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1. INTRODUCTION

The generalized case of surface pairs contacting along a

EHD Contact Modelling of Gleason
Bevel Gears

Rolling-sliding machines such as gears, cams and followers, and bearings
are often subjected to high loads, high speeds and high slip conditions,
when not only the pressure distribution in the lubricant is a question but
the surface deformation, and variation of the viscosity due to pressure,
too. Although several methods have been already developed for solving
elastohydrodynamic problems, the solution of the highly nonlinear
problem is still quite challenging. So the development of a simulation
method to determine the surface loading conditions is under special
attention in order to be possible to calculate the sub-surface stress field.
Gleason bevel gears have got a complex geometry which only can be
described with the tools of differential geometry. In case of Gleason gear,
solving of elastohydrodynamic problems is a great challenge for the
engineers. The described elastohydrodynamic model takes into account
the cavitation which is modelled by a special and own developed method.
The problem was solved in finite element way using many supporting
numerical methods. The developed p-version finite element model
calculates the film shape and the pressure distribution. In this work, the
lubricant film created on contacting piece of toroidal surface was defined
by principal curvature of the global geometry of a given position of the
moving Gleason gear. The calculation was successful, and as a result we
got the film shape, the pressure field in the lubricant, the elastic
deformation of the Gleason gear and the stress developed in the gear due
to the contact.

Keywords: Gleason, bevel, gear, elastohydrodynamic, lubrication,
cavitation, FEM.
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spot in the status of liquid friction is illustrated in Figure
1. The gap between the bodies is filled with lubricant
due to the relative motion of the bodies and
hydrodynamic pressure develops due to the movement
of the lubricant. The movement of the lubricant is
caused by the shear stress generated in the lubricant as
the result of the relative motion of the surfaces. At the
particular kinematic condition of the contacting bodies
and with a given gap geometry, the pressure distribution
acting on the surfaces is able to maintain balance with
the force pressing the surfaces to each other and prevent
a direct body-to-body contact thereby. For the contact
problem of lubrication theory — due to its nature — it is
convenient to employ in general a Descartes coordinate
system with axis z perpendicular to the centre contact
surface.

The film shape can be calculated as a superposition
of the initial geometry, the displacement of a rigid
surface and the deformation of a half-space under
pressure. After deformation, the film shape is:
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where: h, is the initial gap size, Ayiq is the relative rigid
normal displacement between the contact bodies, and &
is the total deformation of the surfaces.

Surface 2

Contact
zone (Ac)

Surface 1
(S1) Body 1

Figure 1. Contacting bodies

The classical approach to find the stresses and
displacement in an elastic half-space due to surface
traction was presented by Boussinesq (1885) and
Cerruti (1882) and was developed by Love (1952). For
this case, Johnson (1985) [1] reported a simple solution.
Based on this, the deformation of the surface of the half-
space under the action of a normal pressure in case of
line contact is:
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where: £’ is the equivalent Young modulus and s is the
contact line.
The deformation due to thermal expansion is

negligible in most cases. ﬁxyT = [u,, u,]: the velocity in

the contact plane, u.: the velocity in the z direction, V.,
= [d/dx, d/dy], W; is the velocity of the contact bodies.
Due to translation of the surfaces perpendicularly to the
contact plane as:

uz|Z:—h1 = VV](I,)C, y)_ﬁxyL:_hl (nyhl) > (3)

wrl, Ly, =P Hig| V) @

The integral of the pressure over the contact area
should be equal with the external load.

Fy = | pdd ()
AC

where: Fy is the normal load of the surfaces.
Loadcase can be satisfied if the A4 is a variable.

2. HYDRODYNAMIC PROBLEM INCLUDING
CAVITATION

2.1 The generalized Reynolds equation

For calculating the contact pressure due to fluid film
lubrication the generalized Reynolds equation was
developed by Dowson (1961) [2] as a partial differential
equation takes into account the changes of the viscosity
and density across the film thickness.

