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Motorization brings two significant challenges to the modern society. 

Firstly, road and vehicle safety becomes increasingly important, which has 

notably heightened legislative requirements by introducing more effective 

protective systems to the vehicle. Secondly, there is an ever-growing 

concern in environment and sustainability, which largely push up the 

lightweight standards to reduce fuel consumption. For these reasons, the 

automotive industry has devoted a substantial effort to deliver more 

crashworthy vehicles for addressing these two competing issues 

simultaneously. Over the past two decades design optimization has been 

developed as a powerful tool to seek the highest possible crashworthiness 

and lightest possible structure for various vehicles, therefore becoming an 

important topic of research. In crashworthiness optimization, direct 

coupling method may be inefficient since iterative non-linear FEA during 

optimization usually require huge computational efforts and take the high 

risk of premature simulation failure prior to a proper convergence. As a 

result, surrogate models (or metamodels) are more often used as an 

alternative for formulating the design criteria in terms of an explicit 

function of design variables in advance of optimization, which has proven 

an effective and sometimes a unique approach. The idea of surrogate 

modeling is to construct an approximate function based on a series of 

sampling evaluations, in which design space is typically sampled using the 

design of experiment methods. Then, the FEA is performed at these sample 

points to establish surrogate models with a certain confidence of 

approximation for crashworthiness optimization. 

This paper provides the results obtained from an optimization procedure 

on a composite impact attenuator, under dynamic axial crushing, using 

two different metamodels, such as Radial Basis Function and Kriging. In 

particular the sizing optimization for some geometric parameters was 

solved combining the commercial solver LS-DYNA with the optimizer LS-

OPT. In order to measure the fitness of results and do a comparison 

between different surrogates, global error parameters were used, such as 

root mean squared error, maximum residual error and coefficient of 

determination. 
 

Keywords: crashworthiness, optimization, surrogate model, axial 

crushing, LS-OPT, LS-DYNA. 

 

 
1. INTRODUCTION 

 

Motorization brings two significant challenges to the 

modern society. Firstly, road and vehicle safety 

becomes increasingly important, which has notably 

heightened legislative requirements by introducing more 

effective protective systems to the vehicle. Secondly, 

there is an ever-growing concern in environment and 

sustainability, which largely push up the lightweight 

standards to reduce fuel consumption. For these reasons, 

the automotive industry has devoted a substantial effort 

to deliver more crashworthy vehicles for addressing 

these two competing issues simultaneously. Thin-walled 

structures are of great importance in automotive 

crashworthiness design, because of their high crash 

energy absorption capability and their potential for light 

weighting. To identify the best compromise between 

these two requirements, numerical simulation and 

optimization is needed [1-6]. Due to the numerical noise 

and physical bifurcation in crash response, gradient 

based optimization algorithms cannot be used directly 

here. On the other hand, because of high computational 

cost for crash simulation, it is improper to apply 

evolutionary algorithms directly. To overcome the 

above problems, surrogate models are generally built to 

capture the crash response [7,8]. The idea of surrogate 

modeling is to construct an approximate function based 

on a series of sampling evaluations, in which design 
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space is typically sampled using the design of 

experiment methods [9]. Then, the FEA is performed at 

these sample points to establish surrogate models with a 

certain confidence of approximation for crashworthiness 

optimization. 

This paper provides the results obtained from an 

optimization procedure on a composite impact 

attenuator, under dynamic axial crushing, using two 

different metamodels, such as Radial Basis Function 

(RBF) and Kriging. In particular the sizing optimization 

for some geometric parameters was solved combining 

the commercial solver LS-DYNA with the optimizer 

LS-OPT. In order to measure the fitness of results and 

do a comparison between different surrogates, global 

error parameters were used, such as root mean squared 

error, maximum residual error and coefficient of 

determination. 
 

2. SURROGATE MODELING 

 

In crashworthiness optimization, direct coupling method 

may be inefficient and sometimes impossible since 

iterative non-linear FEA during optimization usually 

require enormous computational efforts and take the 

high risk of premature simulation failure prior to a 

proper convergence. As a result, surrogate models or 

metamodels are more often used as an alternative for 

formulating the design criteria in terms of an explicit 

function of design variables in advance of optimization, 

which has proven an effective and sometimes a unique 

approach [10].  

