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Remarks on Perspective Simplices 
 
The planar figure of two triangles being in perspective position is 

associated with a theorem of Desargues, which is responsible for the fact 

that the coordinate set of the plane is a field. This well-known theorem of 

Desargues allows the obvious interpretation in space of a three-sided 

pyramid, which is intersected by two planes. The article is dedicated to 

generalizing this theorem of Desargues to perspective simplices in a 

projective n-space and their linear images in a subspace. Hereby one can 

find remarkable incidences and configurations.  Starting point to this 

investigation is a planar figure of perspective quadrangles, where the 

second author discovered a remarkable coincidence figure. The proof of 

this incidence statement is based on an interpretation of the planar 

“Ebisui figure” as the central projection of a (projective) cross-polytope 

in 4-space. This principle can also be extended to higher dimensions.  

 

Keywords: projective space, harmonic homology, Desargues’ theorem, 

simplex, cross polytope, polyhedron. (MSC 2000:  51A20, 51M05) 

 

 

 
1. INTRODUCTION AND EBISUI’S THEOREM  

 

Let π be a projective Desargues plane such that its 

coordinate field F  has not the characteristic 2. As a 

consequence of these assumptions π can be immerged 

into a projective space of dimension n ≥ 3 and there 

exist harmonic quadruplets of collinear points. (Plane π 

is a Fano plane, i.e. each quadrangle in π has a triangle 

of diagonal points; confer e.g. [1].) For such a plane π 

the following theorem holds, see also Figure 1.  

Theorem 1 (“Ebisui’s Theorem”): Let (Ai, Bi, Ci, Di), 

i = 1,2, be two Z-perspective quadrangles of  π . Then 

the intersection points 

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1
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: , : ,

: , : ,
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∩ = ∩ =

∩ = ∩ =

∩ = ∩ =

  (1) 

define three lines , ,EE FF GG  which are incident with 

a common point H. 

(This theorem was communicated by the second 

author at the „Meeting of the Japan Society for 

Geometry and Graphics”, Mai 12-13, 2007, Tokyo.) 

A simple but lengthy proof of Theorem 1 might use 

elementary affine vector calculus in π assuming that 

none of the given and calculated points is an ideal point. 

Of course one will use an affine (or even projective) 

coordinate frame in π, which is suitably connected with 

the given point set {Z, Ai, ..., Di} to make calculation as 

simple as possible. But such an analytic proof does not 

show, where Theorem 1 belongs to and in which way it 

generalises the well-known Desargues’ theorem of 

perspective triangles. As the Theorem 1 deals only with 

incidences, it obviously belongs to projective geometry 

based on a rather general coordinate field F , even it, at 

first, was stated as a theorem in a Euclidean plane. 

 

Figure 1. Two perspective quadrangles lead to an 
“opposite” point H of the perspectivity centre Z. 

Note that the points ,G G  stem from “overcrossing” 

pairs of corresponding points of the two sets {A1,..., D1} 

and {A2,..., D2} and that the Desargues axes of the four 

pairs of triangles (A1B1C1, A2B2C2), (B1C1D1, B2C2D2), 

(C1D1A1, C2D2A2), and (D1A1B1, D2A2B2) form a complete 

quadrilateral with the six vertices , ,EE FF GG ! 

In the following we interpret the planar figure to 

Theorem 1 as an image of an object in space, similar to 

the classical interpretation of the (planar) Theorem of 

Desargues as linear image of a triangular pyramid, 

which is intersected by two planes. This allows a proof 

of Theorem 1 by simple reasoning instead of calculation 

and it gives a hint, how to generalize it to higher (and 

even lower) dimensions: 

We interpret the planar “Ebisui figure” as the central 

projection of a cross-polytope in 4-space. Even so one at 

first might start with a regular cross-polytope in the 

Euclidean 4-space, the proof holds also for 4-spaces 

over any field F  with char F  ≠ 2. Using this idea 

allows to interpret any (classical) Desargues figure as 
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the central projection of a regular octahedron in the 

projective enclosed Euclidean 3-space. Similarly, as any 

quadrangle Q can be interpreted as central projection of 

a square Q’, the quadrangle Q together with its 6 lines, 

i.e. the ‘complete’ quadrangle, can be interpreted as the 

2-dimensional case of an Ebisui figure. 

For dimensions n > 4 there exist incidence figures, 

too, but we end up with rather complicated con-

figurations. Anyway, higher dimensional interpretations 

of perspective simplices and their connection to cross-

polytopes still are possible and will result in incidence 

statements for those cross-polytopes. 

