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Similarity treatment for MHD free 
convective boundary layer flow of a 
class of Non-Newtonian Fluids 
 

Deductive group symmetry treatment is appied to derive the similarity 

transformations for the  free convective boundary layer flow of a class of 

non-Newtonian fluids past over a two-dimensional surface and flowing 

under the influence of transverse magnetic field. Numerical solutions are 

obtained for particular Non-Newtonian fluid model namely Prandtl Eyring 

fluid, in a graphical form . The important physical quantities like velocity 

distribution, skin friction coefficent and temperature variations are 

discussed.    
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1. INTRODUCTION 

 

The classical theory of fluid mechanics is based upon 

the hypothesis of a linear relationship between two 

tensor components, shearing stress and rate of strain as, 

  
u

y
τ µ

∂
= −

∂
 (1) 

The fluids with properties different from that 

described by equation (1), called Non-Newtonian fluids. 

Flow of Non-Newtonian fluids has attained a great 

success in the theory of fluid mechanics due to its 

applications in biological sciences and industry. 

Problems involving Non-Newtonian fluid models have 

been studied by the many researchers since last decades.  

Several techniques are found to analyze and derive the 

solutions of governing equations.   Some of these are 

cited in Refs. [1–9]. The similarity technique plays an 

important role in problem analysis, especially in the 

boundary layer flows. The similarity method involves 

the determination of similarity variables which reduce 

the system of governing partial differential equations in 

to ordinary differential equations. Indeed similarity 

solution is the only class of more accurate solution for 

the governing differential equations. In the present work 

we have applied similarity treatment for the particular 

boundary layer problem. 

In the literature several information are available on 

similarity solutions for the natural convective heat 

transfer of a Non-Newtonian fluids [See 10-12]. 

Researchers have presented works on flow in an 

electrically conducting Non-Newtonian fluid over a 

stretching sheet [see 13-19].  At this point it is worth to 

note that most of the work has been done for Non-

Newtonian power-law fluids; this is because of its 

mathematical simplicity. However there are empirical 

Non-Newtonian fluid models based on functional 

relationship between shear stress and rate of the strain 

are available [20]. In present work we concentrate our 

discussion on the similarity solution of steady laminar 

natural convection flows of generalized Non-Newtonian 

fluid. Such a class of fluids are severely omitted in the 

analysis due to mathematical complicity of its non-

linear stress-strain relationship. Further, from these 

charts, we noticed that all the similarity solutions 

presented there in are derived either by adopting or by 

ad-hoc assumption on similarity variables. In the  

context of this work it is necessary to develop systema–

tical group transformation for similarity solution. 

Hence, present work focused on deductive group 

symmetry analysis based on general group of trans–

formations. The analysis is applied to the particular 

problem of boundary layer theory. We investigate the 

MHD boundary layer flow of a class of Non-Newtonian 

fluids characterized by the property that its stress tensor 

component τij can be related to the strain rate component 

eij by the arbitrary continuous function of the type 

 ( ), 0
ij ij

eτΩ =  (2) 

The similarity equations obtained are more general 

and systematic along with auxiliary conditions. 

Recently this method has been successfully applied to 

various non-linear problems by Abd-el-Malek et al [21], 

Adnan et al [22], Darji and Timol [23, 24]. 

 
2. GOVERNING EQUATIONS 

 

Consider the steady laminar natural convection flow of a 

non-Newtonian fluid over a vertical permeable surface, in 

the presence of transverse magnetic field. Consider the 

vertical upward along the surface as positive x-direction, 

and the origin is fixed (Fig. 1).  The transverse 

electrically conducting variable magnetic field of the 

strength B(x) is applied normal to the X -axis. It is 

assumed that the magnetic Reynolds number 
m

Re  is very 

small; i.e. 0 1
m

Re Lµ σ= << , where 0µ  is the magnetic 

permeability, L is the reference length of the plate and σ  

is the electric conductivity. We neglect the induced 
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magnetic field, which is small in comparison with the 

applied magnetic field. Also for a class of Non-

Newtonian fluids, the stress-strain relation, under the 

boundary layer assumption can be found in the form of 

arbitrary function with only non-vanishing component 

y x
τ . Then the relation (2) can be given by [see 20] 