In this study comparative analysis of Radial Basis 

Function and Kriging metamodels were carried out 

using Latin Hypercube design of experiment; 

approximated functions were created using ten 

simulation points and fifteen iterations with sequential 

domain reduction strategy. Below it is presented a brief 

description of such models. 

 
2.1 Radial basis function model 

 

Radial basis function model was developed for scattered 

multivariate data interpolation by using a series of basis 

functions that are symmetric and centred at each 

sampling point. Radial basis functions are typically 

formulated using the Hardy’s formula [11]: 
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where m is the number of the polynomial terms, cj is the 

coefficient for polynomial basis function pj(x) and n is 

the number of sample points. λi is the weighted 

coefficient for the term for the i-th variable, r(x,xi) is the 

Euclidean distance expressed in terms of ||x-xi|| and ϕ(r) 

is the radial basis function. 

 
2.2 Kriging model 

 

In recent years, the Kriging method has found wider 

application as a spatial prediction method in engineering 

design. The basic postulate of this formulation, given by 

Simpson [12], is: 

 ( ) ( ) ( )y x f x Z x= + . (2) 

where y(x) is the unknown function of interest, f(x) 

models the global trend of the function of interest and 

Z(x) models the correlation between the points by a 

stochastic process whose mean is zero and variance is 

σ2. Z(x) provides local deviations and the covariance 

between different points is modelled as:  

 2( ( ), ( )) ([ ( , )])i j i jCov Z x Z x R R x xσ= . (3) 

With L the number of sampling points,R is the LxL 

correlation matrix defined by Gaussian correlation 

function R(xi,xj) as follows:  
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where n is the number of variables, θk is the unknown 

correlation parameter to determine and xi
k is the k-th 

component of sample point xi.  
 

2.3 Successive response surface method  
 

When performing a surrogate-based optimization, a 

basic assumption is that the surrogate model is 

sufficiently accurate and it is only necessary to find the 

optimum design using the established surrogate model 

[13]. However the surrogate model obtained using 

initial samples will probably not be accurate in the local 

region of the final optimum. It is common to exploit this 

local region by sequentially positioning additional 

samples inside. On the other hand, exploring design 

space is a strategy to increase the global accuracy of a 

surrogate model. Considering both exploitation and 

exploration, successive response surface method 

(SRSM) [14] has been proposed, in which the region of 

interest (RoI) is gradually shrunk to a smaller area 

around the optimum by panning and zooming within the 

design space during the iterations (Figure 1). In the 

successive surrogate modeling method, the center of 

RoI at the (k+1)-th iteration is the optimum x(k)* of the 

k-th iteration and its size is a fraction of the size of the 

k-th iteration, calculated using the distance between the 

optimum and the center of the current RoI. 

  

Figure 1. Updating process of RoI [3] 

While SRSM has been demonstrated to be able to 

identify the optimum region for various crashworthiness 

problems [14-16], iterative resampling might be 

prohibited in practice as crashworthiness simulations are 
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rather expensive computationally.  Implementation of 

Latin hypercube design [17], which is a technique to 

inherit previous sample points, might help reduce the 

required number of sample points in subsequent  

iterations. 

 
3. STRUCTURAL OPTIMIZATION 

 

The model of an impact attenuator in composite material 

subjected to axial dynamic loading [18-20] was provided to 

obtain the optimum solution comparing the two different 

surrogates. LS-OPT was used to build the respective 

metamodels, while LS-DYNA solver [21-24] was 

implemented to conduct the explicit crash simulations.  

In general, a problem of crashworthiness 

optimization can be formulated mathematically as: 

 

min  (or max) ( )

s.t. ( ) 0
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where f(x) and g(x) are the objective and constraint 

vectors, respectively and x denotes the vector of design 

variables.  

In this study, the optimization goal is the maximum 

response of the specific energy absorption (SEA) 

constrained with the conditions of the maximum 

acceleration, average acceleration, maximum stroke in 

order to satisfy the requirements imposed by rules [21] 

and maintain a controlled and progressive deformation. 

Therefore, the mathematical model for the structural 

optimization is as follows: 

max ( , 2, 3)

Max_acceleration<65g

Average_acceleration<20g

Max_stroke<130mm

15g<Average_acc_1<25g (between 2 and 5 ms)

subject to 15g<Average_acc_2<25g (between 5 and 15 ms)

15g<Average_acc_3<25g (between

SEA t t t

 15 and 30 ms)
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In such case the design variables are the three thickness of 

each zone (t, t2 and t3 respectively), as shown in Figure 1, 

parametrized directly in the LS-DYNA input file. 