 
2. DESARGUES’ THEOREM AND CENTRAL 

AXONOMETRY 

 

The well-known theorem of Desargues concerns two Z-

perspective triangles and deals with incidences alone. If 

the place of action is a projective plane π such that 

Desargues’ theorem is valid, then π is embeddable into a 

projective 3-space Π, and the Desargues theorem 

becomes obvious by the well-known interpretation of 

the figure as the linear image of an object in Π, namely 

of a 3-sided pyramid intersected by two planes, see 

Figure 2. 

 

Figure 2. (a) general case of a (labelled) Desargues figure 
(left) (b) interpretation of (a) as image of an object in 3-
space, which defines a perspectivity Ψ and a harmonic 
homology y.  

If the Desargues axis z of a (labelled) Desargues 

figure (see Figure 2(a)) does not pass through the pers–

pectivity centre Z, this figure defines a homology κ:π → π 

with centre Z, axis z and a pair (A1, A2) of corresponding 

points. The cross ratio ( )2 1, , , :CR A A Z z c== ∈F  is 

called the “characteristic cross ratio” of  κ. 

The Desargues figure shows an elation κ:π → π, if  

Z z∈ . In this case a characteristic cross ratio is not 

defined. 

Remark: We distinguish the concepts “Desargues 

figure” and “Desargues configuration”. The (103, 103) -

configuration of Desargues (Figure 2a) is a set of 10 

points and 10 lines and no point (line) is distinguished 

from any other point (line). The concept characteristic 

cross-ratio does not make sense for such an “un-

labelled” configuration. Taking another point of this 

configuration as center Z leads (in general) to another 

characteristic cross ratio value. The relation of all 

possible characteristic cross ratios to a Desargues 

configuration is described in [6]. 

In the 3-space Π the pre-image of the planar 

homology or elation κ is a perspectivity  ψ:π1 → π2 of a 

plane π1 onto a plane π2 with the pyramid’s vertex V as 

the perspectivity centre, see Figure 2(b).  This 

perspectivity ψ can be embedded into perspective 

collineations χ:Π → Π and there is a one-parametric set 

of such collineations, as we may choose any plane ω 

through π1 ∩ π2 as fixed plane.  Among these colline–

ations χ, for any coordinate field 

( )2 1, , , :CR A A Z z c== ∈F  of char F ≠ 2, besides the 

two singular ones with ω = π1 or ω = π2 as axis, there are 

two canonically distinguished regular ones: the elation χ0 

with the fixed plane (π1 ∩ π2) ˅ V ==: ω and the harmonic 

homology χ-1 with an axis ω such that  CR(π2, π1, z ˅ Z, 

ω) = -1. (We supposed π to be a Fano plane, therefore 

harmonic homologies in π and in Π are well defined 

regular perspective collineations.) 

As we finally aim at the “overcrossings” occurring 

in Theorem 1 it seems to be natural to consider only the 

harmonic homology  χ-1 as the distinguished collineation 

within the set of all perspective collineations belonging 

to ψ. 

Let us at first consider a classical Desargues figure 

in a projective plane π which we at first embed into a 

projective enclosed affine 3-space Πα. The basic figure 

of two Z-perspective triangles {Z; A1, B1, C1; A2, B2, C2) 

⊂ π can be interpreted as the fundamental figure of a 

central axonometry α: Πα → π.  

Remark: „central axonometry“ means a linear mapping 

of a space Π onto an image plane π based on a 

projective coordinate frame in Π and its linear image 

figure, which usually is called the “axonometric 

fundamental figure”, (see e.g. [2], [3], [4] and [5]).  

Extensions to higher dimensions are obvious. 

 

Figure 3. An axonometric fundamental figure connected  
with a Desargues figure. 

Thereby Z =: O
α is the image of the origin O in 

space, furthermore we use A1, B1, C1 as the images of  

“unit points” 
1 1 1

1 1 1, ,R A S B T C
α α α− − −

= = = , and 

interpret  A2, B2, C2 as the images of “ideal points”  
1 1 1

2 2 2, ,U A V B W C
α α α− − −

= = =  of  the “coordinate 

axes” u, v, w ⊂ Π  through O, see Figure 3. 

The “unit plane” ε = RST intersects the “ideal plane” 

v = UVW in the pre-image of the Desargues axis z of the 

two Z-perspective triangles. Thus the fixed plane    of 

the harmonic homology χ-1 intersects u, v, w in the 

“negative unit points” R-, S- and T-. 

Remark: As we are free in choosing Πα and its ideal 

elements, we could have started with a projective space 

Π and an axonometry such that R
-, S

-, T
- become the 

pre-images of A2, B2, C2. Then the fixed plane ω of the 

above mentioned harmonic homology χ-1 automatically 

acts as the “ideal plane”. Furthermore, if we assume that 
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F  is a Euclidean field, then (Π, ω) allows an 

interpretation as a projective enclosed Euclidean space 

and R, S, T, R
-, S-, T- become the vertices of a regular 

octahedron with centre O. We collect this as: 

Theorem 2: Let π be a projective plane over the 

field ≈ ℝF  and A1, B1, C1 and A2, B2, C2 two Z-

perspective triangles in π. Then {Z; A1, B1, C1; A2, B2, 

C2} ⊂ π can always be interpreted as the central 

axonometric image of midpoint and vertices of a 

(Euclidean) regular octahedron. 

