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Application of the Theory of Micropolar 
Continuum on the Flow Suspension in 
a Cylindrical Channel 
 

This paper presents an analytical solution of a mathematical model which 

treats fluid flow suspension in a cylindrical channel. The model is the 

application of the theory of micropolar continuum on the flow of 

suspension and it consists of coupled linear differential equations with 

variable coefficients. The cylindrical channel consists of two cylinders: the 

internal cylinder was still and the external one rotated with constant 

velocity. This model enabled us to analyze the motion of a suspension, as 

heterogeneous mixture of a liquid with solid particles. The solution was 

found in the form of special Bessel’s functions of the zero and the first 

order. The results were shown on diagrams for some characteristic values, 

and the good agreement was achieved between the calculated and expected 

results. 
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1. INTRODUCTION 

 

The stress-strain situations in the classical continuum 

mechanics are usually described by means of a 

symmetric stress tensor. Unfortunately, the classical 

continuum model was not sufficient for the description 

of the behavior of certain mixtures, such as: 

suspensions, liquid crystals, fluid transport of porous 

granular materials, etc. That was the reason why the 

continuum model with microstructure was introduced 

[1]. 

Eringen and Suhubi [2] introduced the micropolar 

continuum followed by micropolar fluid models 

characterized by the couple stress and a nonsymmetrical 

stress tensor. The theory and its applications were later 

developed in [3] and [4]. This theory comprises two 

independent kinematic quantities: the velocity vector 

and the microrotation vector. The micropolar model 

can, among other applications such as at composite 

materials [5], be used to describe the motion of 

suspension as a mixture of two phases [6-10]. The basic 

phase of the suspension is a fluid, whereas the 

dispersive phase consists of solid particles. The 

description of microchannel fluid behavior using a 

numerical model based on micropolar fluid theory was 

explained in paper [11]. The transient heat convection 

phenomena of micropolar fluids flowing through wavy 

channels saturated with porous media were analyzed in 

[12] and [13]. The effects of the physical parameters on 

the velocity and microrotation vector were investigated 

in [14]. The paper [15] proved the presence of an H2 

global attractor and in that way the existence of a 

solution of the micropolar model. 

In order to describe the behavior of the suspension, 

two coupled differential equations were introduced in 

this paper. As the system involves coupled equations, 

the Method of Frobenius that can be applied to common 

differential equations was not applicable. That is why 

the aim of this paper was to solve the coupled system 

and do not lose the point of micropolar continuum.  It 

was achieved to get the solution in the closed analytical 

form. In that way, the velocity v(r) and the 

microrotational velocity w(r) were represented by 

modified Bessel functions of the zero and the first order. 

 
2. THE MATHEMATICAL MODEL  
 

The physical interpretation of the model is shown in 

Figure 1. 

 

Figure 1. A simplified functional diagram of the movement 
of the suspension between two coaxial cylinders  

Two coaxial cylinders: the inner one, which is 

stationary, and the outer rotating one with constant 

angular velocity (ω), while the suspension of certain 

physical properties moves between them. In this way, 

each solid particle obtains two components of speed: the 

unknown velocity of the suspension (macromotion) (v) 

and the unknown velocity of solid particles in the 

suspension (microrotation) (w). Radius of the internal 

cylinder is ro and radius of the external cylinder is rk. 

The mathematical model of the flow of suspension, 

describing the velocity field (v) of the movement of the 
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suspension and the velocity field of the microrotation of 

the suspension (w), depending on the radial coordinate (r) 

and defined by a coupled system of two ordinary linear 

differential equations of the second order with variable 

coefficients, which have the following form [16]: 
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where 01 >= constα  and 02 >= constα  which denote 

the viscosity coefficients of the micropolar continuum. 

Boundary conditions for the equations (1) and (2) are: 

( ) ( )0 00
| 0,r rv r v r v= = = =  (3) 

( ) ( )| ,r r k k kk
v r v r v r ω= = = =  (4) 

( ) ( )0 00
| 0,r rw r w r w= = = =  (5)            (4) 

( ) ( )| 0.r r k kk
w r w r w= = = =  (6)                  (5) 

Boundary contours at which the system of equations 

(1) and (2) with boundary conditions (3), (4), (5) and (6) 

are valid are along the radial coordinate (r) and  in the 

range from the internal (ro) to the outer (rk) radius, as 

shown in Figure 2. 

