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1. INTRODUCTION

Determination of Joint Reactions in a
Rigid Multibody System, Two Different
Approaches

In this paper two different methods for determination of frictionless joint
reaction forces and moments are presented. The considered multibody
system has an open kinematic chain structure. The first method refers to the
determination of resultant joint reaction forces and moments based on the
Rodrigues approach suitable for computation in a symbolic form. The
second method presented is the method based on the so-called vectors of
the body mass moments and vector rotators coupled for a pole and
oriented axes. Both approaches are presented and discussed on the three-
like rigid multibody system.

Keywords: multibody dynamics, resultant joint reaction forces and
moments, vectors of body mass moments, vector rotators

Determination of joint reactions is of great importance
in dynamics of multibody systems, machines and
mechanisms. In this paper, the Coulomb friction forces
are not considered but it is necessary if we want to get a
more realistic picture of the dynamics of a multibody
system (see e.g. [1-4]).

In the recently published paper [5] the broad
overview of research papers that deals with the
determination of joint reactions have been presented.
The papers based on Newton-Euler formalism with
recursive and non-recursive kinematic and dynamic
relations are cited there. The main part of that paper is
determination of joint reactions based on fictitious
bodies method and general method based on Lagrange’s
equations. Therefore, for better understanding of this
problem the reader is referred to the [5] and [6].

In [8-12] a different approach to the problem of
determination of joint reactions and kinetic pressures is
used. By introducing the vector method based on the
vectors of the body mass moments [8, 9] and vector
rotators coupled for pole and oriented axes it is possible
to obtain vector expressions for determination of joint
reactions and kinetic pressures for a rigid body dynamics.

In this paper, both methods are illustrated on the three-
like rigid multibody system. Expressions for the linear and
angular momentum as well as expressions for their
derivatives are derived. The procedure for determination of
the resultant joint reaction forces and moments is presented
and some comments on both methods are given.

2. DETERMINATION OF JOINT REACTIONS USING
RODRIGUES APPROACH

In this section, formulation of a general method for
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determination of the resultant joint reaction forces and
moments is given. If the robotic system has the form of
a multibody system with open kinematic chain structure
, then we can denote the first and the fixed base body

with (VI) and the following bodies in the system we
denote with subscripts incremented for one with regard
to the subscript of its preceding adjacent body
(Vz,....Vk,...Vl-,V,-H, V,-+2,...,Vn) . Also, the geometry of
the system has been defined by unit vectors
¢,i=12,..,J,..,n where unit vectors ¢; describe the
axis of rotation (translation) of the i-th segment with
respect to the previous segment and as well as vectors
p; and p;, (see [6, 7]). In a general case, the
configuration of the multibody system can be defined
by the vector of joint (internal) generalized coordinates

g of the dimension n, (g) = (ql, q2,...,q") where ¢ are

the relative angles of rotation (in the case of revolute
joints) and the relative displacements (in the case of
prismatic joints). If all the variables qi, i=1,2,.. nare
zero, it is said that the robotic system is in the reference
configuration (position).

Figure 1. Rigid multibody system with the open kinematic
chain structure ([Vk ] - [VJ} )

To determine the resultant joint reaction force and
the moment in some k-th joint let us first consider the
equation for linear momentum of all segments of a rigid
multibody system (see Figure 1) behind the k-th
segment as:
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k=¥

K; =Y mig (1)
itk (<i) i

where V- and m; denote the velocity of the mass
center and the mass of the body (v;). After
diferentiation of (1) we obtain:

_ngcl =
i

From (2) we can obtain a formula for determining of

+Zng +§kFuk 2)

the resultant joint reaction force F, R(r) in the k-th joint as:

Zm acl

where d; and g are acceleration of mass center and

)= &k Fucéy 3)

acceleration of gravity, respectively. Also, in (3) F; is
an actuator force, ¢, denotes unit vector describing the

axis of rotation (translation) of the k-th segment with
respect to the previous segment, whereas parameter §k

deter—mines the type of the k-th joint. The parameter
& =0 if the considered joint is revolute and &, =1 in

case of a prismatic joint, where & =1-¢&, is also
introduced. The velocity V; and acceleration dg; of

mass center of i-th segment can be evaluated from the
following expressions:

“4)

aCl ZT Zl: i
a=1 a=1p=1

where ¢%, q"B are generalized velocities, fi(a) are

quasibase vectors (for details see [6]) and vectors

Faﬁ(i) are in the following form:

Lop(i) = alp X Tap), Vo> P, (5)
Faﬁ(i) =0, Va>i
Resultant joint reaction force F R(r) with respect to

inertial fixed reference frame Oxyz (null base) can be
calculated as:

{70 )= Zm (ag) —[AO,i]{g})
~Ck Fuk [Ao,k }{ék}’

where the appropriate Rodrigues matrices of trans—
formation are:

[y )= 11+ 0 (1-cos( )
+|:e;i(j)}sin( qj),
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(6)

(7

as well as square matrix [ej(J )} represents dual object

of vector:

( 51)] (eé”J’ 771’851)
a() 0 —egj e ()
J
[ej }: egj 0 e
“Cnj € 0

In a similar maner, the velocity and acceleration of
the center of mass with respect to the null base are:

-

(0) < v
[} o Sl
and vectors I'pg(;) with respect to the null base are
a=a.f, b=ap,
-2ty
7(b)

where quasibase vectors 7, can be obtained in the

b(i)

following form

711;(6)) =% [eg H Zl: [Ab,k ]({ﬁkk}+§qu {éc}

paur} (1)
+|:Ah,i:|{ﬁi})}+ ACYE

Further, angular momentum of i-th segment with
respect to the pole in k-th joint of a multibody system is
given in the form:

Lo (i) = Lei + O, Gy xmiii (12)

Total angular momentum of all segments behind the
k-th joint is:

i

After differentiation of the last expression, we obtain

dLox ZdLC’ dO,C;
i

Xm;ve;

dt dt (14)
and
doyc;, . . -
— =V Vo Ry =06 (15)

where Lg; is angular momentum with respect to the

mass centre of the i-th body, we can present (14) in the
following form
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dLox dlei . . = .
T=Z£ dtl _VkamiVCi+Ri(k)Xmiaci (16)

Resultant reaction moment M owr ©of all forces

acting on segments behind k-th joint is:

Moig =

dL,, . _
o +Vor sziVCi 17

i

Equations (14) and (15) yields :
- - o
Mor(m) = Z(T"‘Ri(k) xm; (dc; —g)] (18)

—GkM .-
When we take into account the actuator torque M ;.
and torque due to the gravitational forces m;g§ we have

the final form of the resultant joint reaction moment in
the k-th joint as

_ /A S
M oi(r) ZZ(TCZJFRi(k) xm; (dc; —g)J

i

19)

=M -
On the other side, first derivative dZCi /dt can be

obtained in the final form , [6] as:

:[ }[1 cfet+lia el @O

where @;, & and Jc; are:

dLCz

1) angular velocity of the i-th body in vector form

i p—
D =Y Eenq®, a<i (1)

a=1

as well as in a matrix form

@ ¢ 0 -,
{@}={a,f. | ]=|ar o -as|@
7 Wy W 0

2) angular acceleration of the i-th body is

i

Z Cad” i i

a=l1 a=1 =1
a<i, fLa

a; B

Xe
eﬂ aq q 23)

3) mass inertia tensor J ., of the i-th body is

r,? + ré% ~TpT, Ty
def 2 5 2
[Jei]=- j[ J dm= .[ ~T,T  Tr+TE Tty [dm
v) V) ~TeTy —TeT, T§+T,%
Te g g
eil=|~Tne Ty —Ine 24)
e g g

where 7 is the position vector with respect to the body
mass centre
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For more details, the reader is reffered to [6] and [7].