 
3. THEOREM 1 AND CENTRAL AXONOMETRY  

 

Let us now turn back to the planar configuration of two 

Z-perspective quadrangles (Ai,..., Di), i = 1, 2 as 

described in Theorem 1. Analog to Theorem 2 we now 

interpret this labelled configuration as the central 

axonometric image of an affine regular cross-polytope 

P8 in the projectively extended four-dimensional affine 

space 4
αΠ  over the field F . 

Again we interpret the two Z-perspective planar 

quadrangles at first as linear images of two O-perspective 

tetrahedra, each spanning a hyperplane Π1 resp. 
4

2 αΠ ⊂ Π . We now embed the O-perspectivity ψ:Π1 → 

Π2 into a harmonic homology 4 4: α αχ Π ⊂ Π  with centre 

O (the pre-image of Z) and with a certain hyperplane Ω as 

the fixed axis of χ. Let us choose Ω as the ideal 

hyperplane of  
4
αΠ  such that O is a proper point of 

4
αΠ . 

Then, by using the originals O and 4
1 1,...,A D α
′ ′∈Π  of Z, 

A1,..., D1∈π as origin and unit points of a coordinate 

frame, we receive very simple projective coordinates of 

the points of the entire configuration, namely: 

( ) ( )

( ) ( )

( )

1, 1,0,0,0 , 1,0, 1,0,0 ,

1,0,0, 1,0 , 1,0,0,0, 1 ,

1,0,0,0,0 , 1, 2.

i i

i i

A B

C D

Z i

′ ′= ± = ±

′ ′= ± = ±

′ = =

F F

F F

F

 (2)             

Therewith we get the originals (c.f. (1)) , ,E E′ ′ ,F ′   

, ,F G G′ ′ ′  of ,...,E G  almost without any calculation as: 

( ) ( )

( ) ( )

( ) ( )

0,1, 1,0,0 , 0,0,0,1, 1 ,

0,0, 1,1,0 , 0,1,0,0, 1 ,

0,1,0,1,0 , 0,0,1,0,1 ,

E E

F F

G G

′ ′= − = −

′ ′= − = −

′ ′= =

F F

F F

F F

  (3) 

and finally 

( ) ( )( ){ }
( ) ( )( ){ }
( ) ( )( ){ }

( ) ( ) ( ) ( )2

0,1, 1,0,0 0,1, 1,0,0 ,

0,1,0,0, 1 0,0,1, 1,0 ,

0,1,0,1,0 0,0,1,0,1 ,

, , , , , \ 0,0

E E

F F

G G v

v v

λ λ

µ µ

ν

λ λ µ µ

′ ′ = − + −

′ ′ = − + −

′ ′ = +

⊂

F

F

F

F

 (4) 

These three lines (4) intersect in a common point: 

( ): 0,1, 1,1, 1E E F F G G H′ ′ ′ ′ ′ ′ ′∩ ∩ = = − − F       (5)                    

As the three lines , , , , ,E E F F G G′ ′ ′ ′ ′ ′  of 4
αΩ ⊂ Π  

indeed coincide with a common point H', any linear 

image of them must have the same property, i.e. the α-

images , ,EE FF GG  of these lines are concurrent with a 

point H = H'
α. Therewith we have proved 

Theorem 3: Let be given a labelled planar “Ebisui 

figure” consisting of two Z-perspective quadrangles (Ai, 

Bi, Ci, Di), i = 1,2 together with centre Z and the 

intersection points ,...,E G  according to Theorem 1. 

- Then {Z; A1,.., D1; A2,..., D2} can always be interpreted 

as the linear image (central axonometric image) of an 

affine regular cross-polytope P8 with vertices  {A'1,..., 

D'2} and centre Z' in a four-dimensional projective 

extended affine space 4
αΠ . 

- Furthermore, the originals , ,E F G′ ′ ′  and , ,E F G′ ′ ′  of 

,...,E G  form two perspective triangles in the ideal 

hyperplane Ω of 4
αΠ  with a point H' as their Desargues 

centre, which maps onto the remarkable “Ebisui-point” 

H of the given Ebisui figure.  

Remark 1: Obviously, if 4
αΠ  is taken as a projective 

enclosed Euclidean 4-space, then P8 can be interpreted 

as a Euclidean regular cross-polytope. 