 

Figure 2. Boundary contours for the system of equations 
(1) and (2) with the boundary conditions (3), (4), (5) and (6) 

 

3. SOLUTION OF THE PROBLEM 
 

From the equation (1) follows: 

2
1

2 2
1

1
,

1

dw d v dv v

dr r drdr r

α

α
⋅ = + ⋅ −

+
 (7) 

1

11

dw d dv v

dr dr dr r

α

α

 
⋅ = + 

+  
, (8) 

Using direct integration of the equation (8), we get: 
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where (C1) is a constant and it will be determined later.  

From equation (2) follows: 
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Substituting a part of equation (10) with (9) will be 

followed by: 
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In the end, it was obtained: 
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If a new constant will be introduced, defined by the 

following expression: 
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the equation (13) becomes: 
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A general solution of the homogeneous part of the 

equation: 
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Can be represented by a cylindrical function of the 

zero order: 

( ) ( ) ( )3 0 4 0( )h ow r Z r C J r C Y rβ β β= = +  (17) 

In the above expression (17), the zero-order Bessel 

function was introduced, which is defined as: 
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while (Y0) marked the associated zero-order Bessel 

function, which is defined as: 
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Here (γ) denoted the Euler constant, as follows: 

0,577215665γ =   (20) 

while (C3) and (C4) denoted the arbitrary constants. 

It is easy to confirm that equation (15) has a 

particular solution in the form of a constant: 
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The solution of equation (15) can be represented as 

the sum of particular solution and the general solution 

of homogeneous equation: 
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Constants (C3) and (C4) are determined from 

boundary conditions (5) and (6), as: 
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where: 

( ) ( ) ( ) ( )0 0 0 0 0 0-k kD J r Y r J r Y rβ β β β= ⋅ ⋅  (28) 

Inserting of expression (23) into (9) will be followed by: 
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The general solution of the above equation, as follows: 
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where: 
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Let`s introdudce the relations: 

0 1( ) ( )xJ x dx xJ x const= +∫  (32) 
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where (J1) denoted the first order Bessel function: 
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and (Y1) the associated Bessel function of the first order: 
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Equation (30) can be further transformed as follows: 
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It should be noted that constant (C2) already 

comprises integration constants that appear in 

expressions (32) and (33). 

Given expression (14), expression (36) takes the 

following form: 
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Finally, taking into account expressions (26) and 

(27), the previous expression takes the final form: 
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Constants (C1) and (C2) are determined from 

boundary conditions (3) and (4), respectively: 

( ) ( )
( )

( ) ( )

( )

2 1 1
0 1 2

0 2 1

0 0 0

1 0

0 0 01 1
1 2

2 1

1
1 0 1 0

1

(1 )
( )

(2 )

(1 )

(2 )

1
0.

2

k

k

C
v r C

r

Y r Y r
J r

D

J r J r
C

D

Y r C r

α α

α α

β β
β β

β βα α

α α

α
β β

α

+
= − ⋅

+

−
⋅ ⋅ −

−+
− ⋅ ⋅

+

+
⋅ − =

+

 (39) 

( ) ( )
( )

( ) ( )

( )

2 1 1
1 2

2 1

0 0 0

1

0 0 01 1
1 2

2 1

1
1 1

1

(1 )
( )

(2 )

(1 )

(2 )

1
.

2

k
k

k

k

k

k k k

C
v r C

r

Y r Y r
J r

D

J r J r
C

D

Y r C r r

α α

α α

β β
β β

β βα α

α α

α
β β ω

α

+
= − ⋅

+

−
⋅ ⋅

−+
− ⋅ ⋅

+

+
⋅ − =

+

 (40) 

This implies 
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For clarity, the results of the problem will be given 

below. The solution of differential equations (1) and (2) 
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with boundary conditions (3), (4), (5) and (6) and the 

boundary contour in Figure 2, is defined by (38), (23), 

(14 ), (28), (41), (42), (26) and (27). The solution is: 
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4. RESULTS AND DISCUSSION 
 