 

Figure 2. Impact attenuator configuration at the beginning 

To compare different interpolation techniques, it is 

possible to examine the difference between the obtained 

data and the predicted one using the root mean squared 

error (RMSE), maximum residual error (εmax) and 

coefficient of determination (R2). The first one is 

computed for each function as follows:  

                2
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where P is the number of checkpoints, yi is the function 

value at the point andyi is the predicted value using 

metamodel. Maximum residual error is the maximum 

value of the difference between the observed and 

predicted response. The coefficient of determination is 

evaluated as: 
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where hat symbol means the average value of the yi results. 

 
4. RESULTS AND DISCUSSION 

 

Table 1 shows the optimal values of the thicknesses for 

Radial and Kriging metamodels, respectively. It is evident 

how different surrogates give feasible and very comparable 

solutions. In both cases, no great variation in term of values 

can be noted between the second and the third zone; 

therefore, the repartition of the structure into three parts 

seems to be not necessary given the inclination of the shells 

in the longitudinal direction. Only a smaller thickness must 

be guaranteed into the first part of the attenuator, to reduce 

the peak load and undergo a progressive and controlled 

deformation. 

Table 1. Variables optimal values for both surrogates 

Design variables 
Metamodel 

t t2 t3 

RBF 1.21 2.06 2.10 

Kriging 1.27 2.06 2.06 

 

In terms of objective and constraints values it is 

possible to note how both metamodels are able to 

improve the base configuration (Table 2). 

Table 2. Optimum results of RBF and Kriging metamodel 

 Base RBF Kriging 

SEA (kJ/kg) 14.91 16.90 16.99 

Max_acc (g) 77.28 57.92 61.58 

Average_acc (g) 15.79 15.64 15.45 

Max_stroke (mm) 101.8 126.5 127.6 

 

The accuracy of these models can be assessed using 

statistical methods [25]. Therefore, the deviation of 

predicted response from the actual value is evaluated by 

RMS Error, maximum residual and R2 values 

respectively of the checkpoints for both configurations 

(Table 3). This values must be small enough, except for 

R2 where a value near to unit should be obtained, to 

accept the accuracy of predicted to calculated values. 

Both for objective and constraints, the Kriging method 

presents the best results for each criterion. 
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Table 3. Accuracy for objective and constraints 

 RBF Kriging 

 RMSE(%) εmax R2 RMSE(%) εmax R2 

SEA 0.01 0.01 1 1e-11 1e-11 1 

Max_acc 1.6 0.05 0.97 3e-10 8e-12 1 

Average_acc 2.8 0.01 0.54 4e-9 3e-11 1 

Max_stroke 6.5 22.8 0.72 1e-8 9e-8 1 

Av_acc_1 4.7 0.02 0.89 1e-8 1e-10 1 

Av_acc_2 4.5 0.03 0.79 2e-8 3e-10 1 

Av_acc_3 8.6 0.04 0.74 9e-9 1e-10 1 

 

As the Kriging metamodel, for such crashworthiness 

analysis, presents better behaviour than the RBF one, 

from now on, only the Kriging results will be displayed. 

Figure 3 shows the optimization history for variables and 

objective varying iteration step. It is evident how the 

domain of each thickness tends to reduce in time up to 

converge to the optimal solution. Moreover also the SEA 

value tends to stabilize around a value of about 17 kJ/kg.  

 

Figure 3. Optimization history for variables and objective 

Sensitivity analysis allows to determine the 

significance of the design variables. In LS-OPT two 

sensitivity measures are implemented: Linear ANOVA 

(Figure 4) and GSA/Sobol (Figure 5). ANOVA depicts 

positive or negative influence, while Sobol just shows 

the normalized absolute value. It is evident how the t3 

variable, that depicts the thickness of the last zone of the 

attenuator, is the most influential in terms of SEA, 

followed by t2 and t. The same trend can be also 

observed in terms of maximum stroke and average 

acceleration. Only for maximum acceleration an 

opposite trend is shown; in such case the first thickness 

of the structure under impact has the greatest relevance. 

This is obvious because the maximum acceleration is 

reached in the first time intervals, when the attenuator 

comes into contact with the rigid wall. 