Vo ¥V, (Vyp®)-Q=0 (6)
where:
(I) = F2 + Gl . (7)
¥ = hy py ﬁxyz —h py ﬁxyl -

_ (ﬁxyz - ﬁxyl - KOxy2 )

F+Gy)—
F (F5+Gy)
_ﬁxyl G3 _I_(;lxy _Iz2xy7 (8)
hy
9
Q=P1VV1—P2W2—_[8—[;dZ- )
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The F;, G; and Kixy are viscosity-density functions:

hy F(z.,)
_ €q
FO = J‘ z dz .
—h  ed
hy F(z.,)
€q
Fi = J‘ T—ZdZ,
-y eq
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zdz, (10)

G, = jza—pdz, (11)

J e [ 499 4 | 12
ow = [ oo [aTgre e @
_hl _hl

where: F(r,) is a function characteristic of a
particular lubricant model, while 74 is the equivalent
shear stress.

The function F (7.q) in (10) and (11) may take the
following forms, for example in the case of various
types of lubricant models on the basis of [3]:

T

€q
F(Teq)Newton = 7 >

_TB | Feq
F(Teq)EyIing = Fsmh [Ej ,

L Z-eq
F(Teq )Viscoplastic = —7 In (1 - —J >

a9
Teq Teq -!
F(Teq )Simple viscoplastic = _7[1 - Z J >
o (Teq \JZ -1/2
F(Teq Jeircular = | 1=| — > 13)
n L

where: 73 is the Eyring shear stress, while 7 is the limit
shear stress.

The 7 can be considered linearly proportional to
pressure and described with parameters 7 and y as:

=T, AP (14)
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2.2 Transformation z coordinate to dimensionless ¢

Since the problem is independent from the contact plane
position, the coordinate system can be attached to the
bottom surface as it is usually done. Furthermore, let us
introduce the dimensionless coordinate { along the gap
as defined in (15) and (16) and let the coordinate z be
the linear function of ¢

z|Sq=—h1=O {=-1,
z|Sq:h2:h {=1, (15)
_pf e
z—h( > ] (16)

Applying the z-{ coordinate transformation, the
integration across the thickness becomes independent of
the gap size.

F(7eq h
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Since the /& can be handled separately from the
integration as an independent variable the problem can
be reduced to a quasi 2D case based on the
hydrodynamic lubrication theory developed by
Reynolds. Furthermore, special lubricant film element
can be developed for finite-element modelling of such
problems.

2.3 Penalty cavitation

Nevertheless, the generalized Reynolds equation is not
valid for the region where cavitation can occur and the
lubricant is stuck onto the surface and is flowing in
stripes. For extending the governing equation to the
cavitation zone the Elrod-Adams algorithm is the most
well-known one that introduces the 6 = p/p. fractional
film content [4]. However, Elrod algorithm has some
disadvantages due to the discrete values (0, 1) of the
cavitation index, which can occasionally cause
oscillation. A method for FEM solution has been
published by Kumar and Booker [5,6]. The method
separates the pressure calculation in the contact zone
from the density determination. Kumar and Booker also
proposed to use linear correlation between the density
and the viscosity in the cavitation zone as follows:

T _P. p<p,. @1
m AL
Instead of the separation of the variables for the
contact and cavitation zone, penalty cavitation method
has been proposed by Szavai [7], where the density
change as a function of the pressure in the cavitation
zone let to be approximated by a high gradient slope
under the cavitation pressure. The above described
criteria can be satisfied with the following density
function:

* — pL(pv 19) (22)
y(p)(pc—p)+1

where: y (p) is the penalty function which is 0 if p > p,
otherwise y (p) = ¢, where ¢ is a sufficiently high
number.

It has to be noticed that the density depends on the
pressure not only in the lubrication region, but in the
cavitation zone as well. The p” is valid in the lubrication
region and the cavitation zone as well, and the volume
fraction can be written as:

1
= 23
o= PL y(p)(p.—p)+1 @)

Applying the linear correlation between the density
and the viscosity according to Kumar and Booker the
viscosity can be written as follows:

*

—P __p ). (24
(D) (). (p,®). (24

77 _77L(Pal9)

2.4 The modified generalized Reynolds equation

Based on the concepts above the generalized Reynolds
equation with penalty cavitation extension is:
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while the mass-flow in the gap is:
IR
‘?h =0 h‘/7+7kxy _7¢nyp (26)

where: w is a weight function.

P=/r+8, @7
L (g, —uy,) _
Y= Prliyy, _%(ﬁ +82) iy, 83, (28)
0
- +g5 - -
kxy = fé &2 kOxy _klxy _kay ’ (29)
Jo
Lap 2 ;
= | =—dy+—Iné dy. 30
@y, _Ilat 45 in (p)_jlpz (30)

In equation (25) both variables /# and p can be seen
clearly, furthermore ¥, lgxy, wy; are nonlinear functions

of the lubricant material properties only and it can be
used for determination of both variables depending on
whether a direct or an inverse solution technique is
chosen.