In order to provide a concrete example to illustrate the 

graphs of functions (v) and (w), it will be adopted that: 

1 10α =   (51) 

2 10α =   (52) 

0 0.004r m=   (53) 

0.0048kr m=   (54) 

1100 sω −=   (55) 

The values of functions (v) and (w) were calculated in 

the range from (r0 = 0.004) to (rk = 0.0048) with a step of 

(∆ = 0.00008), using a specially made program to 

calculate the Bessel functions in the program language 

FORTRAN. The graphs are presented on Figures 3 and 4. 
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Figure 3. The chart of value v(r) depending on the radial 
coordinate (r) 
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Figure 4. The chart of value w(r) depending on the radial 
coordinate (r)  

The analysis of Figure 4 reveals that the 

microrotational velocity (w) is an approximately 

parabolic function that reaches its peak in the middle of 

the considered interval for the radial coordinate (r). 

Also, the microrotational velocities (w) at the outer 

surface of the inner cylinder and the inner surface of the 

outer cylinder are zero. This is logical and expectable 

according to the physical reality of the problem. This 

served as a verification of the analytical solution of the 

proposed mathematical model expressed through 

equations (1) and (2). 

In the paper [16], the author postulated the solution 

of coupled differential equations (1) and (2) in the form 

of an infinite mathematical order, introducing the 

MacDonald function and modified Bessel functions of 

the second kind of zero and the first order. The final 

results (Figures 3 and 4) showed good agreement with 

the solution given by expressions (43)-(50). Also, quite 

good agreement was achieved with the results of 

numerical procedure of the same problem given in [17]. 

The difference between the calculated analytical and 

numerical values is less than 0.39% for v(r), and less 

than 0.36% for w(r). The numerical problem, given in 

[17], was solved by applying the method of finite 

differences and the reduction of the order of equations. 
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5. CONCLUSION 
 

The results of the analytical procedure of solving the 

system of differential equations (1) and (2) that are 

shown in the graphs (Figures 3 and 4) revealed excellent 

accuracy and agreement with the expected behavior of 

the suspension. Analytical expressions (43) and (44) 

enable us to determine the suspension velocity (v) and 

the microrotational velocity (w) at each point along the 

radial coordinate (r). This is of particular significance 

for the practice because the knowledge of these speeds 

can be used to influence a better mixing of the phases 

and creation of a homogeneous suspension. 

Further research is supposed to determine the 

numerical solution of differential equations (1) and (2) 

with the application of the method of finite elementary 

volume, and verify the compliance of the obtained 

results with analytical expressions (43) and (44) for 

some characteristic values of the radial coordinate (r). 
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NOMENCLATURE  

v(r) suspension velocity [m/s] 

w(r) microrotational velocity[m/s] 

r radial coordinate [m] 

Greek symbols  

α1 constant 

α2 constant 

β constant 

ω angular velocity of external cylinder [s-1] 

Superscripts 

o Initial 

k final 

 

 

ПРИМЕНА ТЕОРИЈЕ МИКРОПОЛАРНОГ 

КОНТИНУМА НА СТРУЈАЊЕ СУСПЕНЗИЈЕ У 

ЦИЛИНДРИЧНОМ КАНАЛУ 

 

А. Дедић, Д. Салемовић, Б. Јовановић 

 

У раду jе представљeно аналитичко решење 

математичког модела који описује струјање 

суспензије у цилиндричном каналу. Математички 

модел је примена теорије микрополарног континума 

и састоји се од спрегнутог система диференцијалних 
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једначина са променљивим коефицијентима. 

Цилиндрични канал сачињавају два саосна 

цилиндра, од којих унутрашњи мирује, а спољашњи 

ротира константном угаоном брзином. Овакав 

физички модел омогућава анализу струјања 

суспензије, као хетерогене мешавине течности  и 

честица које се налазе у њој. Решење овог система 

једначина пронађено је у форми специјалних 

Беселових функција нултог и првог реда. Резултати 

аналитичког поступка су приказани графички за 

неке конкретне карактеристичне вредност, и 

показано је добро слагање резултата добијених 

аналитичким поступком са очекиваним.  

 

 


