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1. INTRODUCTION

On Design Optimization of a Composite
Impact Attenuator Under Dynamic Axial
Crushing

Motorization brings two significant challenges to the modern society.
Firstly, road and vehicle safety becomes increasingly important, which has
notably heightened legislative requirements by introducing more effective
protective systems to the vehicle. Secondly, there is an ever-growing
concern in environment and sustainability, which largely push up the
lightweight standards to reduce fuel consumption. For these reasons, the
automotive industry has devoted a substantial effort to deliver more
crashworthy vehicles for addressing these two competing issues
simultaneously. Over the past two decades design optimization has been
developed as a powerful tool to seek the highest possible crashworthiness
and lightest possible structure for various vehicles, therefore becoming an
important topic of research. In crashworthiness optimization, direct
coupling method may be inefficient since iterative non-linear FEA during
optimization usually require huge computational efforts and take the high
risk of premature simulation failure prior to a proper convergence. As a
result, surrogate models (or metamodels) are more often used as an
alternative for formulating the design criteria in terms of an explicit
function of design variables in advance of optimization, which has proven
an effective and sometimes a unique approach. The idea of surrogate
modeling is to construct an approximate function based on a series of
sampling evaluations, in which design space is typically sampled using the
design of experiment methods. Then, the FEA is performed at these sample
points to establish surrogate models with a certain confidence of
approximation for crashworthiness optimization.

This paper provides the results obtained from an optimization procedure
on a composite impact attenuator, under dynamic axial crushing, using
two different metamodels, such as Radial Basis Function and Kriging. In
particular the sizing optimization for some geometric parameters was
solved combining the commercial solver LS-DYNA with the optimizer LS-
OPT. In order to measure the fitness of results and do a comparison
between different surrogates, global error parameters were used, such as
root mean squared error, maximum residual error and coefficient of
determination.
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to deliver more crashworthy vehicles for addressing
these two competing issues simultaneously. Thin-walled
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sustainability, which largely push up the lightweight
standards to reduce fuel consumption. For these reasons,
the automotive industry has devoted a substantial effort
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structures are of great importance in automotive
crashworthiness design, because of their high crash
energy absorption capability and their potential for light
weighting. To identify the best compromise between
these two requirements, numerical simulation and
optimization is needed [1-6]. Due to the numerical noise
and physical bifurcation in crash response, gradient
based optimization algorithms cannot be used directly
here. On the other hand, because of high computational
cost for crash simulation, it is improper to apply
evolutionary algorithms directly. To overcome the
above problems, surrogate models are generally built to
capture the crash response [7,8]. The idea of surrogate
modeling is to construct an approximate function based
on a series of sampling evaluations, in which design
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space is typically sampled using the design of
experiment methods [9]. Then, the FEA is performed at
these sample points to establish surrogate models with a
certain confidence of approximation for crashworthiness
optimization.

This paper provides the results obtained from an
optimization procedure on a composite impact
attenuator, under dynamic axial crushing, using two
different metamodels, such as Radial Basis Function
(RBF) and Kriging. In particular the sizing optimization
for some geometric parameters was solved combining
the commercial solver LS-DYNA with the optimizer
LS-OPT. In order to measure the fitness of results and
do a comparison between different surrogates, global
error parameters were used, such as root mean squared
error, maximum residual error and coefficient of
determination.

2. SURROGATE MODELING

In crashworthiness optimization, direct coupling method
may be inefficient and sometimes impossible since
iterative non-linear FEA during optimization usually
require enormous computational efforts and take the
high risk of premature simulation failure prior to a
proper convergence. As a result, surrogate models or
metamodels are more often used as an alternative for
formulating the design criteria in terms of an explicit
function of design variables in advance of optimization,
which has proven an effective and sometimes a unique
approach [10].

In this study comparative analysis of Radial Basis
Function and Kriging metamodels were carried out
using Latin Hypercube design of experiment;
approximated functions were created using ten
simulation points and fifteen iterations with sequential
domain reduction strategy. Below it is presented a brief
description of such models.

2.1 Radial basis function model

Radial basis function model was developed for scattered
multivariate data interpolation by using a series of basis
functions that are symmetric and centred at each
sampling point. Radial basis functions are typically
formulated using the Hardy’s formula [11]:

)= ¢jp; )+ Ap(r(x,x)) (1)
i=1

j=1

where m is the number of the polynomial terms, ¢; is the
coefficient for polynomial basis function pj(x) and n is
the number of sample points. A; is the weighted
coefficient for the term for the i-th variable, r(x,x;) is the
Euclidean distance expressed in terms of lIx-x;ll and @(r)
is the radial basis function.