3. FINITE ELEMENT DISCRETIZATION

For the discretized governing equations, the weak form
of the weighted-residual integral form of the Reynolds
equation has been applied. Legendre or Lagrange
functions [8] have been used for the polynomial
approximation of the unknown pressure and surface
deformation.

In the case of variation methods, the integral forms
of the differential equations are used and in the course
of this, rationally, certain quantities have to be
integrated over the region investigated. The integration
range has to be divided into shapes characteristic of a
particular element type for the use of the finite element
method and then derived into a unified shape by means
of conform transformation for numerical integration.

The edges and sides of the elements along the gap
are parallel with coordinate axis z and thus the unit
vector e, of the global coordinate system connected to
the contact surface and unit vector e; of the coordinate
system connected to the element coincide.
Consequently, x and y coordinates, the gap size and the
pressure are not the functions of

(€m0 =Y X ONG(Em =N (EmX (@) 31)
YEmn =3 YSONy; G =Ny EmY* @) (32)
lig(Gm0)=3 He j(ON;(£.m) = Ng' (& mHg () (33)
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FEnn=Y H jONEN=Ng GHE(0); =12 (34)

He = |:NeT 1:| HZ +H€51 +H2‘2
8 A

]=NZT<f,n>He<t) 35)

rigid
PEMD =Y PEONG (=N EmP(0).(36)

The approximation of coordinate z is necessary if
the thermodynamical problem or non-Newtonian
lubricant is also taken into consideration. Since z is
linear in {:

e e 1 1 e e
€ =h (%;jz(%gjmfﬁ . (37)

A primary task in the application of variation
principles is to determine which field should be
determined from which equation by its variation. In the
present case, the purpose is to determine 5 unknown
fields: pressure p, displacements J,; (i = 1, 2) caused by
the pressures of the two surfaces as well as the
displacements A4, of the bodies like rigid bodies.

3.1 The weak integral form of the Reynolds equation

Based on the concepts of it, the weak integral form of
the generalized Reynolds equation is:

W n
[ Vigpwr| 0] 7+l |-V p |-
A

~WpOQ,dA— qS weqyTdl=0. (38)
1—‘C

For the discretized governing equations, the weak
form of the weighted-residual integral form of the
Reynolds equation has been applied. The popularity of
the solutions based on the weak integral form is
understandable since it is advantageous in the course of
solving hydrodynamic problems that it imposes less
severe requirements in respect of continuity and thus
contains only differentials of the first degree in respect
of pressure and gap size.

Let the weight functions be wyp = N, furthermore
applying the approximation (34) and (35) of the
pressure and gap size, the discretized equation (39) is
obtained instead of (38):

" or ToNT
R= j¢?BRdeAP— [ 6BRYN} d4H -

4 4
- eBﬁgkxyN}ZdAH— [ 62,Npda-
e Ac
—<j> qTNRdl'=0 (39)
1HC

where: nyNg =B, and nyNg =B;.

The discretized Reynolds equation takes the
following form as the result:
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R=R(Pspspsha}jstsnsreq9193691213112"') =
=SyP-S, H-S;H-Ro-R,=0.  (40)

The equation (40) contains the discretized pressure
and gap size. The wy weight functions are Nz = N, in
case of direct solution. If inverse solution is chosen the
wy weight function should be Ng = N,.

The pressure and deformation fields are connected
by the linear or nonlinear solid mechanical description
of the surfaces. Furthermore, the pressure distribution
has to satisfy the load case in (5).

3.2 Discretized deformation

In respect of this discussion of the problem of
elastohydrodynamic  lubrication the mode of
determining the deformations is not a central issue. It is
sufficient to presume that the change in gap size
0;(p,x,y) is a mutually continuous function of the
pressure distribution. Functions J; (p, x,y) may be
determined by numerical and analytical methods alike.
Let us assume for the solution of this set of problems
that the equations that follow are in existence:

Lpi(p(x’y)sé‘pi(xsy)):o' (41)

The calculation of displacements occurring under
the effect of the distributed load acting on the surface is
already a routine task in the range of numerical methods
by now and thus the equations needed for this will not
be detailed either. In respect of this problem it is
sufficient to accept that after introducing
approximations (33) and (35), equation (40) will take
the following form of the set of algebraic equations if
the displacement is presumed to be quasi-static. The
finite element equilibrium equation associated with the
displacement due to pressure is:

K i (8, U, +1,(p)=0. (42)

The reduced nodal loading vectors associated with
pressure p are:

fpi(p)=C,;(P)P. (43)

If analytical solution is used for the deformation
calculation as it is shown in equation (2), the equation
(41) will be:

2
[Ny NjdaH,; -
. pi TE,

J N [ In(x'-x)* NDds(i) ds) P =0, (44)
Sc A

On this basis for direct solution the deformation
matrix may also be written in respect of the
displacements due to the pressure distribution for direct
or inverse solution as:

-1

_ -1 _n-l
P=K,C,'Hs =D,'H; . (46)
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3.3 Linearization of the equations for EHD problem

The difficulty of reaching a solution in the subject
matter investigated is caused primarily by the strongly
nonlinear nature of the Reynolds equation. The
solutions of strongly nonlinear equations are based in
the vast majority of cases on the Newtonian or gradient
methods.

Consequently, the discretized Reynolds equation
system has to be linearized in order to enable the
determination of the pressure distribution and the
associated gap size. Let us observe the equation as:

R:R(P’p’p’h973t3n3z-e 1999,]/7]31’72) (47)

q 2
The linearized form of this at an arbitrary point H = H,
P=Pis:
‘R(H/,P/ TR+

+(8_R+8_Ra_pN +a_Ra_anJ

AP +
o dpp P on op

i pJ

AH+0=0. (48)

H.pJ

+ a_R+a_RNh
oH ok

The equation for the deformation also has to be
linearized as follows for direct or inverse solution:

H,-D|  P/+AH,-D,|  AP=0, (49)
' HL P/ ’ Hf P/

1 1

D;| | Az -AP=0.(50)
J pJ J pJ
H@,P Hb;,P

o
H, P/ +D; |

1

The load case in linearized form is:

FW—ijdAPf—ijdAAP=o. (51)
4 4

4. APPLICATION FOR THE GLEASON BEVEL
GEARS

4.1 Numerical solution of the system of equations

The EHD was solved in iteration loop. In this case, the
Newton-Rapshon method has been used. Due to the
strongly nonlinearity, the solutions have to be stabilized.

Complex step optimization was required for the
EHD problem. The solution of the EHD problem would
be P* where the residual 'R = 0. Let P be
approximated with a series of solutions for AP’ in this
equation as shown:

P/ =P/ raAP/;  a=[0..1]. (52)

As the initial system of equations is highly nonlinear
in the case of EHD problems, it is very difficult to find
an initial state where the instability of the solution can
be avoided. For this reason, a properly chosen a is
required.

Experience has shown that a < 0.1 was satisfactory.
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4.2 Solution of the elastohydrodynamic problem of
the Gleason bevel gears

We will demonstrate the suitability of the method
developed in the next example.

In contrast to the contact surfaces of simpler and
constant geometry, the case of the Gleason bevel gear is
much more complex. The contact geometry of the gap
changes during operation from point to point with the
rotation of the gear.

Also, the contact area migrates on a complex surface
which can be described only with differential geometry
tools. Surface geometry belonging to each position can
be described only by principal curvatures and principal
curvature directions. The velocity of the contacting
surface changes from point to point with the migration
of the contact area.

In this example, we solved the elastohydrodynamic
problem belonging to contact area of a given position of
the Gleason bevel gears.

In this case we had a conical pinion gear with
concave-sided flank, 9 teeth, right tooth bending
contacts with crown gear with convex-sided flank, 33
teeth, left tooth bending.

The problem was isothermal so the density and the
viscosity are constant along the thickness. Thus the G|,
G,, G coefficients are zero.

The EHD problem was stationary, so the time
derivatives were zero.

Load is F=1750 N.

Newtonian lubricant was chosen, which causes that
Koy, K1y, Koy, are zero. The viscosity of the lubricant
was given by the Barus equation:

ﬂ
n=nyekt , (53)

where: a = 5000, 770 = 0.01539 Pas.

The Young modulus of the solid body of the gears is
E =219.8 GPa, and the Poisson ratio v=0.3.

The main extents of the ellipse of the contact area in
the given position are:

e Major semiaxis: a =4.015 mm.

e Minor semiaxis: b =0.321 mm.

