211211
1
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1
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1
2),21(

1
1
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s
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d

dd
s

s
dd

ba
d

dd
s

s
dd

ba
d

dddd
a

d

b
s

s
b

b
bbb

a
b















 (26) 

we are able to eliminate the velocities 
1q  and 

2q  by the 
following relations  

 ,2
2,1

1 fVqfVq    (27) 

where  

.2
2

2
1 qqV    (28) 

 
The choice of functions 1f  i 2f  gives the different 

form of the principle of the work and energy (6). 
Furthermore we introduce the functions with 

parameter )(tzz    

 ,21

2
2,21

21
1

z

z
f

z

z
f







  (29) 

wherefrom the principle of the work and energy (6) has 
the form  

 0111  zVV    (30) 

and integrand (9) gets the following form  

  )111(1 zVVF     

 0)
2

2(2)
1

1(1  VfqVfq    (31) 

where 

 

.2241136,1115

,22114,21123

,222,111

5)122(3)124()122(11

2)21212(4)21(44)41(1221

),61(5
2)21(6)41(321













ddrdr

ddrddr

cbrcbr

zzrrzzrrzzrrr

zddzzrzd

zrzzrzzr







 (32) 

Formulating Euler's equations for (31) in relation to 1q  , 

2q  , V  i z  , we get (cf.(19)) 

 

  ,0]111[)11(

,0)11(12

.,2202

.,1101

















VV

z

constC

constC









 (33) 

where  

4 2(1 )
,1 1 22 2 2(1 ) 1

21 2
,2 1 22 21 1

2 4 52 (1 2 ) 2 (1 5 ) 6 ,51 6 3
2 4 2 42 (1 6 5 ) 2 (1 2 3 ) .1 2 1

z z
C C

z z

z z
C C

z z

r z z r z r z

r z z r z z z









   
 

  
 

     

      

 (34) 

The condition of transversality at the right end-point 
gets the form  

 [1 ] 0,1 2 ( )1
V t t     (35) 

and Euler's equations (33) have the first integral  

 .0,211  CCV  (36) 

Taking into consideration that V  and z  is not 
prescribed in the final position of the system, the end-
conditions have the following form  

 ,0)1(][,0)1(][ 





ttz

F
ttV

F


 (37) 

wherefrom we get  

0.1( )1t t    (38) 

Eliminating V  by (30), from Euler's equation (cf. 
(33)) in relation to z  we are able to eliminate   from 
Euler's equation (cf. (36)) in relation to V  , wherefrom 
we get (cf. (36))  

 
( )1 1 1 1 1 ,

[ ( 2 )]1 1 1 2 1 1 1 1 1
V

    
        

  


      (39) 

 .
)]112(111[2111

1112









  (40) 
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In order to obtain the equations of motion of the 
system considered (cf. (32),(34) ) the differential 
equations (27) can be written in the form  

 
1 2

, .1 2
dq dq

f f
d z d z

    (41) 

where  

 

.11111111121213

,111213,111112

),112(1)112(111111

,1112),112(1111

1
3
3

)]3223(1132[2

























 (42) 

 
5. SOLUTION 
 
Suppose that the mechanical system considered has a 
velocity 0)0( tV  at the start position then equation (39) 

gives  

  0z  (43) 

where 

 
,

25122

212)221(1

rrrd

rddr






  

 

.2)25122(

2)212)221(1(
1

rrrd

rddr






 (44) 

Taking into account conditions (37) at the final 
position of the system considered, equation (40) gives 
(cf.(38))  

 ,21
 CKC  (45) 

where 

 .
)2

11(211)221(2

1212)2
11(5

zdzd

zdzr
K




  (46) 

Integration of differential equations (41) yields to 
general solutions  

 1 11 2,1 1 2 22 2( ) ( )2 2
q A q A

C C
      

 (47) 

where 

 

( , ) , ( , ) ,1 1 1 1 2 1 1 2
10 0, ( ),0 02( )2

( , ), 1, 2,0 1 0

z z f d z z z f d z

i i iA q q q zi i
C

z z iii

     

   

   

 (48) 

in which (cf.(46)) 

 

2 3 2(1 ) [ (1 ) ]2 2 2 1 1
1 3

11
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p K Kz z
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

 

      