Remark 2: Note that central axonometry maps a point P' 

of the n-space to a point P of an image k-space or plane 

using the so-called coordinate path with respect to the 

axonometric base figure. The coordinate path uses the 

projective coordinates of P', therefore it is not necessary 

to distinguish between the original P' and their 

axonometric image P in terms of coordinates.  In the 

following we therefore will omit to use different 

labelling for originals and their images, as it will come 

clear from the text what is meant.  

 
4. COMPLETE QUADRANGLES AS THE TWO-

DIMENSIONAL CASE: FANO’S FIGURE 

 

Instead of perspective triangles in a projective Fano-plane 

π and its interpretation as (central) axonometric image of 

an octahedron let us now consider two line segments s1:= 

(A1, B1) s2:= (A2, B2) ⊂  π such that the endpoints of those 

segments form a quadrangle. These labelled segments 

define a unique perspectivity centre Z (see Fig. 4). Inter–

pretation in space now degenerates to an interpretation in 

a projective enclosed affine (resp. Euclidean) plane π': 

(A1,..., B2) are linear axonometric images of the vertices 

(A'1,..., B'2) of a parallelogram (resp. a square); thereby 

point Z is the image of its centre Z'.  

Again we embed the perspectivity ψ:s'1 → s'2 into a 

harmonic homology χ:s'1 → s'2 and its axis  passes 

through point S':= A'1B'1 ∩ A'2B'2  and it contains the 

intersection G' of “overcrossing lines” A'1B'2, A'2B'1.The 

axonometry α:π' → π is simply a projective colli–

neation, we receive CR(A1B1, A2B2, Z, z), what is a tri–

vial property of complete quadrangles in a Fano plane π. 

As a trivial result we state: 

Theorem 4: A labelled complete quadrangle in a 

projective Fano plane allows an interpretation as the 

two-dimensional (degenerated) case of a general 

Desargues figure in the sense of H. Ebisui.  
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Figure 4. Two generally positioned labelled segments 
spanning a plane are trivially in perspective position and 
they give rise to a FANO figure as the two-dimensional 
case of Ebisui’s construction. 

 
5. EBISUI-POINTS OF PERSPECTIVE TETRAHEDRA 

AND COMPLETE QUADRANGLES  
 

Already the four-dimensional case has to consider two sub-

cases: the one described in Theorem 3 and one, where we 

start with a pair of perspective skew quadrangles in a 3-

space Π3. Also this figure is a proper axonometric basis 

figure for an axonometry 
4 3: αα Π → Π  and therefore we 

can use the same calculation as for Theorem 3 receiving 

the same point 4
H α′∈ Π  as result.  

Again we state as a: 

Theorem  5:  Let two labelled skew quadrangles in 

a 3-dimensional projective Fano space be given in pers–

pective position. Then the three lines , ,EE FF GG  de–

fined according to Theorem 1 have a common point H.   

Remark 1:  Two labelled tetrahedra in perspective 

position or two planar complete quadrangles in 

perspective position give rise to three pairs of edge 

quadrilaterals and each pair leads to an Ebisui point Hk, 

k = 1,2,3. This combinatorial approach, which we also 

want to apply to higher dimensions, makes a re-

labelling of the quadrangles necessary: 

Table 1. (Axonometric) projective coordinates of the Ebisui-

points  to perspective tetrahedra.  

 

Case 1:  quadrangle 

(A1, A2, A3, A4)  

Case 2: quadrangle 

(A1, A2, A3, A4)  

Case 3: quadrangle   

(A1, A2, A3, A4)  

D22 = (0,1,-1,0,0) F  

D24 = (0,0,0,1,-1) F  

D22 = (0,1,-1,0,0) F  

D24 = (0,0,0,1,-1) F  

D24 = (0,0, 1,0,-1) F  

D22 = (0,1,0,-1,0) F  

D22 = (0,1,0,-1,0) F  

D24 = (0,0,1,0,-1) F  

D24 = (0,0,1,0,-1) F  

D22 = (0,1,0,-1,0) F  

D22 = (0,0,1,-1,0) F  

D24 = (0,1,0,0,-1) F  

O22 = (0,1,0,1,0) F  

O24 = (0,1,0,1,0) F  

O24 = (0,1,0,0,1) F  

O22 = (0,0,1,1,0) F  

O22 = (0,1,1,0,0) F  

O24 = (0,0,0,1,1) F  

H2 = (0,1,-1,1,-1) F  H2 = (0,1,-1,-1,1) F  H2 = (0,1,1,1,1) F  

Z = (1,0,0,0,0) F ,G = O13O24 ∩ O14O24 ∩ O12O34 = (0,1,1,1,1) F  

 

In the following we label the points of the first 

quadrangle with Ai, i = 1,.., 4 and those of the second 

quadrangle with Bi, i = 1,.., 4 The “direct Desargues 

points” mean AiAj ∩ BiBj =:Dij, while Desargues points 

stemming from “overcrossings” are labelled by Oij := 

AiBj ∩ BiAj. We will also use the “ideal points”  of 

lines ZAi and being harmonic to Z with respect to the 

pairs (Ai, Bi).The points Ci form a simplex (i.e. a 

tetrahedron) in the ideal hyperplane, i.e. a 3-space and 

have (0,δ1i,δ2i,δ3i,δ4i)F as projective coordinates. 

