A. Dedié

Associate -Professor
University of Belgrade
Faculty of Forestry

D. Salemovic¢

High Technical School Zrenjanin
Department for Mechanical Engineering

B. Jovanovié

Full Professor
University of Belgrade
Mathematical Faculty

Application of the Theory of Micropolar
Continuum on the Flow Suspension in
a Cylindrical Channel

This paper presents an analytical solution of a mathematical model which
treats fluid flow suspension in a cylindrical channel. The model is the
application of the theory of micropolar continuum on the flow of
suspension and it consists of coupled linear differential equations with
variable coefficients. The cylindrical channel consists of two cylinders: the
internal cylinder was still and the external one rotated with constant
velocity. This model enabled us to analyze the motion of a suspension, as
heterogeneous mixture of a liquid with solid particles. The solution was
found in the form of special Bessel’s functions of the zero and the first
order. The results were shown on diagrams for some characteristic values,
and the good agreement was achieved between the calculated and expected
results.
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1. INTRODUCTION

The stress-strain situations in the classical continuum
mechanics are usually described by means of a
symmetric stress tensor. Unfortunately, the classical
continuum model was not sufficient for the description
of the behavior of certain mixtures, such as:
suspensions, liquid crystals, fluid transport of porous
granular materials, etc. That was the reason why the
continuum model with microstructure was introduced
[1].

Eringen and Suhubi [2] introduced the micropolar
continuum followed by micropolar fluid models
characterized by the couple stress and a nonsymmetrical
stress tensor. The theory and its applications were later
developed in [3] and [4]. This theory comprises two
independent kinematic quantities: the velocity vector
and the microrotation vector. The micropolar model
can, among other applications such as at composite
materials [5], be used to describe the motion of
suspension as a mixture of two phases [6-10]. The basic
phase of the suspension is a fluid, whereas the
dispersive phase consists of solid particles. The
description of microchannel fluid behavior using a
numerical model based on micropolar fluid theory was
explained in paper [11]. The transient heat convection
phenomena of micropolar fluids flowing through wavy
channels saturated with porous media were analyzed in
[12] and [13]. The effects of the physical parameters on
the velocity and microrotation vector were investigated
in [14]. The paper [15] proved the presence of an H,
global attractor and in that way the existence of a
solution of the micropolar model.
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In order to describe the behavior of the suspension,
two coupled differential equations were introduced in
this paper. As the system involves coupled equations,
the Method of Frobenius that can be applied to common
differential equations was not applicable. That is why
the aim of this paper was to solve the coupled system
and do not lose the point of micropolar continuum. It
was achieved to get the solution in the closed analytical
form. In that way, the wvelocity v(r) and the
microrotational velocity w(r) were represented by
modified Bessel functions of the zero and the first order.

2. THE MATHEMATICAL MODEL

The physical interpretation of the model is shown in
Figure 1.

()

Figure 1. A simplified functional diagram of the movement
of the suspension between two coaxial cylinders

Two coaxial cylinders: the inner one, which is
stationary, and the outer rotating one with constant
angular velocity (@), while the suspension of certain
physical properties moves between them. In this way,
each solid particle obtains two components of speed: the
unknown velocity of the suspension (macromotion) (v)
and the unknown velocity of solid particles in the
suspension (microrotation) (w). Radius of the internal
cylinder is r, and radius of the external cylinder is r;.

The mathematical model of the flow of suspension,
describing the velocity field (v) of the movement of the
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suspension and the velocity field of the microrotation of
the suspension (w), depending on the radial coordinate (r)
and defined by a coupled system of two ordinary linear
differential equations of the second order with variable
coefficients, which have the following form [16]:

2
r2ﬂ+rﬂ_ irzd_wzo’ (1)
dr2 dr 1+a'1 dr
2
a’zr—+a2v+rd W+d—w—20{2rw=0. 2)
dr? dr

where ¢y =const >0 and &, = const >0 which denote

the viscosity coefficients of the micropolar continuum.
Boundary conditions for the equations (1) and (2) are:

V() =y =v(1) =vo =0, 3)
V(r) ey =v(n) = v = 1o, “)
w(r) gy = W (1) = o =0, )
w(r) Ir:,kzw(rk)zwk =0. (6)

