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INTRODUCTION

Assessment of a Structural Health
Monitoring technique through
synthetic data generation

This work assesses the accuracy of a structural health monitoring (SHM)
technique previously presented in the literature. The SHM technique under
exam relies on a modal decomposition method and is intended to
reconstruct the distributed deflection and strain fields from point-wise
strain measurements at known locations. The objective of this work is to
assess the reliability of such algorithm to variations of sensors number and
their location. To this aim, the problem of a simply supported beam
subjected to an impulsive loading is solved analytically and the results are
used as synthetic input data for the SHM algorithm. The robustness of the
SHM methodology has been also evaluated against erroneous choices of
modal basis. Results show that sensors number and location play a
primary role in the accuracy of the reconstruction, whereby the choice of
the modal basis has a negligible influence on the results.
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structures, we here generate synthetic data through

The evaluation of stress distribution over complex
structures, as well as its overall evolution in time is of
major interest in many engineering fields. Therefore,
much effort is being dedicated to the development of
Structural Health Monitoring (SHM) techniques to serve
for this purpose. Major objective is to gain as much
information as possible on the entire structure, being the
live monitoring of the stress over the whole structure the
limit goal. Indeed, direct live measurement of the stress
and strain field on the entire structure is impractical;
alternative methods must therefore be established.

Many efforts have been dedicated to the
development of SHM techniques for the prediction of
the displacement and the stress field in structures [1], or
for the non-destructive monitoring of internal damages
[2-6]. In this work, we assess the reliability and we
comment the potential of a SHM methodology proposed
in [7] and recently utilized in [8,9], by using synthetic
data. The SHM method proposed in [8,9] suggests using
a low number of local strain measurements to
reconstruct the overall deflection and distributed strain
field over an entire structure. The method relies on a
modal decomposition technique, where the overall
deformation is decomposed over a finite number of
mode shapes. Therein, a deep analysis of the influence
of the chosen modal basis and sensors locations is
lacking.

Contrary to what presented in [7-9], where fiber
Bragg gratings (FBG) [10-12] are utilized to
experimentally measure punctual strains on vibrating
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analytical solutions. Objective of this work is assessing
the capability of such SHM methodology to correctly
reconstruct the distributed deflection and strain fields
and give indications on the optimal location and number
of FBG (or strain sensors in general). In the analytical
and numerical analyses, we'll respect the technological
limitations imposed by the use of FBG sensors for the
strain measurements in terms of maximum number and
minimum distance between the sensors.

The work is divided in three main sections. Initially,
we assess the capability of the reconstruction
methodology to correctly predict the structural
deflection and strain fields as a function of number of
sensors. Within this analysis, we assume to perfectly
know the effective mode shapes of the structure. Then,
we evaluate the influence of sensors location on the
accuracy of the results. At last, we will study the effect
of choosing a wrong set of mode shapes on the
reconstruction algorithm..

2. PROBLEM STATEMENT

Final objective of this study is to assess the reliability
of the SHM presented in [8,9] to variations of sensors
number, location, and modal basis utilized for the
reconstruction. Here, we will study a simple geometry,
such as a simply supported beam undergoing an impulsive
event in the form of a distributed pressure pulse.
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Figure 1: Schematics of the problem studied here.
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To add uncertainty to the problem we will introduce
an elastic foundation to a portion of the beam, so that
the actual mode shapes modifies from the one of a pure
simply supported beam. Such condition is representative
of all those situations where external factors might
influence the mode shape of a structure, e.g. during
fluid-structure interaction [13-17], where the fluid acts
as an added mass [18,19], or of those situations where
the effective boundary condition of the structure are
unknown. A sketch of the problem studied here is
presented in figure 1.

3. SYNTHETIC DATA GENERATION

3.1 Analytical model

For the development of the analytical model, it is
assumed that the structural deflection can be
decomposed over a finite number of mode shapes
following Galerkin [20] method. We further assume that
the effective mode shapes of the body match exactly
with the theoretical ones.

