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Remarks on Perspective Simplices

The planar figure of two triangles being in perspective position is
associated with a theorem of Desargues, which is responsible for the fact
that the coordinate set of the plane is a field. This well-known theorem of
Desargues allows the obvious interpretation in space of a three-sided
pyramid, which is intersected by two planes. The article is dedicated to
generalizing this theorem of Desargues to perspective simplices in a
projective n-space and their linear images in a subspace. Hereby one can
find remarkable incidences and configurations. Starting point to this
investigation is a planar figure of perspective quadrangles, where the
second author discovered a remarkable coincidence figure. The proof of
this incidence statement is based on an interpretation of the planar
“Ebisui figure” as the central projection of a (projective) cross-polytope
in 4-space. This principle can also be extended to higher dimensions.
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1. INTRODUCTION AND EBISUI'S THEOREM

Let = be a projective Desargues plane such that its
coordinate field ‘F has not the characteristic 2. As a

consequence of these assumptions z can be immerged
into a projective space of dimension n > 3 and there
exist harmonic quadruplets of collinear points. (Plane z
is a Fano plane, i.e. each quadrangle in 7 has a triangle
of diagonal points; confer e.g. [1].) For such a plane =
the following theorem holds, see also Figure 1.

Theorem 1 (“Ebisui’s Theorem”™): Let (A;, B;, C;, D),
i = 1,2, be two Z-perspective quadrangles of m . Then
the intersection points

AB NAB, =E, C;D,NC,D, = E,
B/C,NBy,C, = F, DiA ND,Ay, =F, (1)
A1C2 M A2C] = G, B]D2 M BzD] = (_;,

define three lines EE, FF s GG which are incident with

a common point H.

(This theorem was communicated by the second
author at the ,Meeting of the Japan Society for
Geometry and Graphics”, Mai 12-13, 2007, Tokyo.)

A simple but lengthy proof of Theorem 1 might use
elementary affine vector calculus in z assuming that
none of the given and calculated points is an ideal point.
Of course one will use an affine (or even projective)
coordinate frame in 7, which is suitably connected with
the given point set {Z, A;, ..., D;} to make calculation as
simple as possible. But such an analytic proof does not
show, where Theorem 1 belongs to and in which way it
generalises the well-known Desargues’ theorem of
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perspective triangles. As the Theorem 1 deals only with
incidences, it obviously belongs to projective geometry
based on a rather general coordinate field F, even it, at

first, was stated as a theorem in a Euclidean plane.

Figure 1. Two perspective quadrangles lead to an
“opposite” point H of the perspectivity centre Z.

Note that the points G,é stem from “overcrossing”
pairs of corresponding points of the two sets {Aj,..., D;}
and {A;,..., D;} and that the Desargues axes of the four
pairs of triangles (A;B,C;, A:B;C,), (B,C,D;, B,C,Dy),
(C]D]A], C2D2A2), and (D]A]B], D2A2B2) form a Complete
quadrilateral with the six vertices EE s FF s GG !

In the following we interpret the planar figure to
Theorem 1 as an image of an object in space, similar to
the classical interpretation of the (planar) Theorem of
Desargues as linear image of a triangular pyramid,
which is intersected by two planes. This allows a proof
of Theorem 1 by simple reasoning instead of calculation
and it gives a hint, how to generalize it to higher (and
even lower) dimensions:

We interpret the planar “Ebisui figure” as the central
projection of a cross-polytope in 4-space. Even so one at
first might start with a regular cross-polytope in the
Euclidean 4-space, the proof holds also for 4-spaces
over any field F with char F # 2. Using this idea

allows to interpret any (classical) Desargues figure as
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the central projection of a regular octahedron in the
projective enclosed Euclidean 3-space. Similarly, as any
quadrangle Q can be interpreted as central projection of
a square Q’, the quadrangle Q together with its 6 lines,
i.e. the ‘complete’ quadrangle, can be interpreted as the
2-dimensional case of an Ebisui figure.

For dimensions n > 4 there exist incidence figures,
too, but we end up with rather complicated con-
figurations. Anyway, higher dimensional interpretations
of perspective simplices and their connection to cross-
polytopes still are possible and will result in incidence
statements for those cross-polytopes.