We list the three cases with the corresponding figures 

and coordinates below (Table 1, Figures 5 and 6): 

From Table 1 we read off that there occur only six 

different points Dij, and they are the vertices of a 

complete quadrilateral, the sides of which are the 

Desargues axes of the four pairs of partial triangles of 

the given pair of quadrangles resp. tetrahedra.  

The three Ebisui-points Hk are the diagonal points of 

the above mentioned quadrilateral (Figure 5). 

  

Figure 5. Configuration of intersection points Dij of corres–
ponding sides of perspective tetrahedra and their three 
Ebisui points H

k
. 

In addition we can state: 

Theorem 6: Given two tetrahedra or two planar 

quadrangles in perspective positions, then the three lines 

O13O24, O14O24, O12O34 stemming from “over-crossings” 

meet in a common point G = (0,1,1,1,1) F . The three 

Ebisui-points H
k together with G have (axonometric) 

projective coordinates, which can be interpreted as 

vertices of a regular tetrahedron in the ideal hyperplane 

of a projectively enclosed affine 4-space 4
αΠ . 

We show the mutual incidences described in 

Theorem 6 in an axonometric view of that ideal 

hyperplane of 
4
αΠ   in Figure 6. 

Remark 2: Among other incidences we find that the 

lines D12O34, D13O24 and D14O23 have a common point 

F
1 = (0,-1,1,1,1)F and similarly 

( )

( )

( )

2
12 34 23 14 24 13

3
13 24 23 14 34 12

4
14 23 24 13 34 12

0,1, 1,1,1 ,

0,1,1, 1,1 ,

0,1,1,1, 1 .

D O D O D O

D O D O D O

D O D O D O

∩ ∩ = = −

∩ ∩ = = −

∩ ∩ = = −

F F

F F

F F

 

The simplices ( F 1,..., F 4) and (C1,..., C
4) are G-

perspective, while ( F 1,..., F 4) and (G,H1,H2,H3) are not 

only C1-perspective, but also Ci-perspective, see Figure 6. 

Remark 3:  The points Oij can be interpreted as vertices 

of an octahedron with centre  G. We also recognize that, 

within the ideal hyperplane of 
4
αΠ , i.e. a 3-space 

3
ωΠ , 

this octahedron defines a Desargues configuration and 

e.g. a perspectivity ψ3 with centre G mapping the 

triangle (O12O13O14) onto the triangle (O23O34O24) and 

again ψ3 can be embedded into a harmonic homology χ3 

with axis plane spanned by the complete quadrilateral 

{Dij}, see Fig. 5. The three collinear points D34,D24,D23 
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span the Desargues axis of the perspectivity ψ3, i.e. the 

lines O12O13 and O34O24 meet at D23, and so on. But 

there are altogether four possibilities of such 

perspectivities resp. homologies and each side of the 

complete quadrilateral {Dij} acts as Desargues axis of 

each of these perspectivities. 

 

Figure 6. Configuration of intersection points Oij of “over–
crossing” connecting sides of perspective tetrahedra  
and their three Ebisui points H

k
. 

Our cross-polytope P8, which realises a per-

spectivity ψ4 between two opposite face tetrahedra and 

the canonically defined harmonic homology χ4 to ψ4, 

induces an octahedron P6 in the (ideal) axis hyperplane 

of χ4. This octahedron again delivers the classical 

situation of a Desargues figure as treated in Chapter 2 

with the two-dimensional case of a complete quadrangle 

in the axis plane of χ3, see Chapter 4. In the following 

we shall see that this hierarchical structure also holds 

for higher-dimensional cases. 