Following [21], when the characteristic time of an
impulse applied to a structure is largely lower than the
first natural period of the structure, the shape of the
impulse has negligible effect on the response of the first
mode shape. The structural response is thus only
influenced by the overall energy content of the impulse
and not by its time evolution. We can therefore define a
reference impulse which is representative for a
multitude of load events (e.g. slamming events [22-
26]). We will here only study a square impulse with
constant magnitude of 10 kPa and a duration of 1 ms.
Such load condition is representative of a so-called pink
noise, exciting a set of frequencies varying from zero to
an upper bound which is inversely proportional to the
impulse duration.

The governing equation of a plate subjected to an
external load varying in space and time p(x,?) is given
by [26,27]

pw!V (x,t)+pahv'{1(x,t)=—p(x,t) (D

within this model, the deflection w(t) is given by:

w(>§ (1)9,(x) o

where ¢i is the i-th mode shape, ai its modal coordinate,
and N the number of mode shapes considered in the
analysis. For a simply supported beam, or a simply
supported plate undergoing cylindrical bending, the
mode shapes are given by:

. (.mx
¢ (x) =s1n(sz (3)

being L the length of the beam. We will here refer to
these analytical mode shapes as reference values,
whereby we will utilize numerical solutions to evaluate
the mode shapes of the beam on the elastic foundation,
as detailed later on.

Substituting (2) into (1), multiplying by ¢i(x),
integrating over the length of the plate, and considering
the orthogonality of the mode shapes, we obtain the

FME Transactions

following set of N independent differential equations:

iy (1) PR 97 (x)dx-+a; (1) D s (x) oY (x)dr =

[ () () ax

The solution of the set of these differential equations
allows estimating the time evolution of the modal
coordinates a;. The distributed deflection field is then
estimated through (2) and the stress field through:

“

e(xx»)—ﬁlai(rwx)z B

being z the distance from the neutral surface.
3.2 Mode shapes

The analytical mode shapes, as those presented in (3)
for a simply supported beam, might not be always
representative of the mode shapes of a real structure. In
fact, real structures might be subjected to external
factors altering their dynamic response. As title of
example, the boundary conditions might not be perfectly
defined, or there might be an interaction with the
surroundings, like in fluid-structure interactions. All
these uncertainties modify the structural response. To
account for such uncertainties, we here apply an elastic
foundation to a portion of the beam with the intent of
modifying the structural dynamics.

1
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Figure 2: Comparison of the normalized first three deflec—
tion mode shapes varying the stiffness of the elastic
foundation.

The simply supported beam has been modeled using
a finite element model. The beam, 500 mm long, with a
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rectangular cross sectional area 2 mm thick and 10 mm
width, has been modeled using 100 beam elements. The
simply supported beam lays over a bed of linear springs
for half of its length, for a total of 50 springs (one for
each node). The nominal length of the springs is 100
mm, whereby we parametrically vary their stiffness k
as: 0, 10, 20, 50, and 100 N/m, being O representative
for the reference case of a pure simply supported beam.
Please note that these value correspond to a stiffness of
0, 20, 40, 100, and 200 N/mm per unit length of elastic
foundation. The first twenty mode shapes of the beam
have been estimated through a modal analysis, while the
deformation shapes have been evaluated through double
differentiation of the mode shapes using a central
difference approximation.

The effect of the elastic foundation on the mode
shapes is shown in Figure 2. Notably, the difference
between the reference mode shapes and the modified
ones decreases increasing the mode shape. From the
fifth mode shape and above no influence of the elastic
foundation is found for the range of k studied here.

We further comment that the difference observed for
the mode shapes are further amplified when referring to
the curvature, as presented in Figure 3. Therein, we
present ¢";(x), which linearly relates to the strain at the
measurement locations, that is, —z¢ "(x).

3.3 Data generation

The synthetic data are generated solving the set of linear
equations presented in (4), where p = 2700 kg/m’ is the
density of the beam, h=2 mm its thickness, and
D=[(Eh®)/(12(1-v*))] the flexural modulus, as we
assumed the beam to undergo cylindrical bending. The
integrals Jo© ¢%(x) dx, [o"¢"(x) ¢:(x) dx, and Jo" ¢;(x) dx
are computed through trapezoidal numerical integration.
The set of equations reported in (4) is instead solved
using the Runge-Kutta method [28].