2.2 Kriging model

In recent years, the Kriging method has found wider
application as a spatial prediction method in engineering
design. The basic postulate of this formulation, given by
Simpson [12], is:
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yx) = f)+Z(x). 2

where y(x) is the unknown function of interest, f(x)
models the global trend of the function of interest and
Z(x) models the correlation between the points by a
stochastic process whose mean is zero and variance is
o’ Z(x) provides local deviations and the covariance
between different points is modelled as:

Cov(Z(x),Z(x)) =0 R(R(x.x D . (3)

With L the number of sampling points, R is the LxL
correlation matrix defined by Gaussian correlation
function R(x;,x;) as follows:

R(x,xj) = Hexp[—@k (e — xk )2} @
k=1

where n is the number of variables, 0y is the unknown
correlation parameter to determine and x;* is the k-th
component of sample point X;.

2.3 Successive response surface method

When performing a surrogate-based optimization, a
basic assumption is that the surrogate model is
sufficiently accurate and it is only necessary to find the
optimum design using the established surrogate model
[13]. However the surrogate model obtained using
initial samples will probably not be accurate in the local
region of the final optimum. It is common to exploit this
local region by sequentially positioning additional
samples inside. On the other hand, exploring design
space is a strategy to increase the global accuracy of a
surrogate model. Considering both exploitation and
exploration, successive response surface method
(SRSM) [14] has been proposed, in which the region of
interest (Rol) is gradually shrunk to a smaller area
around the optimum by panning and zooming within the
design space during the iterations (Figure 1). In the
successive surrogate modeling method, the center of
Rol at the (k+1)-th iteration is the optimum x® of the
k-th iteration and its size is a fraction of the size of the
k-th iteration, calculated using the distance between the
optimum and the center of the current Rol.
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Figure 1. Updating process of Rol [3]
While SRSM has been demonstrated to be able to
identify the optimum region for various crashworthiness

problems [14-16], iterative resampling might be
prohibited in practice as crashworthiness simulations are
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rather expensive computationally. Implementation of
Latin hypercube design [17], which is a technique to
inherit previous sample points, might help reduce the
required number of sample points in subsequent
iterations.

3. STRUCTURAL OPTIMIZATION

The model of an impact attenuator in composite material
subjected to axial dynamic loading [18-20] was provided to
obtain the optimum solution comparing the two different
surrogates. LS-OPT was used to build the respective
metamodels, while LS-DYNA solver [21-24] was
implemented to conduct the explicit crash simulations.

In general, a problem of -crashworthiness
optimization can be formulated mathematically as:

min (or max) f (x)
s.t. g(x) <0 &)
xXp Sx< Xy

where f(x) and g(x) are the objective and constraint
vectors, respectively and x denotes the vector of design
variables.

In this study, the optimization goal is the maximum
response of the specific energy absorption (SEA)
constrained with the conditions of the maximum
acceleration, average acceleration, maximum stroke in
order to satisfy the requirements imposed by rules [21]
and maintain a controlled and progressive deformation.
Therefore, the mathematical model for the structural
optimization is as follows:

max SEA(t,12,t3)

Max_acceleration<65g
Average_acceleration<20g
Max_stroke<130mm

15g<Average_acc_1<25g (between 2 and 5 ms) 6)
subject toq 15g<Average_acc_2<25g (between 5 and 15 ms)
15g<Average_acc_3<25g (between 15 and 30 ms)
12<t<2

1.5512<25

2<t3<3

In such case the design variables are the three thickness of
each zone (t, t2 and t3 respectively), as shown in Figure 1,
parametrized directly in the LS-DYNA input file.

Time = 0 Fringe Levels
‘Contours of Shell Thickness 2.400e+00

min=1.68, at elem# 1 3

max=2.4, at elems 90 2.328€+00
2.266e+00

21840400

2.112e+00
2.040e+00
1.963e+00
1.896€+00
1.824e+00
1.7526+00
1.6808+00 |

z
kel
Figure 2. Impact attenuator configuration at the beginning

To compare different interpolation techniques, it is
possible to examine the difference between the obtained
data and the predicted one using the root mean squared
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error (RMSE), maximum residual error (€., and
coefficient of determination (R?). The first one is
computed for each function as follows:

RMSE = 7)

g;(yi - )
i=1

where P is the number of checkpoints, y; is the function
value at the point and y; is the predicted value using
metamodel. Maximum residual error is the maximum
value of the difference between the observed and
predicted response. The coefficient of determination is
evaluated as:

P 2
> Gi-9)
2 _ =l
R —P—2 8)
Yi—»
i=1

where hat symbol means the average value of the y; results.
4. RESULTS AND DISCUSSION

Table 1 shows the optimal values of the thicknesses for
Radial and Kriging metamodels, respectively. It is evident
how different surrogates give feasible and very comparable
solutions. In both cases, no great variation in term of values
can be noted between the second and the third zone;
therefore, the repartition of the structure into three parts
seems to be not necessary given the inclination of the shells
in the longitudinal direction. Only a smaller thickness must
be guaranteed into the first part of the attenuator, to reduce
the peak load and undergo a progressive and controlled
deformation.