 
6. HIGHER-DIMENSIONAL CASES 
 

The idea of interpreting the planar figures as 

axonometric image of a square, an octahedron or a 

cross-polytope P8 suggests to consider pairs of closed 

polygons with p vertices in perspective position in a 

given classical projective k-space Πk and interpret them 

as the central axonometric image of a cross-polytope P2p 

in an n-dimensional affine (resp. Euclidean) space p
αΠ  

with an “ideal hyperplane” 1p
ω

−Π  as projective 

enclosure. The polygons (A1,..., Ap) and (B1,..., Bp) 

together with centre Z give reason to 
4

p 
 
 

 quadrangles 

and each of them lead to three Ebisui-points and one 

point G. There occur 
2

p 
 
 

 direct Desargues points Dij = 

AiAj ∩ BiBj and 
2

p 
 
 

 points Oij stemming from 

“overcrossing” lines AiBj, AjBi. Interpreting the points of 

the two polygons as vertices of  P2p with centre Z (- we 

use the same symbols for points in Πk and in 
p
αΠ  - ) the 

points  Dij and Oij as well as the Ebisui-points and the 

points of type  span the ideal hyperplane  1p
ω

−Π . The 

 intersections of 1p
ω

−Π  ∩ ZAi =:Ci can be used to 

define a coordinate frame in 1p
ω

−Π . The three hyper–

planes 1p
ω

−Π , 
1p

A
−

Π , 
1p

B
−

Π , spanned by {Ci}. {Ai} 

resp. {Bi} intersect in a space 2p
ω

−Π  spanned by the set 

{Dij}, see Figure 7. 

In the following we present only the case p = 5 as an 

example. It illustrates already the occuring incidences 

and configurations also for arbitrary cases of  p:  

Let two Z-perspective 5-gons {Ai},{Bi ≠ Ai} be given 

in a projective k-space (2 ≤ k ≤ 5), then, after 

interpreting this set of 11 points (which we assume to be 

different) as an axonometric fundamental figure of an 

axonometry α:Π5 → Πk, the originals  Z resp. Ai resp. Bi  

the homogenous coordinates (1,0,0,0,0) F  resp. 

(1,δ1i,..., δ5i) and (1,-δ1i, -δ2i, -δ3i, -δ4i, -δ5i,) form a 5-

cross-polytope P10. By this we get 10 “direct” and 10 

“overcrossing” Desargues points as follows (Table 2): 

 

Figure 7. Symbolic visualisation of perspective p-simplexes 
and their “direct” and “overcrossing” Desargues points Dij  
and Oij.  

Table 2. : (Axonometric) projective coordinates of the direct 
and overcrossing Desargues points to perspective 5-gons 

D12 = A1A2 ∩ B1B2 = 

= (0,1,-1,0,0,0) F  

O12 = A1B2 ∩ B1A2 =  

= (0,1,1,0,0,0) F  

D22 = A2A2 ∩ B2B2 = 

= (0,1,0,-1,0,0) F  

O22 = A2B2 ∩ B2A2 =  

= (0,1,0,1,0,0) F  

D14 = A1A4 ∩ B1B4 = 

= (0,1,0,0,-1,0) F  

O14 = A1B4 ∩ B1A4 =  

= (0,1,0,0,1,0) F  

D15 = A1A5 ∩ B1B5 = 

= (0,1,0,0,0,-1) F  

O15 = A1B5 ∩ B1A5 =  

= (0,1,0,0,0,1) F   

D22 = A2A2 ∩ B2B2 = 

= (0, 0, 1,-1,0,0,) F  

O22 = A2B2 ∩ B2A2 =  

= (0,1,1,0,0,0) F  

D24 = A2A4 ∩ B2B4 = 

= (0,1,0,0,-1,0) F  

O24 = A2B4 ∩ B4A2 =  

= (0,0,1,0,1,0) F  

D23 = A2A3 ∩ B2B3 = 

= (0,0,1,0,0,-1) F  

O23 = A2B3 ∩ B3A2 =  

= (0,0,1,0,0,1) F  

D24 = A2A4 ∩ B2B4 = 

= (0,0,0,1,-1,0) F  

O24 = A2B4 ∩ B4A2 =  

= (0,0,0,1,1,0) F  

D25 = A2A5 ∩ B2B5 = 

= (0,0,0,1,0,-1) F  

O25 = A2B5 ∩ B5A2 =  

= (0,0,0,1,0,1) F  

D45 = A4A5 ∩ B4B5 = 

= (0,0,0,0,1,-1) F  

O45 = A4B5 ∩ B5A4 =  

= (0,0,0,0,1,1) F  
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From Table 2 follows that the ten triplets of direct 

Desargues points (Dij, Djk, Dik) are collinear with lines dijk 

and that all those points Dij span a 3-space 
3 4 5
ω ω ωΠ ⊂ Π ⊂ Π . As expected we find that the 10 points 

Dij and 10 lines dijk form a Desargues configuration in 
3
ωΠ   with five planes m

Qω , m = 1, ..., 5, () (m ≠ i ≠ j ≠ k ≠ 

l), containing 4 lines dijk and six points Dij. These five 

planes correlate to the five Z-perspective pairs of partial 

quadrangles m
AQ  = AiAjAkAl, 

m
AQ  = BiBjBkBl of the given 

perspective 5-gons, and each of the pairs ( ),m m
A BQ Q  leads 

to a triplet of Ebisui points ( )1 2 3, ,m m m
H H H  in the 

corresponding plane 3 3
Qω ω⊂ Π  and a point 

4m
G ω∈ Π . 

