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Prediction and Geometric Adaptive 
Control of Surface Roughness in  
Drilling Process  
 
Surface roughness is an essential factor to evaluate the quality of 
component that decides the wear and fatigue properties and influences the 
quality of assembly. This research article focuses on real time control of 
surface finish in drilling using geometric adaptive control strategy. The 
dynamometer sensor and accelerometer are used to capture the force and 
vibration signals during drilling. A cubic SVM model is employed to model 
the surface roughness using the force, vibration and machining 
parameters. The accuracy of the prediction model is found to be 94 %, and 
the model is successfully used to control the roughness in drilling. The 
adaptive scheme uses a Neural Network (NN) controller to adjust the 
drilling parameters for ensuring the set roughness tolerance. The 
performance of the controller shows the potentiality of the presented 
methodology for the practical application in industries.  
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1. INTRODUCTION  
 

Drilling is a primary and indispensible machining 
process and accounts for 40% of the metal cutting 
operations and has a large number of applications in the 
manufacturing and aerospace industries [1]. The surface 
roughness of the drilled holes is an essential factor to be 
monitored and controlled for better assembly of parts. 
The functional attributes of the products such as 
friction, wear, lubrication, coating, fatigue are greatly 
affected by the surface roughness of the component. 

The surface roughness is an important output 
variable in machining which is to be measured and 
controlled in real time. Surface roughness measurement 
in real time through direct methods such as stylus 
profilometers, scanning electron microscope and optical 
methods are used less due to the difficulty in online 
implementation [2]. Therefore, indirect methods of 
measurement of surface roughness through other 
auxiliary variables such as force, vibration, acoustic 
emission, ultrasound, current, power, torque etc., can be 
achieved which serves as an indication of surface 
roughness [3,4,5]. 

A review of various advanced monitoring techniques 
in machining for monitoring of tool wear and surface 
roughness was presented by Teti et al [6]. Many 
empirical models have been developed by various 
researchers for prediction of internal surface roughness 
of the drilled holes. But, they are not efficient due to 
other influential factors such as tool geometry, tool and 
workpiece material etc [7]. Hence, in recent years neural 

networks and fuzzy logics are used in modeling of 
surface roughness due to its ability to model nonlinear 
dynamic systems. An indirect method of roughness 
prediction using force and torque measurements was 
proposed by Sanjay et al [2] and a comparative study 
was made between ANFIS and neural network 
modeling. 

Visshy Karri et al [3] have presented a comparison 
study for prediction of surface roughness of drilled 
holes using back propagation, radial basis function and 
optimization layer by layer neural networks. Marek 
Vrabel et al had used a feed forward back propagation 
neural network for modeling and prediction of surface 
roughness in drilling Udimet 720. A back propagation 
neural network was used by Sanjay et al for estimating 
the surface roughness and the results were compared to 
the mathematical analysis using inverse co-efficient 
matrix method [4].  

Cruz et al had estimated the hole diameter and 
surface roughness of holes using a multi sensory 
approach with hall effect, acoustic emission, 
accelerometer and dynamometer sensors by a back 
propagation feed forward neural network algorithm [8].  

Support Vector Machine (SVM) model for pre-
dicting roughness in machining process was proposed 
by a few researchers [9]. Roughness model of alumi-
nium components during milling was developed using 
Least Square SVM which gives an accuracy of 92% 
[10]. SVM prediction model for surface roughness of 
AISI 304 austenitic stainless steel was developed and 
three different SVM models were compared. Spider 
SVM prediction model was found to be suitable for 
turning process [11]. A surface roughness prediction 
and classification using SVM was proposed by Issam et 
al [12] and a comparison was made with k-nearest 
neighbour, decision tree and random forest classifiers 
and the effectiveness of SVM was proved.  
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A comparative study on LS-SVM, ANOVA and 
neural networks for roughness prediction of AISI 4340 
steel and AISID2 steel were carried out [13]. The results 
showed that LS-SVM outperformed in terms of high 
accuracy. The experimental results showed the SVM is 
an effective tool for modelling of surface roughness of 
machined components. Based on the conclusions in the 
previous studies the present research uses a cubic SVM 
for the prediction of surface roughness in drilling of 
EN24 steel. 

In conventional drilling machines, cutting para–
meters such as feed, speed and depth of cut are selected 
prior to machining based on machining handbooks or 
programmer’s experience. These parameters signifi–
cantly affect the production time, cause early failure of 
tool and also affect product quality. Hence, the cutting 
parameters must be varied based on the changes in the 
output state of the process to maintain the workpiece 
quality and improve tool life. To satisfy these criteria an 
adaptive control strategy for real time adjustment of the 
machining parameters to maximize productivity and 
surface finish is essential. 