2. DESARGUES’ THEOREM AND CENTRAL
AXONOMETRY

The well-known theorem of Desargues concerns two Z-
perspective triangles and deals with incidences alone. If
the place of action is a projective plane m such that
Desargues’ theorem is valid, then 7 is embeddable into a
projective 3-space II, and the Desargues theorem
becomes obvious by the well-known interpretation of
the figure as the linear image of an object in I, namely
of a 3-sided pyramid intersected by two planes, see
Figure 2.

M

r

Figure 2. (a) general case of a (labelled) Desargues figure
(left) (b) interpretation of (a) as image of an object in 3-
space, which defines a perspectivity ¥ and a harmonic
homology y.

If the Desargues axis z of a (labelled) Desargues
figure (see Figure 2(a)) does not pass through the pers—
pectivity centre Z, this figure defines a homology x:x — @
with centre Z, axis z and a pair (A;, A;) of corresponding
points. The cross ratio CR(AZ,Al,Z,z)zzzce F s

called the “characteristic cross ratio” of x.

The Desargues figure shows an elation x:x — =, if
Z e z. In this case a characteristic cross ratio is not
defined.

Remark: We distinguish the concepts ‘“Desargues
figure” and “Desargues configuration”. The (105, 105) -
configuration of Desargues (Figure 2a) is a set of 10
points and 10 lines and no point (line) is distinguished
from any other point (line). The concept characteristic
cross-ratio does not make sense for such an “un-
labelled” configuration. Taking another point of this
configuration as center Z leads (in general) to another
characteristic cross ratio value. The relation of all
possible characteristic cross ratios to a Desargues
configuration is described in [6].

In the 3-space Il the pre-image of the planar
homology or elation « is a perspectivity y:m; — m, of a
plane 7, onto a plane m, with the pyramid’s vertex V as
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the perspectivity centre, see Figure 2(b). This
perspectivity y can be embedded into perspective
collineations y:I1 — II and there is a one-parametric set
of such collineations, as we may choose any plane ®
through 7; N 7, as fixed plane. Among these colline—
ations X% for any coordinate field

CR(AZ,AI,Z,z)==:ce F of char ‘F# 2, besides the

two singular ones with ® = 7, or ® = 7, as axis, there are
two canonically distinguished regular ones: the elation y,
with the fixed plane (7, N m,) V V ==: ® and the harmonic
homology y.; with an axis ® such that CR(m,, Ty, z V Z,
) = -1. (We supposed 7 to be a Fano plane, therefore
harmonic homologies in 7 and in II are well defined
regular perspective collineations.)

As we finally aim at the “overcrossings” occurring
in Theorem 1 it seems to be natural to consider only the
harmonic homology y.; as the distinguished collineation
within the set of all perspective collineations belonging
to y.

Let us at first consider a classical Desargues figure

in a projective plane = which we at first embed into a
projective enclosed affine 3-space II,. The basic figure
of two Z-perspective triangles {Z; A, By, Cy; Az, B,, C,)
c r can be interpreted as the fundamental figure of a
central axonometry o: I1, — 7.
Remark: ,central axonometry* means a linear mapping
of a space Il onto an image plane 7 based on a
projective coordinate frame in IT and its linear image
figure, which wusually is called the ‘“axonometric
fundamental figure”, (see e.g. [2], [3], [4] and [5]).
Extensions to higher dimensions are obvious.

W=GCrr w

Figure 3. An axonometric fundamental figure connected
with a Desargues figure.

Thereby Z =: 0" is the image of the origin O in
space, furthermore we use A;, B;, C; as the images of
“unit points” R= Ala I,S = Bla I,T = Cla : , and
interpret A,, B,, C, as the images of “ideal points”

—1 -1 —1
U=Af V=Bf ,W=Cf¥ of the “coordinate
axes” u, v, w cII through O, see Figure 3.

The “unit plane” € = RST intersects the “ideal plane”
v = UVW in the pre-image of the Desargues axis z of the
two Z-perspective triangles. Thus the fixed plane «w of
the harmonic homology ¥, intersects u, v, w in the
“negative unit points” R’, " and 7.