The external loading is here fixed to 10 kPa for a
duration of 1 ms. The short duration of the pulse allows
exciting a high number of mode shapes, which is function
of the modal frequencies. For the cases under exam such
frequencies are function of the stiffness of the structure,
thus of the elastic foundation. As reported in Table 1
and 2, the higher mode shapes get slightly more excited
while increasing the stiffness k. Table 1 reports the
contribution (in %) of the several mode shapes to the
maximum deformation, while Table2 reports the
contribution to the maximum curvature (hence strain).

Notably, the influence of the higher mode shapes
increases with k, whereby the influence of the fourth
mode shape and above is negligible when referring to
the displacement. However, higher mode shapes (up to
the 7‘h) are found to influence the strains, as these relate
to the curvature and are thus proportional to a,(f) ¢;"(x).

Table 1: Maximum influence of each mode shape on the
deflection of the beam expressed as a percentage of the total.

Table 2: Maximum influence of each mode shape on the
strain of the beam expressed as a percentage of the total.

k[N/mm]| Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6

0 64.5 0.0 20.4 0.0 8.5 0.0

10 64.2 4.2 18.2 0.0 7.5 0.0

20 63.6 7.5 16.6 0.0 6.8 0.0

20 58.1 15.3 15.4 0.0 6.2 0.0

100 51.2 22.7 15.4 0.1 59 0.0

k[N/mm]| Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6

0 95.9 0.0 33 0.0 0.5 0.0

10 93.9 1.8 34 0.0 0.5 0.0

20 91.4 4.1 3.7 0.0 0.5 0.0

20 82.2 12.1 4.6 0.0 0.6 0.0

100 71.2 21.9 5.7 0.0 0.7 0.0
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Figure 3: Comparison of the normalized first three
curvature mode shapes varying the stiffness of the elastic
foundation.

Please note that these results are representative for
the particular load case and geometry presented here.
However, we should note that the combination of the
impulsive load event and the compliant structure studied
here allow exciting a high number of mode shapes.
Stiffer structures, longer impulses, or the combination
of the two, will instead excite a lower number of modes.
It can be thus stated that the solution of the example
studied here is more challenging than the majority of the
possible load events which might act on real structural
components.

The set of synthetic data comprises all the
information about the time evolution of the overall
deflection and strain field, generated from the linear
superposition of 20 mode shapes. The available data are
continuous in the spatial and the temporal domain.

3.4 Synthetic strain data at prescribed locations

In this analysis, we suppose locating a series of strain
sensors at prescribed locations on the upper surface of
the structure, as schematically drawn in Figure 4. We
thus extrapolate the time series of the strain evolution
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from the analytical solution imposing an acquisition
frequency of 10 kHz. This way, we generate the time
series of synthetic strain data at arbitrarily locations to
be utilized as input for the reconstruction algorithm
presented in [8,9] and not reported here for brevity. The
main duty of such SHM technique, which relies on a
modal decomposition algorithm, is to reconstruct the
overall distributed structural deflection and strains from
a finite number of point-wise measured strains at
prescribed locations. As single remark, we comment
that the number of mode shapes M utilized in the
reconstruction algorithm should be lower or equal to the
number of strain sensors N. In the following, we will
always utilize the limit condition M=N, that is, we
decompose the structural deformation over a number of
mode shapes equal to the number of virtual strain
Sensors.

We parametrically vary the sensors number from 2
to 15, while their location is prescribed to be equally
spaced along the beam length, with a shift of 2.5 mm on
the left, as schematically presented in figure 4. Such
shift is introduced to avoid locations matching with a
modal node. In other words, for M sensors, their
location is imposed as:

{ML+1’Mzi1"”’A7fJ:2'5mm ©)
p(r,f)  virtual strain sensors
HflH_Hlflll_lllflll_ll

cans k B

Figure 4: Schematics of the location of the virtual strain
sensors.

As already mentioned, only five mode shapes actually
contribute to the total deflection. Therefore, we expect the
reconstructed solution to be well in line with the original
data for a number of strain sensors above five. Contrarily,
a lower number of mode shapes accounted in the solution
is expected to lead to erroneous reconstructions. The next
section introduces the results.

