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EHD Contact Modelling of Gleason 
Bevel Gears 
 
Rolling-sliding machines such as gears, cams and followers, and bearings 
are often subjected to high loads, high speeds and high slip conditions, 
when not only the pressure distribution in the lubricant is a question but 
the surface deformation, and variation of the viscosity due to pressure, 
too. Although several methods have been already developed for solving 
elastohydrodynamic problems, the solution of the highly nonlinear 
problem is still quite challenging. So the development of a simulation 
method to determine the surface loading conditions is under special 
attention in order to be possible to calculate the sub-surface stress field. 
Gleason bevel gears have got a complex geometry which only can be 
described with the tools of differential geometry. In case of Gleason gear, 
solving of elastohydrodynamic problems is a great challenge for the 
engineers. The described elastohydrodynamic model takes into account 
the cavitation which is modelled by a special and own developed method. 
The problem was solved in finite element way using many supporting 
numerical methods. The developed p-version finite element model 
calculates the film shape and the pressure distribution. In this work, the 
lubricant film created on contacting piece of toroidal surface was defined 
by principal curvature of the global geometry of a given position of the 
moving Gleason gear. The calculation was successful, and as a result we 
got the film shape, the pressure field in the lubricant, the elastic 
deformation of the Gleason gear and the stress developed in the gear due 
to the contact. 
 
Keywords: Gleason, bevel, gear, elastohydrodynamic, lubrication, 
cavitation, FEM. 

 
 

1. INTRODUCTION 
 

The generalized case of surface pairs contacting along a 
spot in the status of liquid friction is illustrated in Figure 
1. The gap between the bodies is filled with lubricant 
due to the relative motion of the bodies and 
hydrodynamic pressure develops due to the movement 
of the lubricant. The movement of the lubricant is 
caused by the shear stress generated in the lubricant as 
the result of the relative motion of the surfaces. At the 
particular kinematic condition of the contacting bodies 
and with a given gap geometry, the pressure distribution 
acting on the surfaces is able to maintain balance with 
the force pressing the surfaces to each other and prevent 
a direct body-to-body contact thereby. For the contact 
problem of lubrication theory – due to its nature – it is 
convenient to employ in general a Descartes coordinate 
system with axis z perpendicular to the centre contact 
surface. 

The film shape can be calculated as a superposition 
of the initial geometry, the displacement of a rigid 
surface and the deformation of a half-space under 
pressure. After deformation, the film shape is: 

1 1 2 21 2 g rigid 1 g rigid 2δ δ= + = + Δ + + + Δ + =h h h h h   

 g rigid δ= + Δ +h  (1) 

where: hg is the initial gap size, Δrigid is the relative rigid 
normal displacement between the contact bodies, and δ 
is the total deformation of the surfaces. 
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Figure 1. Contacting bodies 

The classical approach to find the stresses and 
displacement in an elastic half-space due to surface 
traction was presented by Boussinesq (1885) and 
Cerruti (1882) and was developed by Love (1952). For 
this case, Johnson (1985) [1] reported a simple solution. 
Based on this, the deformation of the surface of the half-
space under the action of a normal pressure in case of 
line contact is: 
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( ) ln ( ) dδ ′ ′= −

′π 
s

x p x x x
E

 (2) 

where: E’ is the equivalent Young modulus and s is the 
contact line. 

The deformation due to thermal expansion is 
negligible in most cases. 


xyu T = [ux, uy]: the velocity in 

the contact plane, uz: the velocity in the z direction, ∇x,y 
= [∂/∂x, ∂/∂y], Wi is the velocity of the contact bodies. 
Due to translation of the surfaces perpendicularly to the 
contact plane as: 

 
1 1

1 1( , , ) ( )=− =−
= − ∇

z xy xyz h z h
u W t x y u h , (3) 

 
2 2

2 2( , , ) ( )= =
= + ∇

z xy xyz h z h
u W t x y u h . (4) 

The integral of the pressure over the contact area 
should be equal with the external load. 

 

c

d= W
A

F p A  (5) 

where: FW is the normal load of the surfaces. 
Loadcase can be satisfied if the Δrigid is a variable. 
 

2. HYDRODYNAMIC PROBLEM INCLUDING 
CAVITATION 
 

2.1 The generalized Reynolds equation 
 

For calculating the contact pressure due to fluid film 
lubrication the generalized Reynolds equation was 
developed by Dowson (1961)  [2] as a partial differential 
equation takes into account the changes of the viscosity 
and density across the film thickness. 