The principal curvatures and directions of the
principal curvatures defining the contacting solid
surfaces are the following.

Principal curvatures:

e Crown gear with convex-sided flank: £, = 0 mm~

" ki = 6.2359 x 10° mm'.
e Conical pinion gear with concave-sided flank: 4y
=0.03423 mm'; ky; = 6.2359 x 10° mm .

Directions of the principal directions form an angel.
The direction of 4;; and kj, form a 16.68 degree angle.
Naturally, it is also true for the Ay and k.

The revolution of the conical pinion gear is 300 min .

The velocity vectors of the lower and upper surface
in the contact point after the linear transforming the
contact plane to the X-Y plane [mm/s]:

669.6 367.47
v =|2984|; v, =|22665]. (54)
0 0
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The numerical results of the specific configuration
can be seen in Figures 2 to 9. In Figure 2 it can be seen
the pressure peak in the lubrication of which contact
area is angular with the y-axis, so it takes up a general
position. Thus the symmetry planes cannot be used for
the simpler modelling. In Figure 3 it can be seen that
next to the pressure peak zone the cavitation zone with
negative pressure is displayed.

Figure 2. Awakening lubricant pressure field of the contact
zone, top view

Figure 3. Awakening lubricant pressure field of the contact
zone, side view

The stress maximum in the solid body of the gear is
reached under the surface in significant depth, as
illustrated in Figure 4. The deformation of the gear
surface as results from the pressure field of the
hydrodynamic lubrication can be seen in Figure 5.

In Figures 6 and 7 it can be seen the pressure field
and gap thickness in the direction corresponds to the x
axis. In Figures 8 and 9 it can be seen the pressure field
and gap thickness in the direction corresponding to the y
axis.

FME Transactions



Figure 4. Awakening Mises stress distribution in the solid
body under the contact zone, sectional drawing

Figure 5. Elastic deformation on the surface of the gears,
top view

p (MPa)

-1000 -800 600 -400 -200 0 200 400 600 800 1000
x-coordinate (um)

Figure 6. The pressure field awakening in lubrication, along
the x axis

-400 -300 -200 -100 o 100
x-coordinate (um)

Figure 7. The gap thickness at the contact of the Gleason
gears, along the x axis

FME Transactions

In both Figures 6 and 8§ it can be seen pressures
increase next to the cavitation zone. These pressure
accrues will increase significantly due to the external
load increasing, and stressed strongly the solid part of
the gear below them, which can lead to failure.

p (MPa)

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
y-coordinate (um)

Figure 8. The pressure field awakening in lubrication, along
the y axis

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
y-coordinate (pm)

Figure 9. The gap thickness at the contact of the Gleason
gears, along the y axis

5. CONCLUSION

Summarising the results of the calculations, we can state
that the p-FEM method is a good and stable process to
solve the EHD lubrication problems. A penalty
parameter method for viscosity is applicable for the
advanced numerical methods, such as for the p-version
finite element method. Integration through the thickness
is carried out by making use of dimensionless thickness
coordinate. Furthermore, pressure and film thickness
can be handled as independent element variables.
Further effort will be done for testing the inverse
solution possibility and for extending the model to spot
contact as well.

So the development of a simulation method to
determine the surface loading conditions is under
special attention in order to be possible to calculate the
sub-surface stress field.

ACKNOWLEDGMENT

The research work presented in this paper was carried out
as part of the TAMOP-4.2.2.A-11/1/KONV-2012-0036
project in the framework of the New Széchenyi Plan. The
realization of this project is supported by the European
Union, and co-financed by the European Social Fund.

VOL. 43, No 3, 2015 = 239



REFERENCES

[1] Johnson, K.L.: Contact Mechanics, Cambridge
University Press, Cambridge, 1987.

[2] Dowson, D.: A generalized Reynolds equation for
fluid-film lubrication, International Journal of
Mechanical Sciences, Vol. 4, No. 2, pp. 159-170,
1962.

[3] Szeri, A.Z.: Fluid Film Lubrication: Theory and
Design, Cambridge University Press, Cambridge,
1998.

[4] Elrod, H.G.: A cavitation algorithm, Transactions
of the ASME, Journal of Lubrication Technology,
Vol. 103, No. 3, pp. 350-354, 1981.

[5] Kumar, A. and Booker, J.F.: A finite element
cavitation  algorithm: Application/validation,
Transactions of the ASME, Journal of Tribology,
Vol. 113, No. 2, pp. 255-260, 1991.