4. RESULTS

In this section, we analyse the quality of the
reconstruction as a function of the sensors number.
Increasing the stiffness of the elastic foundation we note
an increase of the frequency of the global response,
together with an increasing asymmetry of the solution
with respect to the mid-span of the beam. As expected,
the maximum deflection is reached in the portion of the
beam not supported by the elastic foundation.

Figure 5 reports the comparison between the time
traces at the location x=0.25L of the reference
deflection data (from the analytical model) and the
reconstructed data for varying sensors number (from the
SHM reconstruction). To quantify the error between the
reconstruction and the original data, we compute the
quantity:
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Figure 5: Reference and reconstructed deflection at 0.25L
varying the number of sensors (hence mode shapes)
considered in the analysis. Results are for k=100 N/mm.

Being y(x,f) the time evolution of the reference
deflection at the location x and y(x,f) the deflection
reconstructed using M sensors (hence M mode shapes).
T is the number of time steps considered in the analysis,
which here equals 200, as we solved (4) in the interval
0+20 ms with steps of 0.1 ms. The results are
summarized in Table 3. Results are well in line with the
expectations, as the reconstruction error decreases while
increasing the sensors number. Results show an error
below 1% for any stiffness of the elastic foundation
when using a number of sensors above five. This is in
line with the results presented in Table 1, as only five
mode shapes were found to influence the deflection.

Table 3: Error n (in %) with respect to the original
deflection data.

1 [%] k [N/mm]
Sensors 0 10 20 50 100
2 104 125 16,5 265 279
3 3.0 32 3.7 3.6 2.4
4 1.0 1.3 1.8 3.5 4.3
5 0.6 0.8 1.0 1.6 1.5
6 0.2 0.3 0.4 0.6 0.5
7 0.1 0.1 0.2 0.3 0.2
8 0.1 0.1 0.1 0.2 0.2
9 0.0 0.0 0.0 0.0 0.0
1000 T T
————————— 2 sensors - ---4 sensors
e 6 sensors —— 8 sensors
|- - reference

500

strain [ue]
o

—500

—1000 ‘ : ‘
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Figure 6: Reference and reconstructed strain at 0.25L
varying the number of sensors (hence mode shapes)
considered in the analysis. Results are for k=100 N/mm.
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Table 4: Error n (in %) with respect to the original strain
data.

n [%] k [N/mm]
Sensors 0 10 20 50 100
172 254 240 135 14.0
173 243 218 103 7.8
125 179 163 80 6.6
1.5 2.2 2.0 0.9 0.7
1.4 2.1 1.9 0.9 0.7
2.8 3.9 3.6 1.7 1.3
2.1 3.0 2.7 1.3 1.0
0.4 0.6 0.5 0.2 0.2
1.1 1.6 1.5 0.7 0.5
0.2 0.3 0.3 0.1 0.1
12 0.1 0.1 0.1 0.0 00

N o AV I S S

Similarly, we can refer to the strain results. Figure 6
shows the comparison between the reference and the
reconstructed strains at the same location presented in
Figure 5, while Table 4 shows the error computed using 7.

Results about the strain reconstruction are also well
in line with the expectations, as it is found that a higher
number of sensors is needed to drop the error relative to
the reconstructed strain below 1%. In particular, ten
mode shapes should be accounted in this case. However,
it is worth mentioning that there is a clear threshold
when switching between 4 and 5 sensors, as for 5
sensors and above the error drastically diminishes with
respect to the four modes approximation.

5. INFLUENCE OF THE SENSORS LOCATION ON
THE QUALITY OF THE RECONSTRUCTION

Results presented in the previous section show that the
reconstruction of the overall deflection is accurate for a
sensors number higher than five. Therefore, we here
choose M=6 and we perform a parametric analysis
about the influence of the sensors location on the
reconstruction accuracy. The sensor are here equally
distributed over a varying portion of the beam in the
range:

Lol
{(10+A)ﬁ790100} ®)

where we parametrically vary A from 0 to 35. Figure 7
and 8 show contourplots of the error (in %) defined in
(7), for the reconstructed displacement and strain,
respectively. Therein, we show the effect of varying the
location x and the sensors location. Abscissa report the x
location on the beam for which 1 is computed, while the
ordinates define the parameter A.