We list the coordinates in Table 3:  

Table 3. : (Axonometric) projective coordinates of the direct 
and overcrossing Desargues points to perspective 5-gons 

( )3 3,A BQ Q  3
2

0

1

1

1

1

0

H

 
 
 
 −

=  
 
 −
  
 

F
 3

2

0

1

1

1

1

0

H

 
 
 
 −

=  
− 
 
  
 

F
 3

2

0

1

1

1

1

0

H

 
 
 
 

=  
− 
 −
  
 

F
 3

0

1

1

1

1

0

G

 
 
 
 

=  
 
 
  
 

F
 

( )2 2,A BQ Q  4
2

0

1

1

0

1

1

H

 
 
 
 −

=  
 
 
  − 

F 4
2

0

1

1

1

0

1

H

 
 
 
 −

=  
− 
 
  
 

F  4
2

0

1

1

1

0

1

H

 
 
 
 

=  
− 
 
  − 

F  4

0

1

1

1

0

1

G

 
 
 
 

=  
 
 
  
 

F  

( )4 4,A BQ Q  2
2

0

1

1

0

1

1

H

 
 
 
 −

=  
 
 
  − 

F 2
2

0

1

1

0

1

1

H

 
 
 
 −

=  
 
 −
  
 

F  2
2

0

1

1

1

1

0

H

 
 
 
 

=  
− 
 −
  
 

F  2

0

1

1

0

1

1

G

 
 
 
 

=  
 
 
  
 

F  

( )2 2,A BQ Q  2
2

0

1

0

1

1

1

H

 
 
 
 

=  
− 
 
  − 

F 2
2

0

1

0

1

1

1

H

 
 
 
 

=  
− 
 −
  
 

F  2
2

0

1

0

1

1

1

H

 
 
 
 

=  
 
 −
  − 

F  2

0

1

0

1

1

1

G

 
 
 
 

=  
 
 
  
 

F  

( )1 1,A BQ Q  2
1

0

0

1

1

1

1

H

 
 
 
 

=  
− 
 
  − 

F 2
1

0

0

1

1

1

1

H

 
 
 
 

=  
− 
 −
  
 

F  2
1

0

0

1

1

1

1

H

 
 
 
 

=  
 
 −
  − 

F  1

0

0

1

1

1

1

G

 
 
 
 

=  
 
 
  
 

F  

 

From Tables 2 and 3 we read off that the ten lines 

G
m
G

l pass through Dmi and that e.g. H5
, O12, O34, G

5 are 

collinear and harmonic, and we notice that e.g. the pair 

of Ebisui triangles ( )5 5 5
1 2 3H H H  and ( )2 2 2

1 2 3H H H  is D34-

perspective. The “ideal points” 
4

iC ω∈ Π  of the five 

lines AiBi are harmonic to Z = (1,0,..., 0)F with respect 

to (AiBi) and they are therefore well defined also in the 

axonometric image space Πk, 2 ≤ k < 5.  

The five pairs of points (Ci,G
i) are in perspective 

position with the “unit point” G = (0,1,1,1,1,1) F  

4
ω∈ Π . The quadruplets (D12,D13,D14,D15) and (O12,O13, 

O14,O15) are C1-perspective and form a 4-cross-polytope 

P8 with centre C1 and “ideal points” (C2,C3,C4,C5) as 

expected.  

Obviously there occur all together five such 4-

crosspolytopes and the points Ci are their centres. The 

tetrahedron (C2,C3,C4,C5) contains the octahedron  (O23, 

O24,O34,O35,O45) as a cross-polytope  P6 with centre G1, 

see Figure 8. 

 

Figure 8. One of the five partial octahedra within the set of 
10 “overcrossing” Desargues points Oij.  

These statements concerning incidences and 

relations occurring in a special-dimensional case should 

give sufficient insight into the combinatorial and 

analytic methods to treat also arbitrary dimensional 

cases. The occurrence of Desargues configurations and 

their higher dimensional analogues shall be mentioned 

in more detail in the next chapter. 

7. GENERALIZED DESARGUES CONFIGURATIONS 
AND CROSS-POLYTOPES 

 

In the former Chapters we found complete quadri–

laterals (resp. quadrangles) and 3D-Desargues configu–

ration connected with cross-polytopes.  For such cross-

polytopes one can present a list of facets in Table 4 (at 

the end of text), see also [7].  