 

Figure 1. Schematic diagram of MHD natural convection 

 , 0
y x

u

y
τ
 ∂

Ω = 
∂ 

 (3) 

Using boundary layer approximations, the governing 

equations for a class of non-Newtonian fluids are given 

by [See 28, 29]: 

Continuity Equation: 

 0
u v

x y

∂ ∂
+ =

∂ ∂
 (4) 

Momentum Equation: 

 ( )
( )2

1
'

y x

B xu v
u v g u

x y y

σ
τ β θ

ρ ρ

∂ ∂ ∂
+ = + −

∂ ∂ ∂
 (5) 

Energy Equation: 

 
2

2
'u v

x y y

θ θ θ
α

∂ ∂ ∂
+ =

∂ ∂ ∂
 (6) 

Together with boundary conditions: 

 
( ), 0,   at 0

, 0                 as   

w
x u v x y

x u y

θ θ

θ

∀ = = = = 


∀ = = → ∞ 
 (7) 

where 'α  is thermal diffusivity, 'β  is the volumetric 

thermal expansion coefficient. 

Introducing the following dimensionless quantities,  

1/2

, ,
3

Gr Re y
x x y Gr

L L

∗ ∗  
= = ⋅ 

 
 

1/2

, ,
3

u Re v
u v

U Gr U

∗ ∗

∞ ∞

 
= =  

 
 

( ) ( )

( )

1/ 2

2

0

2

, , ,
3

, , '
'

y x w

y x w

w w

r w

Re

Gr U

U LU L L
Re P Gr g

Re U

τ θθ
τ θ θ

θ θ θ θρ

β θ θ
ν α

∗ ∗ ∗

∞ ∞∞

∞
∞

∞

 
= = = 

− − 

= = = −

where L is the reference length of plate, 0U  is the 

reference velocity, U∞  is the far velocity (near boundary 

layer), 
w

θ  and θ∞  are the absolute temperatures of fluid 

near plate wall and near boundary layer respectively. 

Substitute the values in (3) to (7) along with non-

dimensional stream function ( ),x yψ ∗ ∗ ∗  such that 

u
y

ψ ∗
∗

∗

∂
=

∂
 and v

x

ψ ∗
∗

∗

∂
= −

∂
, and dropping the asterisks 

(for simplicity), we get 

 , 0
y x

u

y
τ
 ∂

Ω = 
∂ 

 (8) 

( ) ( )
2 2

2

2 y x
bB x

y y x x y yy

ψ ψ ψ ψ ψ
τ θ

∂ ∂ ∂ ∂ ∂ ∂
− = + −

∂ ∂ ∂ ∂ ∂ ∂∂
 (9) 

 
2

2

1

3
r

y x x y P y

ψ θ ψ θ θ∂ ∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂ ∂
 (10) 

in which /b Uσ ρ ∞= , together with boundary conditions: 

 

( ) ( ) ( ) ( )

( ) ( )

,0 ,0 0, ,0

, , 0

w
x x x x

y x

x x
y

ψ ψ
θ θ

ψ
θ

∂ ∂ 
= = = ∂ ∂ 


∂ ∞ = ∞ =

∂ 

 (11) 

 
3. SIMILARITY ANALYSIS 
 

We now seek some sort of transformation, namely, 

similarity transformation which transforms the partial 

differential Eqs (8) to (10) into the ordinary differential 

equations along with appropriate auxiliary conditions (11). 