Remark: As we are free in choosing Il, and its ideal
elements, we could have started with a projective space
IT and an axonometry such that R, S, 7" become the
pre-images of A,, B, C,. Then the fixed plane « of the
above mentioned harmonic homology % ; automatically
acts as the “ideal plane”. Furthermore, if we assume that
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F is a Euclidean field, then (II, ®) allows an

interpretation as a projective enclosed Euclidean space
and R, S, T, R, S, T become the vertices of a regular
octahedron with centre 0. We collect this as:

Theorem 2: Let 7 be a projective plane over the
field F =R and A, B;, C; and A,, B,, C, two Z-

perspective triangles in 7. Then {Z; A|, B,, Cy; A, B,
C,} < can always be interpreted as the central
axonometric image of midpoint and vertices of a
(Euclidean) regular octahedron.

3. THEOREM 1 AND CENTRAL AXONOMETRY

Let us now turn back to the planar configuration of two
Z-perspective quadrangles (A;,..., Dy, i = 1, 2 as
described in Theorem 1. Analog to Theorem 2 we now
interpret this labelled configuration as the central
axonometric image of an affine regular cross-polytope
Pg in the projectively extended four-dimensional affine

space Hé over the field ‘F.

Again we interpret the two Z-perspective planar
quadrangles at first as linear images of two O-perspective
tetrahedra, each spanning a hyperplane II; resp.

I, c Hi . We now embed the O-perspectivity y:IT; —

I1, into a harmonic homology ¥ : H;'{ c HZ'{ with centre

O (the pre-image of Z) and with a certain hyperplane Q as
the fixed axis of y. Let us choose Q as the ideal

hyperplane of Hg such that O is a proper point of H4a.

Then, by using the originals O and Al,,..., Dl,e H40, of Z,

Aj,..., Die & as origin and unit points of a coordinate
frame, we receive very simple projective coordinates of
the points of the entire configuration, namely:

A =(1,£1,0,0,0) F, B/ =(1,0,£1,0,0) F,
¢/ =(1,0,0,£1,0) F, D, =(1,0,0,0,£1) T, 2)
Z’=(1,0,0,0,0) F.i=1.2.
Therewith we get the originals (c.f. (1)) E’,E’, F’,
F',G',G  of E,...,G almost without any calculation as:
E =(0,1,-1,0,0) F, E =(0,0,0,1,-1) F,
F =(0,0,-1,1,0) F, F =(0,1,0,0,-1)F, (3)
G =(0,1,0,1,0) F, G =(0,0,1,0,1) F,

and finally
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(2.2).(.22).(v.7) = F2\(0.0)
These three lines (4) intersect in a common point:

EENFF NGG =H =(0,1,-11,-1) F (5)
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As the three lines E,E.F . F,G,G of QcHﬁ,

indeed coincide with a common point H', any linear
image of them must have the same property, i.e. the a-
images EE s FF R GG of these lines are concurrent with a
point H = H". Therewith we have proved

Theorem 3: Let be given a labelled planar “Ebisui

figure” consisting of two Z-perspective quadrangles (4;,
B, C, D)), i = 1,2 together with centre Z and the

intersection points E,...,(_} according to Theorem 1.

- Then {Z; Ay,.., Dy; As,..., D,} can always be interpreted
as the linear image (central axonometric image) of an
affine regular cross-polytope Py with vertices {A'j,...,
D’} and centre Z' in a four-dimensional projective

extended affine space H4a.
- Furthermore, the originals E’,F’,G" and E’,F’,G  of
E,..,G form two perspective triangles in the ideal

hyperplane Q of Hé, with a point H' as their Desargues

centre, which maps onto the remarkable “Ebisui-point”
H of the given Ebisui figure.

Remark 1: Obviously, if H4a is taken as a projective

enclosed Euclidean 4-space, then Pg can be interpreted
as a Euclidean regular cross-polytope.

Remark 2: Note that central axonometry maps a point P’
of the n-space to a point P of an image k-space or plane
using the so-called coordinate path with respect to the
axonometric base figure. The coordinate path uses the
projective coordinates of P’, therefore it is not necessary
to distinguish between the original P’ and their
axonometric image P in terms of coordinates. In the
following we therefore will omit to use different
labelling for originals and their images, as it will come
clear from the text what is meant.