Each face-triangle or face-tetrahedron, together with 

“ideal” points and lines, gives rise to a complete face-

quadrilateral resp. a Desargues configuration in the 

projective extended 3-space spanned by the face-

tetrahedron.  

Similarly, a k-face-simplex, together with its ideal 

elements, defines what might be called a “i- Desargues 

configuration” generalizing the standard case to higher 

dimensions. Also here the system of incidences shall be 

shown in a Table 5 (also at the end of text). 
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Table 4. Numbers of k-facets of a cross-polytope P2n  

dim name points lines 2-facets 3-facets 4-facets 5-facets 6-facets n--1 

1 segment 2 1       

2 quadrangle 4 4 1      

3 octahedron 6 12 8 1     

4 16-cell 8 24 32 16 1    

5 Pentacross 10 40 80 80 32 1   

6 Hexacross 12 60 160 240 192 64 1  

7 Heptacross 14 84 280 560 672 448 128 1 

⋮  ⋮  ⋮  ⋮  ⋮    

n n-Cross 
points 

2n 

lines 

4
3

n 
 
 

 

planes 

8
4

n 
 
 

 

k-facets: 

12 ,
1

k n
k n

k

+  
< 

+ 
 

(n-1)-

facets: 

2n 

Table 5. Numbers of incident subspaces within  -dimensional generalized Desargues configurations 

dim incident  

with a 

points lines planes 3-spaces 4-spaces 5-spaces 6-spaces  

point 1 2 1 

line 3 1 1 2 

plane 6 4 1 

 

point 1 3 3 1 

line 3 1 2 1 

plane 6 4 1 1 
3 

3-space 10 10 5 1 

 

point 1 4 6 4 1 

line 3 1 3 3 1 

plane 6 4 1 2 1 

3-space 10 10 5 1 1 

4 

4-space 15 20 15 6 1 

 

point 1 5 10 10 5 1 

line 3 1 4 6 4 1 

plane 6 4 1 3 3 1 

3-space 10 10 5 1 2 1 

4-space 15 20 15 6 1 1 

5 

5-space 21 35 35 21 7 1 

 

point 1 6 15 20 15 6 1 

line 3 1 5 10 10 5 1 

plane 6 4 1 4 6 4 1 

3-space 10 10 5 1 3 3 1 

4-space 15 20 15 6 1 2 1 

5-space 21 35 35 21 7 1 1 

6 

6-space 28 56 70 56 28 8 1 

 

point 1 , ...dim
n

k subspaces
k

 
 
 

 

line 3 1 
1n

k

− 
 
 

 

plane 6 4 1 
2n

k

− 
 
 

 

3-space 10 10 5 1 
3n

k

− 
 
 

 

⋮  
2 ...dim

,
...dim

p p subspace

k k subspaces

+ 
 
 

 1 
...dim

,
...dim

n p p subspace

k k subspaces

− 
 
 

 

(n-1)-space 
1n

k

+ 
 
 

 1 1 

n 

n-space 
2n

k

+ 
 
 

 1 
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8. CONCLUSION  
 

Starting from the discovery of a “remarkable point” 

occurring at perspective quadrangles in the projective 

enclosed Euclidean plane by the second author we 

could now generalize this fact to projective spaces 

over any coordinate field F with char F ≠ 2 and any 

dimension n ≥ 2.  

The key tool is the interpretation of the given pair of 

perspective p-gons as axonometric fundamental figure 

of a central axonometry mapping an affine cross-

polytope of a p-dimensional projective enclosed affine 

space to the given pair of p-gons in the k-space spanned 

by them. As the axonometric coordinate path in the 

image k-space uses the same projective coordinates as 

are used in the original p-space, the calculation of 

occurring incidences acts on Zeroes and Ones alone.  
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ЗАПАЖАЊА О ПЕРСПЕКТИВНИМ 

СИМПЛЕКСИМА 

 

Г. Вајс, Х. Ебисуи 

 

Два троугла једне равни која су у перспективном 

положају се повезују са Дезарговом теоремом која је 

заслужна за чињеницу да скуп координата у равни 

представља поље. Ова позната теорема омогућава 

очигледно тумачење тростране пирамиде у простору 

коју секу две равни.  

Овај чланак је посвећен генерализацији Дезаргове 

теореме на перспективне симплексе у пројективном 

н-простору и њихових линеарних ликова у 

потпростору. На овај начин могу се открити 

значајне инциденције и конфигурације. Полазна 

тачка у овом истраживању је равни лик 

перспективних четвороуглова у коме је други аутор 

овог рада открио изузетно неочекивани лик. Доказ 

за ово изузетно тврђење се заснива на тумачењу 

равног лика бога Ебису као централне пројекције 

(пројективног) октаедра у 4Д простору. Овај 

принцип се може проширити и на већи број 

димензија.  

 

 