To search this transformation, the one-parameter general 

deductive group of transformations is introduced as: 

 ( ) ( ): Q Q
G Q a a s= ℵ + ℜ  (12) 

where Q stands for , , , , ,
y x

x y Bψ θ τ , ' sℵ  and ' sℜ  are 

real-valued and at least differential in the real argument 
.a  

To transform the differential equation, transfor–

mations of the derivatives of ψ  can be obtained from G 

via chain-rule operations. 

 

a. Invariance analysis 

 

Equations (8) to (10) are said to be invariantly 

transformed, for some functions ( )i aξ  whenever, 

 ( )
2 2

12 2
, ,

y x y x
a

y y

ψ ψ
τ ξ τ
   ∂ ∂

Ω = Ω   
∂ ∂   

 (13) 

( ) ( )

( )
( ) ( )

2 2
2

2

2 2

2

2

2

y x

y x

bB x
y y x x y y y

y y x x y
a

bB x
y y

ψ ψ ψ ψ ψ
τ θ

ψ ψ ψ ψ

ξ
ψ

τ θ

∂ ∂ ∂ ∂ ∂ ∂
− − − +

∂ ∂ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
− ∂ ∂ ∂ ∂ ∂ =

 ∂ ∂
− − + ∂ ∂ 

 (14) 

 

( )

2

2

2

3 2

1

3

1

3

r

r

y x x y P y

a
y x x y P y

ψ θ ψ θ θ

ψ θ ψ θ θ
ξ

∂ ∂ ∂ ∂ ∂
− −

∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂
= − − 

∂ ∂ ∂ ∂ ∂ 

 (15) 
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Substituting the values from (12), using chainrule 

operation in above equation, yields 

( )
( )

2 2

12 2 2
, ,y x y x

y x y x
y

a
y y

ψ
τ τ ψ ψ

τ ξ τ
   ℵ ∂ ∂

Ω ℵ + ℜ = Ω    ∂ ∂ ℵ 
(16) 

( )

( )
( )

( ) ( )

( )
( )

2 2 2

2 2

2

2 2

2

2

2

y x

y xyx y

B B

y

y x

y y x x yy

b B
y

y y x x y
a

bB
y y

τψ

ψ
θ θ

ψ ψ ψ ψ
τ

ψ
θ

ψ ψ ψ ψ

ξ
ψ

τ θ

 ∂ ∂ ∂ ∂ ℵ ∂ℵ
− − 

∂ ∂ ∂ ∂ ∂∂ ℵℵ  ℵ

ℵ ∂
− ℵ + ℜ + ℵ +

∂ℵ

 ∂ ∂ ∂ ∂
− 

∂ ∂ ∂ ∂ ∂ =
 ∂ ∂
− − + 

∂ ∂ 

R  (17) 

( )

( )

2

2 2

2

3 2

1

3

1

3

x y
y

r

r

y x x y P y

a
y x x y P y

ψ θ θψ θ ψ θ θ

ψ θ ψ θ θ
ξ

  ℵ ℵ ∂ ∂ ∂ ∂ ℵ ∂
− −   

∂ ∂ ∂ ∂ℵ ℵ ∂   ℵ

 ∂ ∂ ∂ ∂ ∂
= − − 

∂ ∂ ∂ ∂ ∂ 

 (18) 

The invariance of equations (16)-(18) together with 

boundary conditions (10), implies that 

 

( )
( )

( )

( )

( )
( )

( )
( )

12

2 2

22

32

0,

1 ,

,

,

y x

y x

y x

y B

y

B

y yx y

x y
y

a

a

a

τθ ψ

ψ
τ

τ ψψ
θ

ψ θ θ

ξ

ξ

ξ

ℜ = ℜ = ℜ = ℜ = ℜ =


ℵ 
ℵ = = = 

ℵ 

ℵℵℵ ℵ

= = ℵ = = 
ℵ ℵℵ ℵ 

ℵ ℵ ℵ
= =

ℵ ℵ ℵ 

 (19) 

These yield 

( ) ( )
3 2 1 1
, , , 1, .y xx By y

y y

τψ θℵ = ℵ = ℵ = ℵ = ℵ =ℵ ℵ
ℵ ℵ

 (20) 

Finally, we get the one-parameter group G, which 

transforms invariantly the system of equations (8)-(10) 

along with  the auxiliary conditions (11). 