 

Figure 4. ANOVA values for the objective 

 

Figure 5. Sobol values for multiple responses 

The three dimensional response surfaces obtained 

from the Kriging model and simulation points were 

plotted for the average acceleration constraint vs. design 

variables (Figure 6). The quadratic trend is able to 

capture minimum and maximum points. 

The diagram of deceleration vs. displacement for the 

base and optimized configuration is illustrated in Figure 

7. For the optimized solution, it is evident a more 

constant acceleration, a lower peak and a more 

extensive deformation respect to the base geometry. The 

new configuration guarantees a mass reduction of about 

12%, a specific energy absorption greater than about 

14% respect to the original FE simulated model. Figure 

8 shows the progressive deformation of the optimized 

impact attenuator in time.   

 

 

Figure 6. Response surfaces for the average acceleration 

 

Figure 7. Acceleration vs. displacement for base and 
optimized configuration 



FME Transactions VOL. 45, No 3, 2017 ▪ 439

 

 

 

Figure 8. Deformation of the impact attenuator in time 

 
5. CONCLUSION 

 

In this study, single objective design optimization of a 

composite impact attenuator was conducted using the 

RBF and Kriging metamodels. The numerical models 

were simulated by LS-DYNA finite element code and 

coupled with surrogates through LS-OPT. The accuracy 

of the results was assessed using statistical techniques. 

Finally, a successful implementation of such optimization 

by RBF and Kriging methods demonstrated that the 

crushing performance in term of specific energy 

absorption of the impact attenuator improved by 13% and 

14%, respectively. From the statistical methods it is 

evident how the Kriging method has a better capacity to 

determine the optimum solution respect to the Radial one, 

even if no great differences can be observed from the 

point of view of the design variables values.        
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ОПТИМИЗАЦИЈА УДАРА КОМПОЗИТНОГ 

ПРИГУШИВАЧА ПОД УТИЦАЈЕМ 

ДИНАМИЧКОГ АКСИЈАЛНОГ ЛОМА 
 

С. Бориа, Ј. Обрадовић, Г. Белингарди 
 

Моторизација доноси два велика изазова 

савременом друштву. Прво, безбедност путева и 

возила постаје све значајнија, што је посебно 

појачало законодавне услове за увођење ефикасније 

заштите система на возилу. Друго, постоји све већи 

проблем у окружењу и одрживости, што у великој 

мери гура стандарде ка смањењу потрошње горива. 

Из тих разлога, аутомобилска индустрија је 

посветила значајан напор да испоручи више возила 

отпотних на удар ради истовременог решавања ова 

два питања. Током протекле две деценије 

оптимизација конструкција је развијена као моћно 

средство за претрагу возила која су најотпорнија на 

удар са најлакшом могућом структуром за различита 

возила, стога отпимизација постаје важна тема 

истраживања. У оптимизацији отпора на удар, 

директна метода може бити неефикасна, јер 

итеративна нелинеарна FEA метода током 

оптимизације обично захтева велике рачунарске 

напоре и доводи до високог ризика од превременог 

неуспеха симулације пре коректне конвергенције. 

Као резултат тога, сурогатни модели (или 

метамодели) се све чешће користе као алтернатива 

за формулисање пројектантних критеријума у 

погледу експлицитних променљивих функција 

дизајна у унапредој оптимизацији, који је доказано 

ефикасан и понекад јединствен приступ. Идеја 

сурогат моделирања је да изгради приближно 

функцију на основу низа процена различитих 

узорака, у коме је дизајн обично примерак 

коришћења елспериемнталне методе. Затим, FEA 

метода је примењен на ове узорке да би се 

успоставио сурогат модел са одређеном 

апроксимацијом за оптимизацију возила у ситуацији 

урада.  

Овај рад даје резултате добијене из процедуре 

оптимизације композитног пригушивача на удар под 

утицајем динамичког аксијалног удара, користећи 

два различита метамодела, као што су Радиална 

Основна функција и Кригинг. Оптимизација 

димензија за неке геометријске параметре је решена 

комбинацијом комерцијалних солвера LS-DYNA са 

оптимизатором LS-OPT. Да би се измерила 

погодност резултата и упоредили различите 

сурогатне моделе, коришћени су глобални 

параметри грешака, као што је корен средње 

квардатне грешке, максимална преостала грешка и 

коефицијент одређивања.   

 

 