 ( ) 0∇ Ψ − ∇ ∇ Φ − Ω =
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xy xy xy p  (6) 

where: 
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The Fi, Gi and 


ixyK are viscosity-density functions: 
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where: F (τeq) is a function characteristic of a 
particular lubricant model, while τeq is the equivalent 
shear stress. 

The function F (τeq) in  (10) and (11) may take the 
following forms, for example in the case of various 
types of lubricant models on the basis of [3]: 
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where: τE is the Eyring shear stress, while τL is the limit 
shear stress. 

The τL can be considered linearly proportional to 
pressure and described with parameters 

0
τ l and χ as: 

 L 0
τ τ χ= +l p . (14) 
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2.2 Transformation z coordinate to dimensionless ζ 
 

Since the problem is independent from the contact plane 
position, the coordinate system can be attached to the 
bottom surface as it is usually done. Furthermore, let us 
introduce the dimensionless coordinate ζ along the gap 
as defined in (15) and (16) and let the coordinate z be 
the linear function of ζ: 

 1 0 1ζ= − = = −
Sq

z h ,  

 2 1ζ= = =Sq
z h h , (15) 
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Applying the z-ζ coordinate transformation, the 
integration across the thickness becomes independent of 
the gap size. 
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Since the h can be handled separately from the 
integration as an independent variable the problem can 
be reduced to a quasi 2D case based on the 
hydrodynamic lubrication theory developed by 
Reynolds. Furthermore, special lubricant film element 
can be developed for finite-element modelling of such 
problems. 

 
2.3 Penalty cavitation 

 
Nevertheless, the generalized Reynolds equation is not 
valid for the region where cavitation can occur and the 
lubricant is stuck onto the surface and is flowing in 
stripes. For extending the governing equation to the 
cavitation zone the Elrod-Adams algorithm is the most 
well-known one that introduces the θ = ρ/ρc fractional 
film content [4]. However, Elrod algorithm has some 
disadvantages due to the discrete values (0, 1) of the 
cavitation index, which can occasionally cause 
oscillation. A method for FEM solution has been 
published by Kumar and Booker [5,6]. The method 
separates the pressure calculation in the contact zone 
from the density determination. Kumar and Booker also 
proposed to use linear correlation between the density 
and the viscosity in the cavitation zone as follows: 

 
L L

η ρ
η ρ

= ;     cρ ρ≤ . (21) 

Instead of the separation of the variables for the 
contact and cavitation zone, penalty cavitation method 
has been proposed by Szávai [7], where the density 
change as a function of the pressure in the cavitation 
zone let to be approximated by a high gradient slope 
under the cavitation pressure. The above described 
criteria can be satisfied with the following density 
function: 
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ρ ϑρ
γ

=
− +

p

p p p
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where: γ (p) is the penalty function which is 0 if p > pc 
otherwise γ (p) = c, where c is a sufficiently high 
number. 

It has to be noticed that the density depends on the 
pressure not only in the lubrication region, but in the 
cavitation zone as well. The ρ* is valid in the lubrication 
region and the cavitation zone as well, and the volume 
fraction can be written as: 
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ρ γ
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p
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Applying the linear correlation between the density 
and the viscosity according to Kumar and Booker the 
viscosity can be written as follows: 

 *
L L

L
( , ) ( ) ( , )

( , )

ρη η ϑ θ η ϑ
ρ ϑ

∗
= =p p p

p
. (24) 

 
2.4 The modified generalized Reynolds equation 

 
Based on the concepts above the generalized Reynolds 
equation with penalty cavitation extension is: 
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while the mass-flow in the gap is: 
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where: w is a weight function. 
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In equation (25) both variables h and p can be seen 

clearly, furthermore , ,ψ ω∂

xy tk  are nonlinear functions 

of the lubricant material properties only and it can be 
used for determination of both variables depending on 
whether a direct or an inverse solution technique is 
chosen. 

 
3. FINITE ELEMENT DISCRETIZATION 

 
For the discretized governing equations, the weak form 
of the weighted-residual integral form of the Reynolds 
equation has been applied. Legendre or Lagrange 
functions [8] have been used for the polynomial 
approximation of the unknown pressure and surface 
deformation. 