2.1 Determination of joint reaction forces and
moments for the three-like rigid multibody system

When we consider the simple three rigid body system,
(Fig. 2) where the linear momentum of all bodies in the
system is:
3
Z ivc,- (26)
where velocities of body mass centers with respect to
the local inertial coordinate systems are

Ik Mw

T T T
=Tuynd sVe2 =T)pd 12247

= s 2 E 3 @7
=Tysq +Tapd” +1(3)34
and quaibase vectors
f(l)l =& x[pn +pl+&e,
[(1)2 = 1 X[ 11+ poa + B2 )+ &,
f(1)3 =&é X[ p11 + Poz + P33 + B3+ ey,
~ (28)
(
g

T(3)3 = 53639 a3 + B3 [+ &3,

2 =66 X[ +52]+ 66

3= &y X[ g + P33 + 3 [+ 6265,

Figure 2. Three-like rigid multibody system with vectors
using Rodrigues approach

After derivation of a linear momentum by the
following formula:

mdc; = )+ Zm g (29)

'Mw

=1

we can easily find the resultant joint reaction force for
the first and fixed joint of the three body system as

3
Fr(r) = 22mi (dci = 8)
i=1

in case of revolute joint we have (30) without the last
term in the form:

— Sk Furex (30
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Fr(ny =m (dci = §)+ a1
+my (dcy = o) +m3 (dcs - 83)
Accelerations of body mass centers are
acy = f1(1) it +f11(1)qlql

N E | L= 1.1 = 1.2
acy =Ty 4 +Ty2)d +11y(2)7 4 +T1n2)q 4

"’1:21(2)‘?2‘?1 +f22(2)9292’

acs = f3(1) ' +T(2 i’ +Ty3) i +f11(3)4141 + (32)
+T15(3)d 14 +F13() 14 +F21( )512511+

+1:22(3)"1 i’ +1:23(3)"1 q3++f31(3)‘?391’
+f32(3)4342 +1:33(3)513513

and fa/;(l.) vectors are

i =&éxT5).Tyy0) = Gé Ty

»—"1l »—a’_Jl
i

202) = &é ><fz(z) Zle(z)

21(2) = 616X Dy(2) () = &6 X Ty

L) =44 Xfl(a)j\'az +b% 13(3) =

1

=§éxTy3) =Ty 3) (33)
[303) = 618 ¥ Ty(3) = Dyy(3).Tay(3) = 16 XT3
fl (3)25222Xf( ) 1: §262XT( )

3y3) = 66 xTy3). lﬁ32

I333) = &é3 ><T3(3)

fz€2><Tz( 3 =Ta3)

Finaly, after using the (32) and (33) we obtain:

.

Fi(r) = | Ty @' + Ty (4') -8
_ _ _ 2

+my (Tz(n ¢+ ) & +Ty) (4')

- . . = . 2 —
+2F12(2)‘11‘12 +I(2) (‘12) ‘gzj 34

e I = .3
+m3(T3(1)q +T3(2)q +T3(3)q +

2
= y T P I
+F11(3)(‘1 ) +2l3)9 9" + 21339 4

2 2
) T 2.3 T -3 ~
#Toa(o) (6] +2P3)0°" + gy (') -2 j
Total angular momentum of a three body sytem with
a pole in the first joint is:

3
Lok = Z(ch‘ +0,C XmiVCij = Loy + Ry Xmyvey

(35)

+Leo + Ry XmaViey + Loy + Ry Xmaves.
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Derivative of angular momentum is given by:

Lok _ < dLei - -

In case the first joint is revolute, then for the

resultant joint reaction moment we have

_ dLq -
Ok(rv) (_dfl + Ry(yxmy (dc g)}
dLey - L

+[ dfz +R2(k) sz (ClC2 —g)j (37)
dles | S

"{ de + Ry xm3 (dcs _g)]_koukek’

where dL; /dt for the three body system can be

dermined as

dle

dt |: d:||:JC1]{@}+|:JCl:|{€1}
dLC2 [ J[JCZ]{“’Z}J{ch]{Ez} (38)