[6] Kumar, A. and Booker, J.F.: A finite element
cavitation algorithm, Transactions of the ASME,
Journal of Tribology, Vol. 113, No. 2, pp. 276-284,
1991.

[7] Szavai, Sz.: Efficient p-version FEM solution for
TEHD problems with new penalty-parameter based
cavitation model, in: Proceedings of the
International Conference BALTTRIB'2009, 19-
21.11.2009, Kaunas (Lithuania), pp. 239-245.

[8] Péaczelt, 1.: Finite Element Method in Engineering

Practice 1. Part, Miskolci Egyetemi Kiadd,
Miskolc, 1999, (in Hungarian).

MOJIEJIHUPAILE KOHTAKTA U3BMEDBY
KOHYCHHUX 3YITYAHUKA KOMITAHUJE
»[JIEJCOH* ITPU EX/] IIOJJMA3UBABY

Caooau Casan, lllannop KoBau
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MammHCKH ~ e1eMEeHTH Kao ITO Cy  3YyIYacTH
MPCHOCHUITM, OperacTd MEXaHW3MH M KOTpPJbajHU
JIeKaju YeCTO pajie y yCIOBUMA KOTpJbarkba ca BUCOKUM
CTEIIEHOM KIIHM3alkbeM U IPH BEIUKHM CHEIUHIHUM
onrepehera m Op3nHama. Y THM CIydajeBUMa, Ha
pacriofienny TNpUTHCKAa Yy CJ0jy MasuBa YTHUy |
nedopmanuje KOHTaKTHUX HOBpPILIMHA, Ka0 M MPOMEHa
BHCKO3HOCTH Ma3¥Ba yCJIe/ MPOMEHE IPUTHCKA Y CIIOjy
MasuBa. Jlo caza je pasBHjeHO HEKOJIMKO METonxa 3a
nobujame pamaHuX napamMerapa npu
enacToxXuapoarnHamMmakoM moamasuBamwy (EXID) 3a
JeTHOCTaBHHjE TCEOMETpHje, alll je molujame THX
napaMeTrapa 3a KOMIUIEKCHE TIeOMETpHje joul YBEK
npobiemarnuHo. [loceOHO je 3aHMMIBMBO pa3BHjabE
METOJle CHMYyJaIlfje ycioBa paaa KojoM ce mobuja
ontepeherme KOHTAKTHE MOBPIINHE, KAKO OM Ha OCHOBY
Tora 6mimo Moryhe ma ce m3padyHa pacmojesia HamoHa
ucrojy came noBpmuHe.  KOHycHM — 3ym4yaHHLM
Komranuje / zejcon nMajy KOMIIEKCHY TeOMETPH]y Koja
MOXe Ja ce omnume jeaguHo nomohy —TexHuKa
midepennujaaae reomerpuje. JJoOujame mapamerapa
EX/IIT ko oBUX 3yIT4acTHX MapoBa je U Jajbe M3a30B 3a
umkemepe. Y pany je onucan monen EX/IIT koju y3uma
y 003up mojaBy kaBuTanuje y masuBy. OBaj Mogeln je
nobujen kopumhemeM — CHelUjalHe  METOJ0JO0THje
pasBujeHe Oj cTpaHe ayrtopa. Perieme je m00HjeHO
kopumhemeM MeTOole KOHAYHUX eJeMeHaTa M PasHHX
nomohHHX HymMepHukux merona. Ha ocHoBy paspaljeHe
»p* Bep3uje Mojeda ca KOHAYHHM €JIEMCHTHMA Cy
n3padyHaTH OONMK CJ0ja MasuBa M pacmojerna
MpUTHUCKAa y WeMy. Pa3marpaH je cimoj MasuBa y
onpeheHoMm TpeHyTKY, (opmupaH u3Mel)y KOHTaKTHHUX
TOPOHUJIAIHUX TOBPIIUHA KOje Cy JeQHHHCAaHEe MPEKO
reoMeTpuje 3ym4yaHuka. [lpopauyH ce TOKa3ao
YCIICIIHUM M Kao pe3ynrar Cy AoOujeHH OOJHK cioja
Ma3HMBa, paclojella INPHUTHCKAa Y CIIOjy Ma3uBa,
enacTiyHa aedopMaliija 3ym4aHuKa U HAIIOHCKO CTarbe
y 3yIYaHUKY.
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