In the case of variation methods, the integral forms 
of the differential equations are used and in the course 
of this, rationally, certain quantities have to be 
integrated over the region investigated. The integration 
range has to be divided into shapes characteristic of a 
particular element type for the use of the finite element 
method and then derived into a unified shape by means 
of conform transformation for numerical integration. 

The edges and sides of the elements along the gap 
are parallel with coordinate axis z and thus the unit 
vector ez of the global coordinate system connected to 
the contact surface and unit vector eζ of the coordinate 
system connected to the element coincide. 
Consequently, x and y coordinates, the gap size and the 
pressure are not the functions of ζ: 
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The approximation of coordinate z is necessary if 
the thermodynamical problem or non-Newtonian 
lubricant is also taken into consideration. Since z is 
linear in ζ: 
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A primary task in the application of variation 
principles is to determine which field should be 
determined from which equation by its variation. In the 
present case, the purpose is to determine 5 unknown 
fields: pressure p, displacements δpi (i = 1, 2) caused by 
the pressures of the two surfaces as well as the 
displacements Δrigid, of the bodies like rigid bodies. 

 
3.1 The weak integral form of the Reynolds equation 

 
Based on the concepts of it, the weak integral form of 
the generalized Reynolds equation is: 
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For the discretized governing equations, the weak 
form of the weighted-residual integral form of the 
Reynolds equation has been applied. The popularity of 
the solutions based on the weak integral form is 
understandable since it is advantageous in the course of 
solving hydrodynamic problems that it imposes less 
severe requirements in respect of continuity and thus 
contains only differentials of the first degree in respect 
of pressure and gap size. 

Let the weight functions be wR = NR, furthermore 
applying the approximation (34) and (35) of the 
pressure and gap size, the discretized equation (39) is 
obtained instead of (38): 
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where: ∇ =N BT
xy p p  and ∇ =N BT

xy R R . 

The discretized Reynolds equation takes the 
following form as the result: 



FME Transactions VOL. 43, No 3, 2015 ▪ 237
 

 eq 1 2( , , , , , , , , , , , ...)ρ ρ η τ ϑ θ= =R R P
   h r t u u   

 φ ψ Ω= − − − − =S P S H S H R R 0k q . (40) 

The equation (40) contains the discretized pressure 
and gap size. The wR weight functions are NR = Np in 
case of direct solution. If inverse solution is chosen the 
wR weight function should be NR = Ng. 

The pressure and deformation fields are connected 
by the linear or nonlinear solid mechanical description 
of the surfaces. Furthermore, the pressure distribution 
has to satisfy the load case in (5). 

 
3.2 Discretized deformation 

 
In respect of this discussion of the problem of 
elastohydrodynamic lubrication the mode of 
determining the deformations is not a central issue. It is 
sufficient to presume that the change in gap size 
δi (p, x, y) is a mutually continuous function of the 
pressure distribution. Functions δi (p, x, y) may be 
determined by numerical and analytical methods alike. 
Let us assume for the solution of this set of problems 
that the equations that follow are in existence: 

 ( ( , ), ( , )) 0δ =pi piL p x y x y . (41) 

The calculation of displacements occurring under 
the effect of the distributed load acting on the surface is 
already a routine task in the range of numerical methods 
by now and thus the equations needed for this will not 
be detailed either. In respect of this problem it is 
sufficient to accept that after introducing 
approximations (33) and (35), equation  (40) will take 
the following form of the set of algebraic equations if 
the displacement is presumed to be quasi-static. The 
finite element equilibrium equation associated with the 
displacement due to pressure is: 

 ( ) ( )δδ + =K H f 0pi pi pipi
p . (42) 

The reduced nodal loading vectors associated with 
pressure p are: 

 ( ) ( )=f C P Ppi pip . (43) 

If analytical solution is used for the deformation 
calculation as it is shown in equation (2), the equation 
(41) will be: 
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On this basis for direct solution the deformation 
matrix may also be written in respect of the 
displacements due to the pressure distribution for direct 
or inverse solution as: 

 1
δ

−= =H K C P D Pp i pi pipi
, (45) 

 1 1
δ δ

− −= =P K C H D H
p pp p p . (46) 

3.3 Linearization of the equations for EHD problem 
 

The difficulty of reaching a solution in the subject 
matter investigated is caused primarily by the strongly 
nonlinear nature of the Reynolds equation. The 
solutions of strongly nonlinear equations are based in 
the vast majority of cases on the Newtonian or gradient 
methods. 