In Figure 7 and 8 we also report as a black mark the
condition corresponding to the analyses presented in the
previous section, while the grey shaded areas represent
the beam portion where no virtual strain sensors are
located. For a given A, a vertical slice of the plot
represents the beam length, where sensors have been
equally distributed over the white region, whereby no
sensors are located along the grey region. The more we
move to the right side of the chart, the higher the
concentration of sensors in a specific region of the
beam. An increasing portion of the beam where no
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sensors are located is thus associated to moving on the
right direction.

500
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beam length [mm)]
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Figure 7: Error n (in %) about the reconstructed deflection
for varying location x along the beam length and parameter
A defining the sensors location. Results are for M=6 and
k=100.
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Figure 8: Error n (in %) about the reconstructed strain for
varying location x along the beam length and parameter A
defining the sensors location. Results are for /=6 and
k=100.

Results clearly show that the optimum condition is
attained on the left of the graphs, which means
distributing the sensors over the whole beam length.
The reconstruction gets worst moving on the right side.
In particular, we see that the strain reconstruction is
always accurate within the white region, that is, in the
proximity of the sensors, but rapidly diverges moving
along the grey shaded area, that is, where no sensors
have been located. Such error makes the whole
deflection reconstruction to fail. In fact, high errors in
the grey area lead the deflection to be inaccurate in the
white region too.

6. RECONSTRUCTING OVER AN APPROXIMATE
MODAL BASIS

As mentioned before, the elastic foundation has been
introduced to account for modal basis modifications due
to external parameters which might modify the dynamic
response. Such eventual modification of the modal basis
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might be even unknown. Therefore, we here virtually
forget the elastic foundation when using the
reconstruction algorithm. We perform an analysis
similar to the one detailed above, but we here utilize the
original mode shapes instead of the modified one.
Synthetic strain data at the virtual measurement
locations are generated accounting for the actual mode
shapes (beam on elastic foundation), while the
reconstruction is performed using the theoretical mode
shapes (pure simply supported beam). The mode shapes
utilized for the reconstruction are thus not representative
for the reality.

7.5 T \
rrrrrrrrr 2 sensors - --- 4 sensors y
—— 6 sensors —— 8 sensors '
Ll
5~ - reference

deflection [mm)]

time [ms]

Figure 9: Reference and reconstructed deflection at 0.25L
varying the number of sensors (hence mode shapes)
considered in the analysis. Results are for k=100 N/mm.

Table 5: Error n (in %) with respect to the original
deflection data using the wrong modal basis. Results are
for the case k=100

1 [%] k [N/mm]
Sensors 0 10 20 50 100
2 104 123 164 257 254
3 3.0 3.5 4.7 7.4 7.7
4 1.0 1.2 1.7 2.7 2.9
5 0.6 0.8 1.0 1.6 1.5
6 0.2 0.3 0.4 0.6 0.6
7 0.1 0.1 0.2 0.4 0.4
8 0.1 0.1 0.1 0.2 0.2
9 0.0 0.0 0.0 0.1 0.2
10 0.0 0.0 0.0 0.1 0.2
11 0.0 0.0 0.0 00 00

Figure 9 shows the same example presented in
Figure 5, but with the reconstruction performed using
the wrong modal basis. Notably, no major differences
are found about the effects of the sensors number on the
quality of the reconstruction. To these associate the
errors reported in Table 5. It is interesting to note that,
despite the erroneous choice of the modal basis, which
is not representative of the reality, the error of the
deflection almost vanishes for a sensors number above
five, as in the previous analysis.

Similar comments can be drawn for the strain
results, as even in this case the error vanishes for a
sufficiently high number of strain sensors, as reported in
Table 6, which is in line with the reconstruction over the
real mode shapes presented in Table 4. Again, the error
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is found to drastically drop when moving from four to
five strain sensors. Please note that the results presented
in the above graphs and tables are characteristic for the
particular location x=0.25L chosen here and k=100
[N/mm]. However, while minor differences of the error
values would be found, similar comments can be drawn
at any other location.