4. COMPLETE QUADRANGLES AS THE TWO-
DIMENSIONAL CASE: FANO’S FIGURE

Instead of perspective triangles in a projective Fano-plane
« and its interpretation as (central) axonometric image of
an octahedron let us now consider two line segments s,:=
(Ay, By) s2:= (A, B,) < m such that the endpoints of those
segments form a quadrangle. These labelled segments
define a unique perspectivity centre Z (see Fig. 4). Inter—
pretation in space now degenerates to an interpretation in
a projective enclosed affine (resp. Euclidean) plane z":
(Ay,..., B) are linear axonometric images of the vertices
(A',..., B%) of a parallelogram (resp. a square); thereby
point Z is the image of its centre Z'.

Again we embed the perspectivity y:s'| — s’ into a
harmonic homology y:s'y — s’ and its axis =’ passes
through point §"= A"\B'y N A»B", and it contains the
intersection G' of “overcrossing lines” A"|B", A»B';.The
axonometry o:r’ — x is simply a projective colli—
neation, we receive CR(A B, A>B,, Z, z), what is a tri—
vial property of complete quadrangles in a Fano plane 7.

As a trivial result we state:

Theorem 4: A labelled complete quadrangle in a
projective Fano plane allows an interpretation as the
two-dimensional (degenerated) case of a general
Desargues figure in the sense of H. Ebisui.
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Figure 4. Two generally positioned labelled segments
spanning a plane are trivially in perspective position and
they give rise to a FANO figure as the two-dimensional
case of Ebisui’s construction.

5. EBISUI-POINTS OF PERSPECTIVE TETRAHEDRA
AND COMPLETE QUADRANGLES

Already the four-dimensional case has to consider two sub-
cases: the one described in Theorem 3 and one, where we
start with a pair of perspective skew quadrangles in a 3-
space IT. Also this figure is a proper axonometric basis

figure for an axonometry « : H4a —TI° and therefore we
can use the same calculation as for Theorem 3 receiving
the same point H' € H4a as result.

Again we state as a:
Theorem 5: Let two labelled skew quadrangles in
a 3-dimensional projective Fano space be given in pers—

pective position. Then the three lines EE,FF,GG de-

fined according to Theorem 1 have a common point H.
Remark 1: Two labelled tetrahedra in perspective
position or two planar complete quadrangles in
perspective position give rise to three pairs of edge
quadrilaterals and each pair leads to an Ebisui point H,,
k = 1,2,3. This combinatorial approach, which we also
want to apply to higher dimensions, makes a re-
labelling of the quadrangles necessary:

Table 1. (Axonometric) projective coordinates of the Ebisui-
points H"to perspective tetrahedra.

A Ay Ay,
Ay 43

Ay

A, A; Ay

Case 1: quadrangle
(A1, A2, A3, A

Case 2: quadrangle
(A1, A, A3, AY)

Case 3: quadrangle
(A1, A, A3, AY)

D, =(0,1,-1,0,0) F
D,, = (0,0,0,1,-1) ‘F

Dy, =(0,1,-1,0,0) F
D, = (0,0,0,1,-1) F

D,, = (0,0, 1,0,-1) F
D,, = (0,1,0,-1,0) F

D, = (0,1,0,-1,0) F
D24 = (0,0, 1 ,0,-1) f

D,y =(0,0,1,0,-1) F
D22 = (0, 1 ,0,—1 ,0) f

Dy, =(0,0,1,-1,0) F
D24 = (0, 1 ,0,0,—1) f

0, =(0,1,0,1,0) F
024 = (0,1,0,1,0) .T

0,, =(0,1,0,0,1) :]:
05, =(0,0,1,1,0) F

0, =(0,1,1,0,0) F
024 = (0,0,0,1,1) .T

H = (0,1,-1,1-1) F

H = (0,1,-1,-1,1) F

H = (0,1,1,1,1) F

Z = (1,0,0,00) .G = 013054 N 01404 N 012034 = (0,1, 1,1,1) F

In the following we label the points of the first
quadrangle with A;, i = 1,.., 4 and those of the second
quadrangle with B, i = 1,.., 4 The “direct Desargues
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points” mean A;A; N B;B; =:Dj;, while Desargues points
stemming from “overcrossings” are labelled by O; :=
AB; N BiA;. We will also use the “ideal points” C; of
lines ZA; and being harmonic to Z with respect to the
pairs (A;, B;).The points C; form a simplex (i.e. a
tetrahedron) in the ideal hyperplane, i.e. a 3-space and
have (0,01;,02:,03:,04;)F as projective coordinates.