Consequently, the discretized Reynolds equation 
system has to be linearized in order to enable the 
determination of the pressure distribution and the 
associated gap size. Let us observe the equation as: 
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The linearized form of this at an arbitrary point H = Hj, 
P = Pj is: 
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,
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R R
N H 0

H

i i

h
j j

Ο
h

. (48) 

The equation for the deformation also has to be 
linearized as follows for direct or inverse solution: 

 
, ,

δ δ
δ δ

− + Δ − Δ =
H P H P

H D P H D P 0
i i

i i

j jj
i ij jj j

, (49) 

 1 1
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δδ

δ δ

− −− + Δ −Δ =
H P H P

D H P D H P 0
i

i i

j j
i i i

j jj j
. (50) 

The load case in linearized form is: 

 

c c

d d 0− − Δ = N P N Pj
W p p

A A

F A A . (51) 

 
4. APPLICATION FOR THE GLEASON BEVEL 

GEARS 
 

4.1 Numerical solution of the system of equations 
 

The EHD was solved in iteration loop. In this case, the 
Newton-Rapshon method has been used. Due to the 
strongly nonlinearity, the solutions have to be stabilized. 

Complex step optimization was required for the 
EHD problem. The solution of the EHD problem would 
be iP* where the residual iR = 0. Let iP* be 
approximated with a series of solutions for ΔPj in this 
equation as shown: 

 1 α+ = + ΔP P Pj j j ;     [0...1]α = . (52) 

As the initial system of equations is highly nonlinear 
in the case of EHD problems, it is very difficult to find 
an initial state where the instability of the solution can 
be avoided. For this reason, a properly chosen α is 
required. 

Experience has shown that α < 0.1 was satisfactory. 
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4.2 Solution of the elastohydrodynamic problem of 
the Gleason bevel gears 

 
We will demonstrate the suitability of the method 
developed in the next example. 

In contrast to the contact surfaces of simpler and 
constant geometry, the case of the Gleason bevel gear is 
much more complex. The contact geometry of the gap 
changes during operation from point to point with the 
rotation of the gear. 

Also, the contact area migrates on a complex surface 
which can be described only with differential geometry 
tools. Surface geometry belonging to each position can 
be described only by principal curvatures and principal 
curvature directions. The velocity of the contacting 
surface changes from point to point with the migration 
of the contact area. 

In this example, we solved the elastohydrodynamic 
problem belonging to contact area of a given position of 
the Gleason bevel gears. 

In this case we had a conical pinion gear with 
concave-sided flank, 9 teeth, right tooth bending 
contacts with crown gear with convex-sided flank, 33 
teeth, left tooth bending. 

The problem was isothermal so the density and the 
viscosity are constant along the thickness. Thus the G1, 
G2, G3 coefficients are zero. 

The EHD problem was stationary, so the time 
derivatives were zero. 

Load is F = 1750 N. 
Newtonian lubricant was chosen, which causes that 

K0xy, K1xy, K2xy are zero. The viscosity of the lubricant 
was given by the Barus equation: 

 0

α
η η=

p

Ee , (53) 

where: α = 5000, η0 = 0.01539 Pas. 
The Young modulus of the solid body of the gears is 

E = 219.8 GPa, and the Poisson ratio ν = 0.3. 
The main extents of the ellipse of the contact area in 

the given position are: 
• Major semiaxis: a = 4.015 mm. 
• Minor semiaxis: b = 0.321 mm. 
The principal curvatures and directions of the 

principal curvatures defining the contacting solid 
surfaces are the following. 

Principal curvatures: 
• Crown gear with convex-sided flank: kI2 = 0 mm–

1; kII2 = 6.2359 × 10–3 mm–1. 
• Conical pinion gear with concave-sided flank: kI1 

= 0.03423 mm–1; kII1 = 6.2359 × 10–3 mm–1. 
Directions of the principal directions form an angel. 

The direction of kI1 and kI2 form a 16.68 degree angle. 
Naturally, it is also true for the kII1 and kII2. 

The revolution of the conical pinion gear is 300 min–1. 
The velocity vectors of the lower and upper surface 

in the contact point after the linear transforming the 
contact plane to the X-Y plane [mm/s]: 

 1

669.6

29.84

0

 
 =  
  

v ;     2

367.47

226.65

0

 
 =  
  

v . (54) 

The numerical results of the specific configuration 
can be seen in Figures 2 to 9. In Figure 2 it can be seen 
the pressure peak in the lubrication of which contact 
area is angular with the y-axis, so it takes up a general 
position. Thus the symmetry planes cannot be used for 
the simpler modelling. In Figure 3 it can be seen that 
next to the pressure peak zone the cavitation zone with 
negative pressure is displayed. 