Table 1. Variables optimal values for both surrogates

Metamodel Design variables
t 2 t3
RBF 1.21 2.06 2.10
Kriging 1.27 2.06 2.06

In terms of objective and constraints values it is
possible to note how both metamodels are able to
improve the base configuration (Table 2).

Table 2. Optimum results of RBF and Kriging metamodel

Base | RBF | Kriging
SEA (kJ/kg) 1491 | 16.90 | 16.99
Max_acc (g) 7728 | 5792 | 61.58
Average_acc (g) 15.79 | 15.64 15.45
Max_stroke (mm) 101.8 | 126.5 127.6

The accuracy of these models can be assessed using
statistical methods [25]. Therefore, the deviation of
predicted response from the actual value is evaluated by
RMS Error, maximum residual and R? values
respectively of the checkpoints for both configurations
(Table 3). This values must be small enough, except for
R? where a value near to unit should be obtained, to
accept the accuracy of predicted to calculated values.
Both for objective and constraints, the Kriging method
presents the best results for each criterion.

VOL. 45, No 3, 2017 = 437



Table 3. Accuracy for objective and constraints

RBF Kriging

RMSE(%)|€ax | R? | RMSE(%) | €nae | R?
SEA 0.01 |0.01f 1 le-11 le-11 | 1
Max_acc 1.6 0.05(0.97 3e-10 8e-12 | 1
Average_acc 2.8 0.01]0.54 4e-9 3e-11 | 1
Max_stroke 6.5 22.8(0.72 le-8 9e-8 1
Av_acc_1 4.7 0.02(0.89 le-8 le-10 | 1
Av_acc_2 4.5 0.03(0.79 2e-8 3e-10 | 1
Av_acc_3 8.6 0.04(0.74 9e-9 le-10 | 1

As the Kriging metamodel, for such crashworthiness
analysis, presents better behaviour than the RBF one,
from now on, only the Kriging results will be displayed.
Figure 3 shows the optimization history for variables and
objective varying iteration step. It is evident how the
domain of each thickness tends to reduce in time up to
converge to the optimal solution. Moreover also the SEA
value tends to stabilize around a value of about 17 kJ/kg.
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Figure 3. Optimization history for variables and objective

Sensitivity analysis allows to determine the
significance of the design variables. In LS-OPT two
sensitivity measures are implemented: Linear ANOVA
(Figure 4) and GSA/Sobol (Figure 5). ANOVA depicts
positive or negative influence, while Sobol just shows
the normalized absolute value. It is evident how the t3
variable, that depicts the thickness of the last zone of the
attenuator, is the most influential in terms of SEA,
followed by t2 and t. The same trend can be also
observed in terms of maximum stroke and average
acceleration. Only for maximum acceleration an
opposite trend is shown; in such case the first thickness
of the structure under impact has the greatest relevance.
This is obvious because the maximum acceleration is
reached in the first time intervals, when the attenuator
comes into contact with the rigid wall.

Sensitivities Plot for SEA_
with 95% Confidence Interval

5 4 5 5 ]
Terms in expansion of SEA

Figure 4. ANOVA values for the objective

Stroke Ha
Average_acc
Max_acc
SEA

0 80 100

40 0
% Influence on Responses/Composites

Figure 5. Sobol values for multiple responses

The three dimensional response surfaces obtained
from the Kriging model and simulation points were
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plotted for the average acceleration constraint vs. design
variables (Figure 6). The quadratic trend is able to
capture minimum and maximum points.

The diagram of deceleration vs. displacement for the
base and optimized configuration is illustrated in Figure
7. For the optimized solution, it is evident a more
constant acceleration, a lower peak and a more
extensive deformation respect to the base geometry. The
new configuration guarantees a mass reduction of about
12%, a specific energy absorption greater than about
14% respect to the original FE simulated model. Figure
8 shows the progressive deformation of the optimized
impact attenuator in time.
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Figure 7. Acceleration vs. displacement for base and
optimized configuration
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Figure 8. Deformation of the impact attenuator in time

5. CONCLUSION

In this study, single objective design optimization of a
composite impact attenuator was conducted using the
RBF and Kriging metamodels. The numerical models
were simulated by LS-DYNA finite element code and
coupled with surrogates through LS-OPT. The accuracy
of the results was assessed using statistical techniques.
Finally, a successful implementation of such optimization
by RBF and Kriging methods demonstrated that the
crushing performance in term of specific energy
absorption of the impact attenuator improved by 13% and
14%, respectively. From the statistical methods it is
evident how the Kriging method has a better capacity to
determine the optimum solution respect to the Radial one,
even if no great differences can be observed from the
point of view of the design variables values.
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OIITUMU3ALINIA YIAPA KOMITIO3UTHOT
NPUTYIHINBAYA IIOJ YTUIAJEM
JAHAMHNYKOI' AKCUJAJTHOT JIOMA