We list the three cases with the corresponding figures
and coordinates below (Table 1, Figures 5 and 6):

From Table 1 we read off that there occur only six
different points Dj, and they are the vertices of a
complete quadrilateral, the sides of which are the
Desargues axes of the four pairs of partial triangles of
the given pair of quadrangles resp. tetrahedra.

The three Ebisui-points H* are the diagonal points of
the above mentioned quadrilateral (Figure 5).

Figure 5. Configuration of intersection points D;; of corres—
ponding sides of perspective tetrahedra and their three
Ebisui points H*.

In addition we can state:

Theorem 6: Given two tetrahedra or two planar
quadrangles in perspective positions, then the three lines
013094, 014094, 01,034 stemming from “over-crossings”
meet in a common point G = (0,1,1,1,1) F . The three
Ebisui-points H* together with G have (axonometric)
projective coordinates, which can be interpreted as
vertices of a regular tetrahedron in the ideal hyperplane

.. . 4
of a projectively enclosed affine 4-space IT,.

We show the mutual incidences described in
Theorem 6 in an axonometric view of that ideal

hyperplane of Hé in Figure 6.

Remark 2: Among other incidences we find that the
lines D034, D13024 and D403 have a common point
F'=(0,-1,1,1,1)F and similarly

2

Djp034 N Dy3014 N Dy 03 = F° =(0,1,-1,1,1) F,
3

Dy3054 N Dy3014 N D340 = F7 =(0,1,1,-1,1) F,
4

Dy4053 N Dy 013 N D3, 015 = 7 =(0,1,1,1,-1) F.

The simplices ( F',..., F % and (C'.,..., C*) are G-
perspective, while ( F L F * and (G,H',H*,H’) are not
only C-perspective, but also C;-perspective, see Figure 6.

Remark 3: The points Oj; can be interpreted as vertices
of an octahedron with centre G. We also recognize that,

within the ideal hyperplane of Hi, i.e. a 3-space H‘Z,,
this octahedron defines a Desargues configuration and
e.g. a perspectivity w; with centre G mapping the
triangle (0,0,30,4) onto the triangle (0,30340,4) and
again w3 can be embedded into a harmonic homology y;
with axis plane spanned by the complete quadrilateral
{D;}, see Fig. 5. The three collinear points D34,D24,D53
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span the Desargues axis of the perspectivity 3, i.e. the
lines 0,053 and 0340,4 meet at D,;, and so on. But
there are altogether four possibilities of such
perspectivities resp. homologies and each side of the
complete quadrilateral {Dj;} acts as Desargues axis of
each of these perspectivities.

HZ

Figure 6. Configuration of intersection points Oj; of “over—
crossin_g” connect_inq sid_es o:fperspeclive tetrahedra
and their three Ebisui points H".

Our cross-polytope Pg, which realises a per-
spectivity w4 between two opposite face tetrahedra and
the canonically defined harmonic homology y4 to q,
induces an octahedron P4 in the (ideal) axis hyperplane
of y4. This octahedron again delivers the classical
situation of a Desargues figure as treated in Chapter 2
with the two-dimensional case of a complete quadrangle
in the axis plane of y3, see Chapter 4. In the following
we shall see that this hierarchical structure also holds
for higher-dimensional cases.