Boundary contours at which the system of equations
(1) and (2) with boundary conditions (3), (4), (5) and (6)
are valid are along the radial coordinate (r) and in the
range from the internal (r,) to the outer (ry) radius, as
shown in Figure 2.
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Figure 2. Boundary contours for the system of equations
(1) and (2) with the boundary conditions (3), (4), (5) and (6)

3. SOLUTION OF THE PROBLEM
From the equation (1) follows:

2
i .d_w:ﬂ+l.ﬂ_L, @)
l+oq dr g2 r dr ;2
% dw_dfdv v
l+aq dr dr ’

®)

dr r
Using direct integration of the equation (8), we get:

(0%
L= Ve ©)
1+ ¢ dr r

where (C)) is a constant and it will be determined later.
From equation (2) follows:

2
aor| D) r E D o =0, (10)
dr r dr?  dr

Substituting a part of equation (10) with (9) will be
followed by:

2
aor| —A vy |+ r L o =0, (11
1+6¥1 dr2 dr
2
W Do A | w=acr. (12)
dr2 dr 1+0!1
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In the end, it was obtained:

d’w dw  2+q
+—-

r
drz dr 1+ o

rW=0{2C1r. (13)

If a new constant will be introduced, defined by the
following expression:

2+
B=—0, — (14)
1+
the equation (13) becomes:
2
rd W+d—w+ﬁrw=a2C1r. (15)
ar* dr

A general solution of the homogeneous part of the
equation:

d2
dr

r

;Vﬂ%vrl—i-ﬂrw:O (16)

5
Can be ge%aresented by a cylindrical function of the
zero order:

In the above expression (17), the zero-order Bessel

function was introduced, which is defined as:

k

Jo(x)= g%@zk (18)

while (Y,) marked the associated zero-order Bessel
function, which is defined as:

2 x) 2ot kl[zf")
%(x)—ﬂf()(x)ln(z} > (Z 5] a9

i (k) 3
Here (y) denoted the Euler constant, as follows:
¥ =0,577215665 (20)
while (C3) and (C,) denoted the arbitrary constants.

It is easy to confirm that equation (15) has a
particular solution in the form of a constant:

1+
w (r)=C1 201
b 2+

The solution of equation (15) can be represented as
the sum of particular solution and the general solution
of homogeneous equation:

P )

W) (r)—C

1
2+

w(r) = C3Jo (\JBr)+ Ca¥y (VBr)-C

(22)

1+

2
2+« 23)

Constants (C3;) and (C4) are determined from
boundary conditions (5) and (6), as:

I+

w(ry) =C3Jy (\/ﬁro)+C4Yo (\/ﬁro)'cl 2

=0(24)
+oq
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wn) = Csdo (B )+ Cato (VB )- G5 +“‘ -=0.25)

1+ .Yo(\/if”k) Yo(f’”o)

G =¢C v (26)
J
¢ ¢t o(fro) o (\An) o
2+ 04 D

where:

D =Jo(x/ﬁ’o)'Yo(\/Erk)'Jo(\/ﬁrk)'Yo(\/ﬁro) (28)

Inserting of expression (23) into (9) will be followed by:

&y [QJO () +Caty (ﬁr)]

dar r 1+a

The general solution of the above equation, as follows:

1
)=y 4B p e A2y 30)
r 1+a1 2+0{1

where:

A=C3JrJ0(\/Er)dr+C4er0(\/Er)dr (€2))
Let's introdudce the relations:

J.XJO (x)dx = xJ (x) + const (32)
[ ¥ (x)dx = x¥; (x) + const (33)

where (J;) denoted the first order Bessel function:

(‘Dk (2k+1)
Ty (x) = Zk‘(kﬂ),(—j (34)

and (Y;) the associated Bessel function of the first order:

Y
Y, (x) ZEJl(x)h{QJ_i_
V.4 2

X

) (_Dk kg (2k+1)
ﬁ,;)k!(k+1)‘ Zzlj 2k+2 [2]
Equation (30) can be further transformed as follows:

v(r)=% ''''' (C3\/—”]1(\/—”)+

1+a1

1
+C BB -C ;‘;’1 r
1

(35)

(36)

It should be noted that constant (C,) already
comprises integration constants that appear in
expressions (32) and (33).