Geometric adaptive control is specifically used in 
finishing operations to obtain a desired surface quality 
or part dimension irrespective of tool wear or tool 
deflection. A geometric adaptive control strategy in 
drilling can be used for maintaining the surface quality 
of the drilled holes at prescribed limit by varying the 
machining parameters; speed and feed based on 
auxiliary measurements such as force, vibration, 
current, acoustic emission and ultrasound that can be 
used for the prediction and control of surface roughness.    

A geometric adaptive control system of drilling 
process for real time control of surface roughness was 
proposed by Maral Vrabel [14] using neural networks 
for both predictive and adaptive controllers. An adaptive 
control system for achieving improved surface finish in 
high speed machining was presented by Giriraj et al for 
cutting speed correction to obtain consistent part quality 
by reducing the cutting force [15]. An in-process 
adaptive control to maintain the surface quality of the 
machined part in end milling was proposed by Potsang 
et al [16]. A neural network was applied as a decision 
making algorithm to predict the roughness and maintain 
it within the specification by adjusting the feed rate 
while maintaining the spindle speed constant based on 
force measurements. 

Lieh-Dai Yang et al [17] presented a fuzzy net based 
in-process surface roughness method to adaptively 
control the feed rate in end milling operations. The 
fuzzy nets consist of two subsystems; one for surface 
roughness prediction and the other for feed rate control. 
If the desired surface roughness is not achieved then a 
new value of feed rate is proposed to the system by the 
fuzzy controller. An adaptive control for in-process 
control of surface roughness using multiple regressions 
was proposed by Julie et al. The multiple regression 
based in-process surface roughness evaluation and 
adaptive control resulted in 100% success and 
implemented to control the surface roughness during 
milling operations [18]. The influence of cutting 
parameters in drilling nanocomposite laminates was 
presented by Zarif et al. The optimum drilling 

conditions were determined by the Taguchi's signal to 
noise ratio analysis [19]. Susai mary et al has presented 
an adaptive control method using multi-objective 
optimization techniques for control of tool wear and 
surface roughness [20,21].  

This paper presents a method for geometric adaptive 
control of surface roughness by adjusting the speed and 
feed rate based on auxiliary measurements of vibration 
and force signals. The vibration and force signals are 
analyzed in time domain to get the root mean square 
(RMS) of the signals which is a dominant measure for 
the prediction of surface roughness. The RMS of 
vibration, RMS of force, speed and feed serves as input 
to the cubic SVM roughness model. Based on the 
predicted roughness value both the machining 
parameters; speed and feed are adjusted in online to 
maintain the surface roughness of the drilled holes 
within the required specification thereby maintaining 
the surface finish and product quality.  

 
2. EXPERIMENTAL SETUP AND DETAILS  

 
Drilling experiments were conducted on a 3 HP milling 
machine (Model: LV-45, Make: LMW). Experiments 
were conducted based on a L25 orthogonal array with 
speed varying from 800 rpm to 1450 rpm and feed from 
75 mm/min to 140 mm/min. Through holes were drilled 
on a EN24 circular workpiece with 6mm twist drill bits. 
An accelerometer (KISTLER 8636C50) and tool 
dynamometer (RDMT-303) were used to measure the 
vibration and force signals during drilling. A schematic 
diagram and photograph of the experimental setup is 
given in figure 1 and 2. 

 
Figure 1. Schematic diagram of experimental setup 

During each drilling operation the force and 
vibration signals were recorded using LabVIEW 
software at a rate of 5k samples per second. A stylus 
profilometer (Taylor Hobson) was used to measure the 
surface roughness of the drilled holes. An additional ten 
experiments were conducted separately for validation 
purposes within the recommended cutting ranges.  
 A time domain analysis of the vibration and force 
signals acquired during drilling operations was carried 
out with LabVIEW software. The Root Mean Square 
(RMS) of the vibration and force signals serve as a good 
indication for surface roughness and hence used in the 
modeling of surface roughness [22, 23].  
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Figure 2. Photograph of Experimental setup 

The variations of RMS of vibration and RMS of for–
ce with surface roughness are given in figure 3 and 4. 

 
Figure 3. RMS of vibration and Surface roughness for 
different experiments  

 
Figure 4. RMS of force and Surface roughness measured 
for different experiments 

  
3. RESULTS AND DISCUSSION 
 
The presented geometric adaptive control system for 
surface roughness prediction and control involves the 
modeling of surface roughness; validation of the model; 
developing a adaptive control strategy using neural 
networks and validation of the control system. Each 
intent is discussed in detail and the results are presented. 