dLC3 [ }[Jcﬂ{a’s}{fcﬂ{g%}

where @; and a)l- for i =1,2,3 are determined by using
the (21) and (22) and ¢; are
= _F=1  FE= o= 11 _F= .l
£ =664 +5151e X4 4 =Giég
~ -l F =2 FF-_—-1-1
& =8€d +56§" +8516%Xéq q
FF—- . - 2. FTF - = .2.2
+6)8161X624°G +85,68, X€,47°G",
~ -l T =2 FT=.3 FE- _—=-1:-1
£ =316 +66q" +5363G° +5161€ %G g (39)
FEF—- = 21 FTEF- = 2.2
+6,8161X6247G +6,5,6,X6,4°q
FF- . .= 31 FEF- = :3:2
+8361€1 X €3G G +8367€, X3¢
FF - = :3.3
+636363X6347°G
Even if expressions for determination of joint
reactions are given here explicitly, it is possible to use
some of the software for symbolic computation (e.g.
Wolfram Mathematica), or to make computation
algorithm using some of the programming languages (e.g.

see [6]), and to determine in an easy way joint reactions
for arbitrary number of rigid bodies in a system.

3. DETERMINATION OF JOINT REACTIONS BY
APPLYING THE METHOD BASED ON VECTORS
OF BODY MASS MOMENTS AND VECTOR
ROTATORS

This method was first introduced in [8] where vectors of
body mass moments were introduced by definitions. In
monograph [9], the more extensive study of this method
and nonlinear dynamics analysis of the heavy rotors and
gyro-rotors have been carried out. This method was
applied in [10-12] for vector analysis properties of
vector rotators of rigid body dynamics with coupled
rotations around axes without intersection as well as
vector analysis of nonlinear oscillations of gyro-rotors.
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3.1 Vectors of body mass moments

Here, we define three kinetic vectors fixed to a certain
point and axis passing through the given rigid body
point (see Figure 3). The rotation axis of a body is
passing through a revolute joint that connects two
bodies in the system and it is oriented by the unit vector
n; where subscript i is the same as the subscript of the
corresponding body.

n

Figure 3. Vectors of body mass moments for the single
body rotation around the fixed axes

We give a definition of the vector M ,goi) of the
body mass at the point O; for the axis oriented by the

unit vector 7; [8-9]:

M}SO) = [[[dm =Mi, dm=cav  @0)
%

Then we define vector 5”%0")

of the body mass static
(linear) moment at the point O; for the axis oriented by

the unit vector #; in the form [8-9]:
58 = [[[(. Slam=[. 5. M, dm=cav 1)
v

The third vector 3(0") of the body mass inertia at

;
the point O; for the axis oriented by the unit vector #; is
defined as [8-9]:

E’sflo) =|[[[ 5. [, 5] Jdmn, dm=cav — (42)
Vv

where p is the position vector of the elementary body
mass and p,. is the position vector of the centre of body

mass with respect to the pole O;. The body mass inertia

(0)

moment vector 3 can be decomposed into three

1)

i

components: the component which is co-linear

with the axis and two other components D(n(;‘)and

DE,?") in the directions # and v which are normal to the

orientation axisz . The co-linear component represents

FME Transactions

the axial moment of the body mass inertia and the other
two components represent the deviational moments:

300) _y0) 5@ D)5 43
(9)

LS
n;

KOV =[] (7,57 don = (3&0):&] (44)
Vv

The rigid body deviation moment vector at the point
for the axis oriented by the unit vector has the following
form:

ﬁff’) _ w[ﬁ [[7.[7. 5]],ﬁﬂdm=[ﬁ, {Q(O)ﬁﬂ (45)

3.2 Model of a three-like rigid body system

where J

In this section we observe the same system as in the
previous one but with different notation for the body
vectors (see Figure 4). Allow us first to consider rotation
of the rigid body (V;) around fixed axis oriented with the

unit vector 7; with angular velocity @ =@ . In a

similar way angular velocities around moving axes
oriented with unit vectors 7, and 73 are @ = @iy

and @; = a1y, respectively. Joints, whose positions with
respect to the first joint O; are determined with 7, and
3 vectors, are denoted with O, and O; and they

coincide with points which are the shortest orthogonal
distance between axes oriented with unit vectors 7y, 71,

and 75 . Axes of rotation are without intersections.