 
Figure 2. Awakening lubricant pressure field of the contact 
zone, top view 

 
Figure 3. Awakening lubricant pressure field of the contact 
zone, side view 

The stress maximum in the solid body of the gear is 
reached under the surface in significant depth, as 
illustrated in Figure 4. The deformation of the gear 
surface as results from the pressure field of the 
hydrodynamic lubrication can be seen in Figure 5. 

In Figures 6 and 7 it can be seen the pressure field 
and gap thickness in the direction corresponds to the x 
axis. In Figures 8 and 9 it can be seen the pressure field 
and gap thickness in the direction corresponding to the y 
axis. 
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Figure 4. Awakening Mises stress distribution in the solid 
body under the contact zone, sectional drawing 

 
Figure 5. Elastic deformation on the surface of the gears, 
top view 

 
Figure 6. The pressure field awakening in lubrication, along 
the x axis 

 
Figure 7. The gap thickness at the contact of the Gleason 
gears, along the x axis 

In both Figures 6 and 8 it can be seen pressures 
increase next to the cavitation zone. These pressure 
accrues will increase significantly due to the external 
load increasing, and stressed strongly the solid part of 
the gear below them, which can lead to failure. 

 
Figure 8. The pressure field awakening in lubrication, along 
the y axis 

 
Figure 9. The gap thickness at the contact of the Gleason 
gears, along the y axis 

 
5. CONCLUSION 

 
Summarising the results of the calculations, we can state 
that the p-FEM method is a good and stable process to 
solve the EHD lubrication problems. A penalty 
parameter method for viscosity is applicable for the 
advanced numerical methods, such as for the p-version 
finite element method. Integration through the thickness 
is carried out by making use of dimensionless thickness 
coordinate. Furthermore, pressure and film thickness 
can be handled as independent element variables. 
Further effort will be done for testing the inverse 
solution possibility and for extending the model to spot 
contact as well. 

So the development of a simulation method to 
determine the surface loading conditions is under 
special attention in order to be possible to calculate the 
sub-surface stress field. 
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МОДЕЛИРАЊЕ КОНТАКТА ИЗМЕЂУ 

КОНУСНИХ ЗУПЧАНИКА КОМПАНИЈЕ 
„ГЛЕЈСОН“ ПРИ ЕХД ПОДМАЗИВАЊУ 

 
Саболч Саваи, Шандор Ковач 

 

Машински елементи као што су зупчасти 
преносници, брегасти механизми и котрљајни 
лежаји често раде у условима котрљања са високим 
степеном клизањем и при великим специфичним 
оптерећења и брзинама. У тим случајевима, на 
расподелу притиска у слоју мазива утичу и 
деформације контактних површина, као и промена 
вискозности мазива услед промене притиска у слоју 
мазива. До сада је развијено неколико метода за 
добијање радних параметара при 
еластохидродинамичком подмазивању (ЕХДП) за 
једноставније геометрије, али је добијање тих 
параметара за комплексне геометрије још увек 
проблематично. Посебно је занимљиво развијање 
методе симулације услова рада којом се добија 
оптерећење контактне површине, како би на основу 
тога било могуће да се израчуна расподела напона 
испод саме површине. Конусни зупчаници 
компаније Глејсон имају комплексну геометрију која 
може да се опише једино помоћу техника 
диференцијалне геометрије. Добијање параметара 
ЕХДП код ових зупчастих парова је и даље изазов за 
инжењере. У раду је описан модел ЕХДП који узима 
у обзир појаву кавитације у мазиву. Овај модел је 
добијен коришћењем специјалне методологије 
развијене од стране аутора. Решење је добијено 
коришћењем методе коначних елемената и разних 
помоћних нумеричких метода. На основу разрађене 
„p“ верзије модела са коначним елементима су 
израчунати облик слоја мазива и расподела 
притиска у њему. Разматран је слој мазива у 
одређеном тренутку, формиран између контактних 
тороидалних површина које су дефинисане преко 
геометрије зупчаника. Прорачун се показао 
успешним и као резултат су добијени облик слоја 
мазива, расподела притиска у слоју мазива, 
еластична деформација зупчаника и напонско стање 
у зупчанику. 

 