6. HIGHER-DIMENSIONAL CASES

The idea of interpreting the planar figures as
axonometric image of a square, an octahedron or a
cross-polytope Pg suggests to consider pairs of closed
polygons with p vertices in perspective position in a
given classical projective k-space IT* and interpret them
as the central axonometric image of a cross-polytope Py,

in an n-dimensional affine (resp. Euclidean) space 115

with an “ideal hyperplane” Hg)_l as projective

enclosure. The polygons (Ai,..., A,) and (B,..., B))

together with centre Z give reason to (p ] quadrangles
4

and each of them lead to three Ebisui-points and one

point G. There occur [p ] direct Desargues points Dij =
2

AA; N BBj and [12) j points O stemming from

“overcrossing” lines A;B;, A;B;. Interpreting the points of
the two polygons as vertices of P,, with centre Z (- we

use the same symbols for points in IT* and in 15 - ) the
points Dj;; and Oy as well as the Ebisui-points and the

points of type & span the ideal hyperplane Hg,_l. The

p intersections of Hg,_l N ZA; =:C; can be used to
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define a coordinate frame in Hg,_l. The three hyper—
planes T157", T2, 4™, spanned by {C}. {A))

resp. {B;} intersect in a space Hé’,_z spanned by the set
{D;}, see Figure 7.

In the following we present only the case p =5 as an
example. It illustrates already the occuring incidences
and configurations also for arbitrary cases of p:

Let two Z-perspective 5-gons {A;},{B; # A;} be given
in a projective k-space (2 < k < 5), then, after
interpreting this set of 11 points (which we assume to be
different) as an axonometric fundamental figure of an
axonometry o:IT° — IT¥, the originals Z resp. A; resp. B;
the homogenous coordinates (1,0,0,0,0) F  resp.
(1,51[,..., 55,‘) and (1,-5],', -52,‘, -(53,', -54,', -55,‘,) form a 5-
cross-polytope Pjy. By this we get 10 “direct” and 10
“overcrossing” Desargues points as follows (Table 2):

Figure 7. Symbolic visualisation of perspective p-simplexes
and their “direct” and “overcrossing” Desargues points D;
and 0,','.

Table 2. : (Axonometric) projective coordinates of the direct
and overcrossing Desargues points to perspective 5-gons

D12=A1Aan]BZZ OIZZA]BzﬂBIAZZ
=(0,1,-1,0,0,0) F =(0,1,1,0,0,0) F
D22 =A2A2 ﬂ BZBZ = 022 =AZBZ ﬂ BZAZ =
=(0,1,0,-1,0,0) F =(0,1,0,1,0,0) F
D14=A1A4ﬂB]B4= 014=A]B4ﬂB,A4=
=(0,1,0,0,-1,00 F =(0,1,0,0,1,0) F
D/5=A]A5nB]Bj= O]5=A]Bij]A5=
=(0,1,0,0,0,-1) F =(0,1,0,0,0,0) F
D22=A2A2 ﬂ BzBZZ 022 =AZBZ ﬂ BzAZZ

=(0,0,1.-1,0,0) F =(0,1,1,0,0,0) F
D24 = A2A4 n BZB4 = 024 = AZB4 n B4142 =
=(0,1,0,0,-1,00 F =(0,0,1,0,1,0) F
D23 = A2A3 n BZB3 = 023 = AZB3 n B3A2 =
=(0,0,1,0,0,-1) F =(0,0,1,0,0,1)
Dyy=AA4 N BBy = Oz =AB;NBA;=
=(0,00,1-1,0) F =(0,0,0,1,1,0) F
D25 = AZAS n BZB5 = 025 = A2B5 n B5A2 =
=(0,00,1,0,-1) F =(0,0,0,1,0,1) F
D45 = A4A5 n B4B5 = 045 = A4B5 n BSA4 =
=(0,0,0,0,1,-1) F =(0,0,0,0,1,1) F
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From Table 2 follows that the ten triplets of direct
Desargues points (Dj;, Dy, Dj) are collinear with lines dj
and that all those points D; span a 3-space

Hz, c H‘a‘) c HZ,. As expected we find that the 10 points
Dj; and 10 lines dj; form a Desargues configuration in
IT}, with five planes Q7. m=1,...5, () (m#i#j#k#

1), containing 4 lines dj and six points D;. These five
planes correlate to the five Z-perspective pairs of partial

quadrangles Q' = AAAA, Qf = BiB;BiB; of the given

perspective 5-gons, and each of the pairs (fo , Qg’) leads
to a triplet of Ebisui points (H{”,HE”,Hé”) in the

corresponding plane Qg, c Hz, and a point G™ e Hi).
We list the coordinates in Table 3:

Table 3. : (Axonometric) projective coordinates of the direct
and overcrossing Desargues points to perspective 5-gons

0 0 0 0
1 1 1 1
3 3\ 3| 7] 3_|~1 3_| 1 3_|1
(QA’QB)HZZ L B L BN R A
-1 1 -1 1
0 0 0 0
0 0 0 0
1 1
-1 -1 1 1
2 2\| 4 4 4 4
(03.08) 3 =| | |F|ui=|_ |\F|u3=|_ |F|¢*=| | |7
0 0 0
-1 1 -1 1
0 0 0 0
1 1
-1 -1 1 1
4 4|2 2 2 2
N H: H= H: G_
(QAQB) 2 0.7: 3 0“7: 3 _1,7: O‘T
-1 -1 1
-1 1 0 1
0 0 0 0
1 1
0 0 0 0
2 2\[ 2 2 2 2
(Qh.03)|m3 =| | |F|u3=| _ |F|3=| | |F|G*=| |7
1 -1 -1 1
-1 1 -1 1
0 0 0 0
0 0 0 0
1 1 1 1
1AL\ 2 2 2 1
(QA’QB)H1=_1fH1=_1fH1=1fG—1f
1 -1 -1 1
-1 1 -1 1

From Tables 2 and 3 we read off that the ten lines
G"G' pass through D,,; and that e.g. H 013, O34, G’ are
collinear and harmonic, and we notice that e.g. the pair
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of Ebisui triangles (HfHSH?) and (H12H22H%) is D3y-

perspective. The “ideal points” C; e Hi, of the five

lines A;B; are harmonic to Z = (1,0,..., 0)F with respect
to (A;B;) and they are therefore well defined also in the
axonometric image space IT%, 2 <k < 5.

The five pairs of points (C,G') are in perspective
position with the “unit point” G = (0,1,1,1,1,1) F

€ H‘a‘,. The quadruplets (D1,,D13,D14,D15) and (015,013,

014,0;5) are C;-perspective and form a 4-cross-polytope
Pg with centre C; and “ideal points” (C,,C3,C4,Cs) as
expected.

Obviously there occur all together five such 4-
crosspolytopes and the points C; are their centres. The
tetrahedron (C,,C3,C4,Cs) contains the octahedron (Oy;,
0,4,034,035,045) as a cross-polytope Pg with centre Gl,
see Figure 8.

Figure 8. One of the five partial octahedra within the set of
10 “overcrossing” Desargues points Oj;.

These statements concerning incidences and
relations occurring in a special-dimensional case should
give sufficient insight into the combinatorial and
analytic methods to treat also arbitrary dimensional
cases. The occurrence of Desargues configurations and
their higher dimensional analogues shall be mentioned
in more detail in the next chapter.

7. GENERALIZED DESARGUES CONFIGURATIONS
AND CROSS-POLYTOPES

In the former Chapters we found complete quadri—
laterals (resp. quadrangles) and 3D-Desargues configu—
ration connected with cross-polytopes. For such cross-
polytopes one can present a list of facets in Table 4 (at
the end of text), see also [7].

Each face-triangle or face-tetrahedron, together with
“ideal” points and lines, gives rise to a complete face-
quadrilateral resp. a Desargues configuration in the
projective extended 3-space spanned by the face-
tetrahedron.

Similarly, a k-face-simplex, together with its ideal
elements, defines what might be called a “i- Desargues
configuration” generalizing the standard case to higher
dimensions. Also here the system of incidences shall be
shown in a Table 5 (also at the end of text).
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Table 4. Numbers of k-facets of a cross-polytope P2,