Figure 4. Three-like rigid multibody system with vectors
used in a vector method

Here p,.and p;, i=1,2,3 are position vectors of the

body mass centre and elementary body mass with
respect to the joint of i -th body, respectively. Position

vectors of elementary mass with origin in joint O; are

introduced with vectors 7;, i =1,2,3 in the form:
=P =Hy+py.lh=lp+h3+p3  (46)

and velocities of mass particles v;, i =1,2,3 in the form

n=[@.p).v, =[@. iy |+ [@ + @y, py).

N ¢ )
V3 =@ Ao |+ @ + @y s [ @ + @y + @3, P
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3.3 Vector equations of linear momentum and
angular momentum

Using the basic definition of linear momentum and angular
momentum and basic equations for velocity of mass
particles, the following vector equations can be written:

1) For linear momentum in the form

K= J;'U vidmy + J;'[J- Vodmy + J;-[J' v3dms

= a)l~g))(1) +ay[iiy, ip | (Mo +My)+ aﬁég%)(z) "
+@§ES; v @[y, Ty M5 + [y, Ty M5 ()
where 5;_0") ,i =123 are body linear mass moments for

corresponding points and axes which are written as:
ﬁé,;")’“’ = [ i lam <[ e s
9 ”“”h pa Jdm,,
a(O = ”“”2’ P Jdmy,
St = m [, p3 Jams,
S m (22, 3 Jams,
S = Il B Jams

2) For angular momentum the expression is in the form

L= ([[[7, 5 dm + [[[[%. > 1dmy + [[[[Fs. 7 Jdms

(5))(2)}

o[ A, [”1,712]]M2+0’1[712’ (

(49)

3
+0, []2,5((%)(2)} +ay| Pac [ 7a] M,

g
o) [f]z, i o T) s+ [ i [
s ["2 ’23]]M3+0’1[r12 (( ))( )}
S PN EAEE )
H3» [nl,rlz]]M3+a)l[r23 [nl,f23 [| M5
Pz [ty s ]| M3 + @) {sz’ ((0))(3)}
Py, S 0 } +a,{r%;((;))( )}

S
7 Aa JM3+0’1[ P3c > [”1,&3]]

—

'ﬁl_\l_|'ﬁl—_||—|
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a3+ 0,300 1 3000

=(0,)(4)

where 3 ()

i

+ay| Pac. [ Pz | M3+ @[ Pac [, o3 ]| M5
)
)

, I, j =1,2,3 are corresponding rigid body

mass inertia moment vectors for axes oriented by direc—
tions of component rotations through the joints O;,i =1,

2, 3 on self-rotating axes written in the following form:

! =IH (1. s 5l Jam,
”I P2 [7ir. Pz] dmz,

5
g M[ [, 2] dmy,
& (51)
T ﬁ IM B3 i, p3 ]]dms.
5 ﬁ .”I[ [nZ’ p3] dms,
S ﬁ m[ [, 93] dmy

3.4 Derivatives of linear momentum and angular
momentum

We take into account the equation for linear momentum
(48) and find derivative of parts, after rearranging the
terms we obtain the following vector expression

dK _ . <(0)(1)
oA

to [ ((;0))( )}Fd’l[ﬁl’ Ao M

+af [ﬁl’ [, ;12]:| M, +d)1§((%)(2) +af [ﬁl, 5((%)(2)}
w320 1 0p [ﬁz’ stooe )}2&,‘ w{n], ((32))@)}
+ay [y, 7ip M3 + @ [, [, 7 ][5 + @[ i 7ys I
+a)12 [ﬁl’ [51’723]]M3+@[52’723}M3 52)
200|350 |+ 200,500
"rza)lah[ﬁl, [ﬁz, F23:|:|M3 "r((bz[ﬁz, [ﬁz, F23:|:|M3