Table 6: Error n (in %) with respect to the original strain

data using the wrong modal basis. Results are for the case
k=100

n [%] k [N/mm)]

Sensors 0 10 20 50 100
2 172 244 223 107 94

3 173 245 222 108 8.7

4 125 179 163 8.1 6.5

5 1.5 24 2.6 14 14

6 14 21 1.9 09 0.7

7

8

9

28 39 3.6 1.8 14
21 3.0 2.7 1.3 1.0
04 06 0.6 03 03
10 1.1 1.6 1.5 0.7 0.6
11 02 03 0.3 0.1 0.1
12 0.1 0.1 0.1 0.0 0.0
13 0.1 0.1 0.1 0.0 0.0

7. CONCLUSIONS

In this work, the assessment of the reliability of a SHM
technique based on a modal decomposition method has
been proposed. In particular, the work focused on the
influence of the modal basis, sensors location, and
sensors number on the reliability of the data
reconstructed through the SHM technique. The problem
of a simply supported beam over an elastic foundation
subjected to an impulsive load has been solved
analytically, to generate synthetic data which are
utilized as input for the SHM algorithm.

Results show that there is a minimum number of
sensors which needs to be utilized for a reliable
reconstruction. This can be defined as the number of
mode shapes excited by the impulsive load when
referring to the structural deflection. Increasing the
number of sensors only slightly increases the accuracy.
However, if the distributed strain is on interest, the
accuracy of the reconstruction still slightly increases
when adding a few more sensors.

An important role is found to be played by the
sensors location, as accuracy is found to be maximized
when the sensors are distributed over the whole beam
and worsen as major portion of the structure have no
sensors in the proximity.

At last, the influence of the correctness of the modal
basis has been evaluated. Results are extremely
interesting, as using an erroneous modal basis is found
to have minimal influence on the accuracy of the
reconstruction. This is very important for the practical
implementation of the SHM technique, as it signifies
that unexpected external modification to the structural
dynamics will not affect the reliability of the
reconstructed data.
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TEXHUKE TPOUHEHE U TIPAREIBA
TEXHUYKE UCITPABHOCTHU CTPYKTYPE
IIYTEM 'EHEPUCAIA CHHTETHYKHUX
IHOJATAKA

P. Ilanumposau

OBaj pax mpouemyje TaYHOCT TEXHHKE CTPYKTYypHOT
30PaBCTBEHOT HAJ30pa Koja je paHuje MPeACTaBIbCHA Y

FME Transactions



nurepaTypu. TexHHKa CTPYKTypHOT —3/pPaBCTBEHOT
Haj30pa TOJA WCIUTHUBAKEM CE Ocllaba Ha METOIH
MOJIAJIHOT pasjarama M MMa 3a [IUJb J1a PeKOHCTPYHIIE
pacmozeny W3BHMjama HW T0Jbe Jeopmarija  oxn
OIIBOjJeHHX Mepema aedopManuja Ha IO3HATHM
Jokanyjama. Llusb oBOT paga je mpoueHa MOy3AaHOCTH
TAaKBOT aJTOpUTMa Ha Bapujammje Opoja ceH3opa u
BUXOBUX JIOKam@ja. Y TOM IHJby, TpoOieM
JEAHOCTaBHO OrpaHHYeHE rpene U3JIOKEHE

FME Transactions

UMITyJICHBHOM onrtepehemy je pelleH aHaIUTHYKUM
IyTEM W Pe3yNTaTd Cy UCKOpUIINeHN Kao CHHTETHYKH
ynasan nomanu 3a CXM anroputam. PoOycHocT
metononoruje CXM je Takole mporemeHa y 0IHOCY Ha
BPEJHOCTH TIOTPENIHMX H300pa MOIATHUX OCHOBA.
PesynraTu moka3syjy ma Opoj ceH3zopa U JIOKanuja urpajy
TJIaBHY YJIOTY 3a TAYHOCT PEKOHCTPYKIHje, YnMe n300op
MOJZIaJJHE OCHOBE HMa 3aHEMapJbUB YTHIA] Ha
pesyanrare.
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