dim name points lines 2-facets | 3-facets | 4-facets | S-facets | 6-facets n--1
1 segment 2 1
2 quadrangle 4 4 1
3 octahedron 6 12 8 1
4 16-cell 8 24 32 16 1
5 Pentacross 10 40 80 80 32 1
6 Hexacross 12 60 160 240 192 64 1
7 Heptacross 14 84 280 560 672 448 128 1
points lines planes k-facets: (n-1)-
n n-Cross " 4{”J 8(”] okt [ n j’k <n face;ts:
3 4 k+1 2
Table 5. Numbers of incident subspaces within k-dimensional generalized Desargues configurations
dim incident points lines planes | 3-spaces | 4-spaces | 5-spaces | 6-spaces
with a
point 1 2 1
2 line 3 1 1
plane 6 4 1
point 1 3 3 1
3 line 3 1 2 1
plane 6 4 1 1
3-space 10 10 5 1
point 1 4 6 4 1
line 3 1 3 3 1
4 plane 6 4 1 2 1
3-space 10 10 5 1 1
4-space 15 20 15 6 1
point 1 5 10 10 5 1
line 3 1 4 6 4 1
5 plane 6 4 1 3 3 1
3-space 10 10 5 1 2 1
4-space 15 20 15 6 1 1
5-space 21 35 35 21 7 1
point 1 6 15 20 15 6 1
line 3 1 5 10 10 5 1
plane 6 4 1 4 6 4 1
6 3-space 10 10 5 1 3 3 1
4-space 15 20 15 6 1 2 1
5-space 21 35 35 21 7 1 1
6-space 28 56 70 56 28 8 1
point 1 [Z] ,k...dim subspaces
) n-1
line 3 1 [ x j
n-2
plane 6 4 1 [ X J
n-3
n 3-space 10 10 5 1 ( X j
p+2) p..dimsubspace n—p)\ p..dimsubspace
( k j’k...dim subspaces ! ( k ) k...dim subspaces
[n + IJ
(n-1)-space 1 1
k
n+2
n-space ( X ] 1
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8. CONCLUSION

Starting from the discovery of a “remarkable point”
occurring at perspective quadrangles in the projective
enclosed Euclidean plane by the second author we
could now generalize this fact to projective spaces
over any coordinate field F with char F # 2 and any
dimension n > 2.

The key tool is the interpretation of the given pair of
perspective p-gons as axonometric fundamental figure
of a central axonometry mapping an affine cross-
polytope of a p-dimensional projective enclosed affine
space to the given pair of p-gons in the k-space spanned
by them. As the axonometric coordinate path in the
image k-space uses the same projective coordinates as
are used in the original p-space, the calculation of
occurring incidences acts on Zeroes and Ones alone.
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3ATMTAKAIBA O TIEPCIIEKTUBHUM
CUMILVIEKCUMA

I'. Bajc, X. Eoucyn

[lBa Tpoyrna jemHe paBHH KoOja Cy Yy INEPCIEKTHBHOM
TIOJIOXKAjy ce MoBe3yjy ca [le3aproBoM TeopeMoM Koja je
3aciy’)KHa 338 YHBCHULY J1a CKYNl KOOpAMHATa y paBHU
npencrarba nojbe. OBa Mmo3Hata Teopema omoryhasa
OYHIJIEHO TYMauehe TPOCTPaHe MUPaMUJIe Y IPOCTOPY
KOjy CeKy JIBE PaBHH.

Ogaj umanak je mocBehen reHepammzanuju Jlesaprose
TeopeMe Ha NEePCIEKTHBHE CUMIUIEKCE Y MPOjeKTUBHOM
H-TIPOCTOPY M HUXOBUX JIMHEAPHUX JIMKOBA Yy
nornpocropy. Ha oBaj HaunH MOry ce€ OTKPHUTH
3Ha4ajHe WHIMACHIMje W KoHbwurypauuje. IlomazHa
Tayka Yy OBOM MHCTP@XHUBamy j€ pPaBHH JIHK
MEPCIICKTUBHUX YETBOPOYIIIOBA y KOME je IPYTH ayTop
OBOT' Pajia OTKPUO H3Y3eTHO HEOYEKHBaHW JHK. Jloka3
32 OBO M3Y3€THO TBpleHme ce 3aCHHBA Ha TyMaucwy
paBHOr Jmka Oora EOmcy kao HeHTpanHe TMpojeKnuje
(mpojexktuBHOT) OKTaenpa y 4J1 mpocropy. Ogaj
OPUHINII C€ MOXE MpOIMHpPUTH W Ha Behm Opoj
JTUMCH3H]a.
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