5.5 5.4

+a)2§((;1021))( ) + 0)22 |:fi2 i 5((71023))(3)}
+CZ)3 _’((710;))( ) + (052 |:ﬁ3 i _'((710;))(3):'

By analysing the structure of linear momentum deri—
vative terms, one can see that it is possible to introduce
pure kinematic vectors, so called vector rotators [8-12],
depending on the component angular velocities and
component angular accelerations of the component
coupled rotations which are given as follows:
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Sy = it [7, 2]
|[’71’ 712]|

["1 23]
|[ n, V23]

SK a}z["z r23]+a;2[

|[ ny, r23]

P [ 71, s ]
apm |[’71’712]J’
[”1 r23]]
|[”1 r23]
[”2#23]]’
" s ]

Ry =200, | 1y |%:2’i23 ]
2> 123
5((93))(3) I ~(<_03)<3) ]
s n 2| - n
T = AT oM | M o)
(i) P |
st 5(0)6) ]
> n 2| = n
T = AT o) M | o
(i) P |
5((53))(3)
Ris =2mym, | 1y a(oz 0
i) |
§( 3)(3) ”(03)(3)
s =d)3 (ﬁ3) +a}32 — (ﬁ3)
%7 s0)0) ¥ [5(0.)0)
(iiy) (7i) (53)
§(0.0)
Ry =203 7y, *((rz))“)
S@)
] 5((5‘3)(3)
Fan =200\ Bl (o
S)

Then, we can express derivatives of the linear
momentum in the following form:

St [ 72+ [0

(m)
§(0.)(2)

+Ry (S

§(01)(1)

R [y, 7o || M3+ 35 [, 7oy | M
a1 [ 7y, Fog | M3 + s [z, 7oz | M3 (54)

RSy | FaalSa)
s\ | Fa6|S(a)
+§(37 S _ ) +§{38 S;(? )(3)

+Ry, |[ﬁ2, ?23]M3 +%R3y |[ﬁ2’ 723]M3
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5(0)0)

2)

+Ry; +Ryy ((
(0,)(3)
(i)
0,)(3)
7iy)

In the same manner, we derive the vector expression
for angular momentum and due to the large equations
we express linear momentum derivatives by using the
vector rotators and obtain the form:

Ly
—
L
—
=
>

|

+Rs35 +§K36

5

+Rs, q((ﬁ:) +Rsg ((

= (5 S0 oo
+|[ﬁ1’712]|[?12 R, JMZ +|[n1 r12]|[pzc 9‘20}
87z

ey [[in e

L L

1y [nz 3(5_)(2)}4_5{;2 ”(;102:))(2) +

I+ 5 200, [ 7. Fss ]
|5y [z S Jo 50 [z ]
J+[50 0N Ry 9t

o [}

+|[7117r23] ”3» ER3}}]"1 |[”2 rz3][”23 E)332]

N
U)
2

* 552."))(3) { St ]} 450909 [, S
A5y [ 34]}Ms #3100 [y Sty
o {0 S ot o503 e S
+iw, i) s Fao s
+[i, iy {[ - s s
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+ i, F23]{[ﬁ30v <5‘31}} M; +[ii, ?23]@307 ET%2}1‘4’3

Here we also introduce some new vector rotators which
are written in the form

( (
YR
R, = R R
! “"‘401)(1) AT o)
(1) (1)
50310 520
N G 2| 5 U ’
3 “"‘a( A " T 0n0)
() (1)
5(02)2) 5(02)2)
R =y () +al |, (m) ’
5(02)(2) 5(02)(2)
() ()
520 5210
9—{* — nz 2 , nz ,
0= e 2" 0s)3)
(72) (ri2)
510210 5020
= &) 20 ’
2= 5021 Tz 5020
n np
() ~((93)>(3)” (56)
RE = B 2| i,
50 "’3‘403)(3) O T 03)3)
(73) (1) ]

3.5 Determination of joint reactions by using the
method based on vectors of body mass
moments and vector rotators

By applying theorems of change of linear momentum
and angular momentum we write the following
expressions:

dK - 3,
—=Fpp + ; 57
ar ROt 2 (7
dL - Sl -
= =Mgo, +i=zk[rc,-, G; |+ M, (58)
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where in (56), F ROk denotes the resultant joint re—action

force in the k-th joint and éi , denotes gravitation forces.