( )

( )

3

2 1 1

x yy

y y x y xy y

x x , y y

G :
, , B B,

 = +ℜ =ℵℵ

ψ = ψ θ = θ = τ = τ ℵ

ℵ ℵ

 (21) 

 
b. The complete set of absolute invariants 

 

Now we want to develop a complete set of absolute 

invariants so that the original problem (8)–(10) will be 

transformed into similarity equations under the derived 

deductive group (21).  

If ( ),x yη η= is the absolute invariant of the 

independent variables, then variables of the four 

absolute invariants for dependent variables ψ, θ, τyx, B 

are given by 

 ( ) ( ), , , , , , 1,2,3,4.
j y x j

g x y B F jψ θ τ η= =  (22) 

and can be obtained by the following first-order linear 

partial differential equation: (see Morgan [25], Moran 

and Gaggioli [26]) 

 ( )
6

1

0, , , , , ,
i i i i y x

i i

g
Q Q x y B

Q
α β ψ θ τ

=

∂
+ = =

∂
∑  (23) 

where, 

 ( )
0 0

and 1,..6
i i

i i

a a a a

i
a a

α β
= =

∂ℵ ∂ℜ
= = =

∂ ∂
 (24) 

and ‘a0’ denotes the value of ‘a’ which yields the 

identity element of the group G.  

Since 0y x y Bτθ ψℜ = ℜ = ℜ = ℜ = ℜ =  implies that 

β1 = β2 = β3 = β4 = β5 = β6 = 0 and from (24) we get 

1 2 3 4 6 5

3
3 , 0.

2
α α α α α α= = = − = − =  

Equation (23) yields: 

( )

( )

1 1 1

1 1

6

2

3 3 3

0 0.
3

y x

yg g g g
x

x y

Bg B

α α ψ α θ
α β

ψ θ

α

τ θ

∂ ∂ ∂ ∂     
+ + + −     ∂ ∂ ∂ ∂     

∂ ∂ 
+ − = ∂ ∂ 

(25) 

The corresponding characteristic equation of (25) is 

 
( )

3 3 3 3

2 0

yx
ddx dy d d dB

x y B

τψ θ

β ψ θ
= = = − = = −

+
 (26) 

   

where 1 1/ 3β β α=  

Applying the variable separable method, the abso–

lute invariants of independent and dependent variables 

owing the equation (25) are given by  

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1/3

2/3

1

1/3

2

3

1/3

4 0

,

yx

x y y x

F x F

F x G

F H

F B x B

η β

η ψ β η

η θ β η

η τ η

η β

−

−

= +

= + =



= + = 


= = 


= + = 

 (27) 

As ( )B x  is a functions of x only, ( )4F η must be 

constant say 0B . 

The group transformation of absolute invariants is 

 

( ) ( )

( ) ( )

( ) ( )

( )

( )

1/3

2/3

1/3

1/3

0

,

yx

x y y x

x F

x G

H

B B x

η β

ψ β η

θ β η

τ η

β

−

−

−

= +

= +



= + 


= 


= + 

 (28) 

c. Reduction to ordinary differential equations 

 

Substituting the values of derivatives from (28) in 

equations (8)-(10), yields the following system of non-

linear ordinary differential equations. 
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( )2
2 3 3 0.