Given expression (14), expression (36) takes the
following form:

v(r)zT——-—-(c3Jl(fr)+

(37)
1+

+CY (B -G >

o
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Finally, taking into account expressions (26) and
(27), the previous expression takes the final form:

oq(+a)

C
v(r)=—2—C1 3
r o (2+0q)

Yy («/zrk)—Yo («/zro) JBI, (\/Zr)_

D
a1(1+a1) Jo(\r’o) Jo(frk)

a2(2+a1) D
fﬂ(fr) 1+C(1
1

Constants (C;) and (C,) are determined from
boundary conditions (3) and (4), respectively:

(38)

V(FO)ZC_ c q(l+a)

Ty o, (2+ 04 )?

() 1o (VBv) 5 o)

D
(39)
. a1(1+a1) Jo(fro) Jo(frk)
a(2+a)? D
JBY: (VB )€ 1+a o =0.
v(rk)=2—C1—al(l+al)2'
Tk o (2+0q)
W), i)
D
(40)
o (1+a) 'JO(\/E’"O)_JO(\/E@).
a0 (2+a)? D
NBY: (VB )- 1:_(21 T = 1k @.
This implies

2oa, 2+0)* D 2+a)D
_RonCrarD [marap o),

oq(1+a) o

[0 (VFn 1o (B )|

,[\/Erle (\/E’k)_\/EVOJl (\/ﬁroﬂ+ )
JoolBn)-nolvmn)] |

[ VBt (VB )~ (B

1+ 24+0a)D
C =G ql+a) 1 6C+e) -

a2+a)? D o

~Yo JBro)=Yo JBr) Bl (JBry)—  (42)
~(Jo B =T B [ By fBry)).

For clarity, the results of the problem will be given
below. The solution of differential equations (1) and (2)
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with boundary conditions (3), (4), (5) and (6) and the
boundary contour in Figure 2, is defined by (38), (23),
(14), (28), (41), (42), (26) and (27). The solution is:
C a(l+ap)
v(r)=—2- q 1—12
r n(2+a)

.Yo (\/Erk)_YO (\/Ero).

D
oq(l+a)
BT -C — =7 . 43
\/z l(ﬁr) 10{2(2+0:1)2 )
Jo (\/Ero)—fo (\/E"k)
. — .
1+«
\/EYI(\/EF)_CI 2+a{ll r,
W(r) = C3Jo(JBr)+Cydo (JBr) - ;2’1 .44
|
|
D =Jo(Br)YoBr)-
(46)
~JoBr)Y(Bry).
_ ey (2+ay)° D
= oq(l+a)
1% Q+a)D (o o
{ al (VO rk )+
+[Yo(\/ﬁro)—Yo(\/ﬁrk)] (47)

'[ﬁrkjl(\/zrk)_\/ﬁ’b]l(\/zroﬂ+

{10 Bro- 1By | WBnt By -]
~JBrn B

a(+a) .i{%@w)l),oz_
oQ+a) Dl @

[ Yo (WBr) - (Bro) | VBroh By~ (o ([Br) (48)
~Jo( )Pt (\/:Ero)} ;

C2 ZCI

=G I+ _Yo(\/ﬁ”k)—Yo(\/ﬁro) ’ 49)
2+ 04 D

C, =g 1t JoGWBr)=ToWBr) (50)
2+¢ D

4. RESULTS AND DISCUSSION

In order to provide a concrete example to illustrate the
graphs of functions (v) and (w), it will be adopted that:

o =10 (51)
a, =10 (52)
1y = 0.004 m (53)
1, =0.0048 m (54)
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@=100s" (55)

The values of functions (v) and (w) were calculated in
the range from (7= 0.004) to (r, = 0.0048) with a step of
(A = 0.00008), using a specially made program to
calculate the Bessel functions in the program language
FORTRAN. The graphs are presented on Figures 3 and 4.
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Figure 3. The chart of value v(r) depending on the radial
coordinate (r)
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Figure 4. The chart of value w(r) depending on the radial
coordinate (r)

The analysis of Figure 4 reveals that the
microrotational velocity (w) is an approximately
parabolic function that reaches its peak in the middle of
the considered interval for the radial coordinate (r).
Also, the microrotational velocities (w) at the outer
surface of the inner cylinder and the inner surface of the
outer cylinder are zero. This is logical and expectable
according to the physical reality of the problem. This
served as a verification of the analytical solution of the
proposed mathematical model expressed through
equations (1) and (2).