In eq. (58) M ro, denotes the resultant joint reaction

moment in the k-th joint, [?a», éi], denotes the moments

of gravitational forces and a actuator torque M « for the
revolute joint Oy, k = 12,3. From previous two
equations it is easy to determine the resultant joint
reaction force and moment in the first joint as:

- dK = = =
Fro, :E_Gl -Gy =Gy (59)

Mo, =i—§—[fc1, Gy |-[ 72, Gy |-[ 73, Gs |- M, 60)

The similar procedure is for determination of the
resultant joint reaction forces and moments in other two
joints of the three-like rigid body system.

It is known that joint reactions can be split in to the
static parts and the kinetic parts, where negative values
of kinetic parts are called kinetic pressures. Observing
this problem could be of great importance in the
systems where the period of change of kinetic pressure
overlaps with the period of the eigenfrequency of the
joint shaft, when resonance can occur and cause damage
of the system. This problem is more frequent in the
systems with fast-rotating body parts and it is less
frequent in robotic applications. However, we can say
that using the vector method described in this section it
is easy to obtain kinetic reactions. From (57) and (58)
by taking into account (54), (55) and by neglecting the
terms with external forces we can obtain Kkinetic
reactions with components in the directions of vector
rotators and with magnitudes as products of deviation
moments of masses and magnitudes of vector rotators.

4. CONCLUSION

In this paper, two different analytic methods for
determination of joint reaction forces and moments are
presented. The first method based on the Rodrigues
approach is applied for determination of the resultant
joint reaction forces and moments. Taking into acount
that the obtained equations are convenient for a
symbolic computation (Mathematica, MatLab, Maple
etc.), at this moment it is easy to implement this method
in the multibody dynamic problems, especially if there
are more than three bodies in the system. The second
method based on the vectors of body mass moments and
vector rotators for corresponding poles and axes is
introduced through the example of three-rigid body
system. The expressions for linear and angular
momentum are derived and the resultant reaction force
and the moment for the fixed joint in the system are
determined. In the literature it was shown that this
method is convenient to separate joint raction forces
into its components ie. to determine kinetic pressures
for the corresponding joints. Still, for this method it is
needed to develop corresponding algorithms and
computer tools so that large analytic expressions could
be more easily applied in multibody dynamics.
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OJPEBUBAILE PEAKIINJA 3I'JIOBA Y
CUCTEMY BHIIE KPYTHUX TEJIA, IBA
PA3JIMYUTA ITPUCTYIIA

Mmunan C. Ilajuh, Muxauuo II. JIazapesnh

VY oBoM pany cy mpHKa3aHe JBE Pa3IHYUTe METOJC 3a
oJpehuBame crua U MOMEHATa peakifja UacaTHuX Be3a
y 3rno0oBuMa. Pa3maTpaHH CHCTEM BHILIE Tela HUMa
CTPYKTYpPY OTBOPEHOT KHHEMaTCcKOr JaHia. IlpBa
METO/ia Ce OJHOCH Ha ojpeljuBarbe TJIaBHUX BEKTOpa M
MOMEHATa peakKiyja Be3a y CHMOOIHNYKOj (OpMH Koja ce
3acHMBa Ha Pojpure30BOM IMPUCTYIy W MOTOJHA je 3a
CUMOOJIMYKO pauyHame. J[pyra npukasaHa meroma je
BEKTOpCKAa METO/Aa Koja je 0Oa3upaHa Ha BEKTOpUMA
MOMEHaTa Maca W BEKTOpHMa pOTaTOpHMa BE3aHHX 3a
mojx u ycMmepeHy ocy. O6a mpumepa cy NpHKa3aHa H
JIMCKYyTOBaHA HA CUCTEMY TPH KPyTa Teja.
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