1
2 0.

r

F FF H G MF

FG F G G
P

′ ′ ′ ′− − − + =



′ ′ ′+ + = 


 (29) 

where  2
0

Mn B Uσ ρ ∞=  is the magnetic parameter and 

( )H η
 
is similarity variable related to non-dimensional 

strain-stress relation  

 ( ), 0H F ′′Ω =  (30) 

Together with boundary conditions, subject to 

( ) ( )
1
3w x xθ β −

= +  are 

 
( ) ( ) ( )

( ) ( )

0 0 0, 0 1,

0

F F G

F G

′= = =

′ ∞ = ∞ =
 (31) 

 
4. PRANDTL  EYRING FLUID MODEL 

 

Non-Newtonian fluid models based on functional 

relationship between shear-stress and rate of the strain, 

shown by equation (3), are defined by various empirical  

explicit or implicit functional relations See [20, 27]. 

Among these models most research work has been so far 

carried out on power-law fluid model, this is because of 

its mathematical simplicity. On the other hand fluid 

models other than the Power-law model presented in 

Table 1 are mathematically more complex and the nature 

of partial differential equations governing these flows is 

too non-liner boundary value type and hence their 

analytical or numerical solution is a bit difficult. For the 

present study the Prendtl Eyring model, although mathe–

matically more complex, is chosen mainly due to two 

reasons. Firstly, it can be deduced from kinetic theory of 

liquids rather than the empirical relation as in  the power-

law model. Secondly, it correctly reduces to Newtonian 

behavior for both low and high shear rate. This reason is 

somewhat opposite to the pseudo plastic system, whereas 

the power-law model has infinite effective viscosity for 

the low shear rate, thus limiting its range of applicability. 

Mathematically, the Prandtl-Eyring model can be  

written as (Bird et al [20], Skelland [27]) 

 1 1
sinhyx

u
A

C y
τ −  ∂

=  
∂ 

 (32) 

where A and C  are flow consistency indices. 

Introducing the dimensionless quantities, 

 ( )
( ){ }

1/2
2

,

1

F
H

F

α
η

γ

′′′
′ =

′′+

 (33) 

where 
3

2
,

UA

C LC

ρ
α γ

µ µ

∞

∞
= =  are dimensionless flow 

parameter. 

Substituting it into the equation (29), we get 

 
( )2 21

2 3 1 .
3

1
2 0.

r

F F FF G MF F

FG F G G
P

γ
α


′′′ ′ ′′ ′ ′′= − − − + 


′ ′ ′+ + =


 (34) 

Further, the expression of local skin-friction 

coefficient fC is: 

 ( ){ }1

0

1
Re sinh 0 .

2
f yx y

C f
α

τ γ
γ

−
=

′′≡ =  (35) 

 

5. RESULTS AND DISCUSSIONS 
 

• The numerical solutions in a graphical form of non-

linear system (34) subject to the boundary 

conditions (31) are obtained using bvp4c solver in 

Matlab (Figs. 2-10). This is second order accurate 

and allows uniform and non-uniform grid size. 

• Figures 2-4 are graphical representation of the 

profiles similarity variables F', G and F''(0) are 

related to velocity along X-axis, local shear stress 

and temperature respectively under the influence of 

magnetic field M. These figures mean that increase 

in M causes the boundary layers to thicken. 

• At this point it is worth noting that a similar kind of 

effects have been observed in the work of Na and 

Hansen [12] and T. Hayat et al. [30] for Power-law 

and Powel-Eyring Non-Newtonian fluids respectively. 

• This warrants that the present work is consistent 

with earlier work, indeed we have analyze the most 

general case and one can studied any Non-

Newtonian fluid model using present analysis.   