C. bopua, J. Oopagosuh, I'. Be1unrapau

Mortopuzanmja  JOHOCHM  JABa  BEJIMKAa  HM3a30Ba
caBpeMeHOM JpywuTBy. IIpBo, 0e30emHOCT myTeBa H
BO3WJIa TIOCTaje CBE 3HAYajHUja, IITO j€ MOCEOHO
10javyasio 3aKOHOJaBHE yCJIOBE 3a yBoleme eukacHuje
3aIITHTE CHCTeMa Ha Bo3miIy. Jpyro, moctoju cBe Behu
mpobJIeM y OKpY)KEhY M OIPKUBOCTH, IITO y BEIHKO]
MepH Typa CTaHIapJe Ka CMambeiby MOTPOLIKE FOpHBa.
N3 Tux pasnora, ayToMOOWJICKAa HWHAYCTPHja je
NOCBETWJIAa 3HAa4yajaH Hamop Ja UCIOpPY4YH BHIIE BO3MIA
OTHOTHUX Ha YZap palyd MCTOBPEMEHOI pellaBarma OBa
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JBa INUTama. TOKOM TIIPOTEKIEe JIBE JICLCHUje
ONTHMU3AIMja KOHCTPYKLHMja je pa3BHjeHa Kao MOhHO
CPE/ICTBO 3a IpeTpary BO3wiia Koja Cy HajoTHOpHHja Ha
yIap ca HajJakIIoM MOTyhoM CTPYKTYpOM 3a pa3siduuTa
BO3WJIA, CTOra OTIHMMH3allMja IIOCTaje BaKHA TeMa
UCTpaXuBama. Y ONTHMH3AaLMjU OTHOpa Ha yxap,
IUpeKTHa MeToja Moxke OwTH HeedukacHa, jep
utepatuBHa HenuHeapHa FEA  Meroma  Tokom
ONTHMH3AlMje OOMYHO 3axTeBa BEIHKE payyHapCcKe
HArope M JIOBOJU JI0 BUCOKOT PH3HMKA O] MPEBPEMEHOT
Heycrexa CHMyJialjje Tpe KOPEKTHE KOHBEpreHIHje.
Kao pesynrar Tora, cyporatHu Mojaenu (MM
MeTaMoOJIeNN) ce cBe yenrhe KOPHCTE Kao alITepHATHBA
3a (¢opMmyiHcamke NPOJEeKTaHTHUX KpHUTEpUjymMa Yy
NOrjielly eKCIUIMOUTHHX TPOMEHJBUBHX  (yHKIHja
Q3ajHa Y YHAIpeIoj ONTHMU3AHUjH, KOjU je JOKa3aHO
epuKacaH ¥ TIOHEKA] jeOUHCTBEH IpuCcTym. HMneja
cyporar MoZenHpama je Ia HW3rpagd MPUOIIKHO
(¢yHKIMjy Ha OCHOBY HH3a TIpOIIEHA pPa3IUIUTHX
y30paka, y KOME je JAu3ajH OOWYHO TIpUMEepax
Kopumhema elcrnepueMHTanHe meroae. 3atum, FEA
MeTola je INpUMEHhEH Ha OBE Y30pKe na Ou ce
yCIOCTaBHO  cyporar  Mofel ca  onpeheHoM
aNPOKCUMAIIN]OM 3a ONTUMH3AL]Y BO3WIA y CUTyalHUjH
ypaja.

OBaj pan naje pesynrare JOOHMjeHE W3 MPOIEAYPE
ONTHMHM3ALIMje KOMIO3UTHOT IPUTYIIMBAYa Ha yaap Mok
yTULAjeM IHHAMUYKOI aKCHjaTHOT yjapa, kopuctehu
IBa pa3MYMTa MeTaMojeNla, Kao IuTo cy Panmmanna
OcnoBHa ¢ynkmmja wu Kpurmar. OnruMuzamija
JUMEH3Mja 32 HEeKe T€OMETPHjCKE TapaMeTpe je perieHa
KOMOMHaIMjoM KomepuujamHux conBepa LS-DYNA ca
ontumm3aropom LS-OPT. Jla ©Ou ce wusmMepuina
NOTOJIHOCT ~ pe3yirara ¥ YIOPEAWIN  Pa3InuuTe
cCyporaTHe Mojelle, KOopumheHH Ccy  riobaiHu
napaMeTpy Tpellaka, Kao INTO je KOpPEeH Cpelmbe
KBapJlaTHE TpeIIke, MaKCHMallHa IpeocTana Ipelika
KoeUuIHjeHT oapehuBama.
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