      

        

   

  


     

    

    

 

   

    

  

 


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 





2(1 ),

2 33 3 .4

z

p K z Kz z



    

 (49) 

Taking into account that at final position the 
following relations  

   0,1 2 1z q        (50) 

holds where (cf.(48))  

 
, 1, 2,1 0

1
0, ,

2

ii i i

q i i iq q q q
q

     


    



 (51) 

we get a value of the parameter z1 at moment t1 , and 

constant 

2C  (cf.(51))  

 .2,1.2 



 iiq

iC  (52) 

6. EXAMPLE 
 
Let us consider the motion of the mechanical system 
which consists of three prismatic rigid bodies and 
moves in homogeneous field of gravity. The 
configuration of the system is defined by the set of 

coordinates ).2,1(1 qqq   System starts from position 

defined by coordinates 
10)0(1 qtq   and 

20)0(2 qtq   
 where it was at rest.  

Final position is set by: 

 
11)1(1 qtq   and   

 2 21( )1q t q .  

The coefficient of Coulomb friction on the rough 
inclined side (at angle  to horizontal) of prism 

1P
is 

1 . 

The coefficient of friction on rough vertical plane is 
2  

and the coefficient of friction on rough horisontal plane 
is 

3 (fig 1.). Let
1m  denote the mass of the prism 

1P
, 

2m  denote the mass of the prism 
2P  and let 

3m  denote 

the mass of the prism 3P  in a suitable system of unites. 
Prisms 

1P
 and 

2P  are attached for the rope. Rope passes 

over drum without friction. The rotation of the drum is 
not resisted by friction. 
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Figure.1 An example of the mechanical system  

Taking into account that the differential equations of 
motion of the system considered (fig.1) have the form  

 

,iui
q

iQ
j

qija 



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


,2,1, ji  (53) 

where 

 ),( 2
131 qMMgQ  
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q
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


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gM

q
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

 (54) 

the relations (19) get the form  

 ,1
1

1 M
a

c 
 ,11 M

b

gs
c 

   

 ),cos113(
1

1  gmgM
a

b 
  

 ),cos113(
1

2  gsmgM
b

b 
  

 ),13sin1122(
1

11 Mmm
a

d  
  

 ),13sin1122[
1

12 Msmm
ab

d  
  

 ),sin1122(13[
1

21  mmsM
ab

d 
  

 ],13)sin1122[(22 Mmm
b

s
d    (55) 

where 
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If ,
6


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13

32
1 m  ,sin12 mm   ,
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1
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m
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,
20

1
1  ,
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1
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
 

5

1
3


   then the relation gives the 

value of parameter )(tz  (at 
0tt  ) .4187046.00 z  If 

79.8)1(1 tq  and 1.4)1(2 tq  (at 
1tt  ) then relation 

(50) gives the value of the parametar .23232.11 z  

 
Figure.2 Brachistohrone of the mechanical system 
considered 

 
Figure.3 The graph of velocity V(z) 

The graph in (Fig.2) is showing the brachistochone 

)1(2 qfq   and graph in (Fig.3) is showing )(zVV   

(cf.(39)) of the system considered. 
 
7. CONCLUSION 
 
The paper considers a case of the brachistochronic 
motion of the mechanical system in the field of 
conservative forces, subject to the action of constrains 
with Coulomb friction. The constraint represents the 
modified form of the principle of work and energy (30) 
obtained in [6] and the new Euler's equations are 
formed. The complite analogy is made among solution 
obtained in the example considered, solution in [6] and 
the solution in relation to material point in [3]. 
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БРАХИСТОХРОНО КРЕТАЊЕ МЕХАНИЧКОГ 

СИСТЕМА СА РЕАЛНИМ ВЕЗАМА 
 

Драгутин Ђурић 
 
У овом раду разматрано је брахистохроно кретање у 
специјалном случају система са два степена слободе 
који се креће у пољу конзервативних сила под 
деjством веза са Кулоновим трењем. Избором 
функција генералисаних брзина извршена је 
параметризација диференцијалних једначина 
кретања. Формиран је нов математички модел који 
је коришћен за добијање брахистохроне и 
направљена је аналогија са математичким моделима 
који су изложени у радовима [3], [4] , [5] и [6].  
 

 