In the paper [16], the author postulated the solution
of coupled differential equations (1) and (2) in the form
of an infinite mathematical order, introducing the
MacDonald function and modified Bessel functions of
the second kind of zero and the first order. The final
results (Figures 3 and 4) showed good agreement with
the solution given by expressions (43)-(50). Also, quite
good agreement was achieved with the results of
numerical procedure of the same problem given in [17].
The difference between the calculated analytical and
numerical values is less than 0.39% for v(r), and less
than 0.36% for w(r). The numerical problem, given in
[17], was solved by applying the method of finite
differences and the reduction of the order of equations.
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5. CONCLUSION

The results of the analytical procedure of solving the
system of differential equations (1) and (2) that are
shown in the graphs (Figures 3 and 4) revealed excellent
accuracy and agreement with the expected behavior of
the suspension. Analytical expressions (43) and (44)
enable us to determine the suspension velocity (v) and
the microrotational velocity (w) at each point along the
radial coordinate (r). This is of particular significance
for the practice because the knowledge of these speeds
can be used to influence a better mixing of the phases
and creation of a homogeneous suspension.

Further research is supposed to determine the
numerical solution of differential equations (1) and (2)
with the application of the method of finite elementary
volume, and verify the compliance of the obtained
results with analytical expressions (43) and (44) for
some characteristic values of the radial coordinate (r).
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NOMENCLATURE

v(r) suspension velocity [m/s]

w(r) microrotational velocity[m/s]

r radial coordinate [m]
Greek symbols

o constant

(273 constant

i constant

w angular velocity of external cylinder [s]
Superscripts

o Initial

k final

MNPUMEHA TEOPHUJE MUKPOIIOJIAPHOTI'
KOHTUHYMA HA CTPYJAIBE CYCIIEH3UJE Y
OUWJINHAPUYHOM KAHAJTY

A. lequh, /1. CanemoBuh, b. Jopanosuh

Y pamy je TpencTaB/beHO AHAJIUTHYKO pelICHe
MaTEeMaTHYKOT MoJella KOjU OIHKCYyje CTpyjame
CyCIIeH3Wje Yy UWIMHIPHYHOM KaHamy. MaTeMaTHYKH
MOJIEIN je IPIMEHa TEOPHje MHUKPOTIOIAPHOT KOHTHHYMa
7 CacTOjH Ce OJ] CTIPETHYTOT CHCTEMa TU(epEHIINjaTHUX

VOL. 45, No 1, 2017 = 107



jeAHauMHa ca  TIPOMEHJBMBHM  KoeuIMjeHTHMa.
LuaMHIpUYHM — KaHA = CaydibaBajy [Ba  CaoCHa
LWIMHAPA, O KOJHX YHYTpAIIkBU MHpY]je, a CIIOJballbH
poTHpa KOHCTAaHTHOM yraoHoM Op3uHoM. OBakaB
¢m3muk  Mozen omoryhaBa aHamm3y —CTpyjama
CyCIIeH3Hje, Ka0 XeTepOoreHe MeIlaBHHEe TEYHOCTH H
YecTHIla KOje ce Hajlase y moj. Pereme oBOr cucremMa
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jenHaunHa mnpoHahieHo je y dopMmH crenujaTHuX
BecenoBux (yHKIMja HYATOr W IMpBOT peaa. Pesynraru
AQHAMTUYKOT TOCTYNKA Cy NPHKa3aHW rpaguyku 3a
HEKe KOHKPETHE KapaKTepHCTHYHE BPEIOHOCT, |
MOKa3aHo je Jo0po clarame pesynrara JOOHjeHHUX
AQHAJUTHYKUM MOCTYIIKOM Ca OYEKUBAHUM.
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