 
Figure 2. Magnetic fields effect on velocity profile 

 
Figure 3. Magnetic field effects on local shear-stress profile 

 

Figure 4. Magnetic field effects on temperature profile 
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5(a) 

 

5(b) 

Figure 5. Influence of flow parameter on non-dimensional 
velocity 

 

6(a) 

 

6(b) 

Figure 6. Influence of flow parameter on non-dimensional 
local shear-stress 

 

7(a) 

 

7(b) 

Figure 7. Influence of flow parameter on non-dimensional 
temperature 

 

Figure 8. Effect of Prandtl number on dimensionless 
velocity of Prandtl Eyring fluid 

 

Figure 9. Effect of Prandtl number on skin-friction 
coefficient of Prandtl Eyring fluid 
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Figure 10. Temperature variation under the effect of Prandtl 
number on  Prandtl Eyring fluid 

• Figs. 5-7 display the effect of flow parameters α  

and γ  on similarity functions variables related to 

velocity along X direction, local skin-friction and 

temperature. These figures depict boundary layer 

thickness decrease as the flow parameter α  

increases by controlling the flow parameter γ  and 

M. A similar trend can be observed for another flow 

parameter. This behavior of flow is consistent with 

Hayat et al. [30].    

• Also, the rheological parameter B and µ∞  have an 

inverse relation with dimensionless parameter. 

Decrease in one of the rheological parameters means 

an increase in one of the flow parameter. Figs. 8-10 

represent the effect of magnetic parameters, hence 

the decrease of boundary layer thickness. 

• Figs. 8-10 display the influence of Prandtl number 

on fluid flow. These figures depict an increase in 

Prandtl number causing the boundary and thermal 

boundary layer thichness. The present results are 

the same as those mentioned in S. Panigrahi et al. 

[31]. This comparision gurranteed the validity of 

present analysus. 

• It is worth noting that all solutions have derived for 

non-dimensional quantities and hence these results 

are applicable for all types of considered non-

Newtonian fluids. 

 

6. CONCLUSION 
 

The deductive group symmetry method is applied to 

search similarity transformations to transform the 

partial differential system to ordinary differential 

system for the class of Non-Newtonian fluids. 

Numerical solutions are presented in a graphical form 

for Prandtl-Eyring fluids using Matlab. Effects of 

rheological parameters on the boundary layers are 

discussed in detail. It is found that change in all the 

dimensionless parameters and rheological parameters 

causes the boundary layers thickness. The analysis is 

made for generalized Non-Newtonian fluid and work 

of Na and Hansen [12] and T. Hayat et al. [30] are 

particular cases of he present work.   
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NOMENCLATURE 

,A C  Flow consistency indices 

B  Magnetic field strength  
, ,F G H  Transformed dependent variables  

g  Gravitational force 

Gr  Grashof number 

Pr  Prandtl number 
Re  Reynolds number 
,u v  Components of velocity in x, y direction  

U  Main stream velocity 
,x y  Rectangular coordinates 

Greek symbols  

'α  Thermal diffusivity 

'β  Volumetric thermal expansion coefficient 

ρ  Density 
v  Kinematics viscosity 
µ  Viscosity 
ψ  Stream function 
τ  Shearing stress 

Ω  
Functional relation of τ  and velocity 

gradient 
η  Transformed independent variables 

θ  Temperature distribution 

wθ  Temperature distribution near plate wall 

 

 

ПОСТУПАК УТВРЂИВАЊА СЛИЧНОСТИ 

КОД СЛОБОДНОГ КОНВЕКТИВНОГ МХД 

СТРУЈАЊА У ГРАНИЧНОМ СЛОЈУ КЛАСЕ 

НЕЊУТНОВСКОГ ФЛУИДА 

 

Р.М. Дарји, М.Г. Тимол 

 

У раду се користи поступак симетрије дедуктивне 

групе за извођење трансформација сличности код 

слободног конвективног струјања у граничном слоју 

класе нењутновских флуида који прелазе преко 

дводимензионалне површине и теку под утицајем 

попречног магнетног поља. Нумеричка решења су 

добијена у графичком облику за одређени модел 

нењутновског флуида, тј. Прандтл-Ерингов флуид. 

Разматрају се значајне физичке величине као што је 

дистрибуција брзине, коефицијент спољашњег 

трења и температурне варијације. 

 