 
2.1 Cubic SVM modeling of Surface roughness  

 
Support Vector Machines are a most popular machine 
learning algorithms used for classification and 
modeling. For prediction of surface roughness in turning 
and milling SVM [9,11], LS-SVM [10,13] and spider 
SVM [12] were used by various researchers. A cubic 
SVM for prediction of surface roughness of the drilled 
holes is presented in this paper. It uses a 5-fold cross 
validation for accurate prediction of surface roughness.  
The inputs to the model includes the machining 
parameters; speed, feed, the RMS of vibration signals 
and RMS of force signals as shown in figure 5.  

 
Figure 7. Geometric adaptive control for surface roughness control 
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Figure 5. Cubic SVM model for surface roughness 
prediction 

The model is trained with an accuracy of 98 % and 
validation of the model with a new data set results in an 
accuracy of 94 % given in figure 6. 

 
Figure 6. Validation output of the cubic SVM model 
 
2.2 Geometric adaptive control of surface 
roughness by neural networks  

 
The purpose of the presented adaptive control scheme 
given in figure 7 is to adjust the CNC drilling process 
parameters; speed and feed based on the deviation in the 
desired surface roughness value ( d

aR ) as required. In 
this work the desired roughness value of the drilled 
holes is taken as 3 µm. When the roughness value 
predicted ( p

aR ) by the cubic SVM model exceeds 3 µm, 
an error signal ΔRa is generated [16]. Depending on the 
error data, the adaptation algorithm for change in feed 
rate and spindle speed of the CNC drilling machine is 
given by:  

1 a d

a

F F
F

F
⎛ ⎞−

Δ = −⎜ ⎟
⎝ ⎠

                 (1) 

and 1 a d

a

S S
S

S
⎛ ⎞−

Δ = −⎜ ⎟
⎝ ⎠

        (2) 

where ΔF, ΔS are the percentage change in feed and 
speed respectively. Fa is the actual feed and Fd is the 
desired feed. Sa is the actual speed and Sd is the desired 
speed. The desired speed and feed rates are those which 
give the minimum roughness value taken from the 
experimental results.  
The adapted feed and speed rates will be 

*new oldF F F= Δ                (3) 
 *new oldS S F= Δ          (4) 

 A neural controller is designed to implement these 
changes in speed and feed to minimize the surface 
roughness of the workpiece in the next machining cycle. 
The inputs to the neural controller are the error ( ), 
RMS of vibration signals and RMS of force signal. A 
feed forward back propagation network with a Leven–
berg-Marqardt algorithm is used for training the cont–
roller. The output from the controller is the percentage 
change in feed rate and spindle speed as shown in figure 
8.  

 
Figure 8. Neural network controller for control the feed and 
speed rate 

The results of the presented adaptive control scheme 
were validated for six different experimental conditions 
with GAC given in table 1.It was found that the surface 
roughness of the drilled holes were minimum with 
adaptive control than the experiments conducted 
without GAC. The variations in speed, feed and surface 
roughness are given in figures 9,10 and 11. 

Table 1. Validation data 

Exp 
No 

Speed 
(RPM) 

Feed 
(mm/min) 

Surface 
Roughness 
(without 
GAC) 

% 
Change in 

Speed 
(ΔS) 

% Change 
in Feed 

(ΔF) 
 

New 
Speed 
(RPM) 

New Feed 
(mm/min) 

Surface 
Roughness 
(with GAC) 

1 800 75 3.510 1.085 0.8065 868 60 1.0095 
2 950 90 4.962 1.424 0.7228 1352 65 1.7170 
3 1100 120 3.323 1.078 0.7665 1185 92 1.5370 
4 1300 140 5.193 0.731 0.6452 952 90 2.9357 
5 800 140 4.417 1.484 0.7903 1187 110 2.2147 
6 1100 140 4.962 1.360 0.5326 1496 75 2.9664 

 
 

 



428 ▪ VOL. 47, No 3, 2019 FME Transactions
 

 

 
Figure 9. Spindle speed with and without GAC 

 
Figure 10. Feed rate with and without GAC 

 
Figure 11. Surface roughness of drilled holes with and 
without GAC  

 
4. CONCLUSION  

 
A geometric adaptive control strategy for online control 
of surface roughness is presented. A cubic SVM model 
for the prediction of surface roughness using vibration 

and force signals is developed. The model is capable to 
predict the roughness of the drilled holes with an 
accuracy of 94 %. A neural network controller is used 
for implementing the adaptive control scheme for 
changing the feed and speed values to maintain the 
roughness within the prescribed limits. Results show 
that the GAC is able to control the surface roughness in 
real time and improves the quality of the workpiece. 
The limitation of the work is that the tool wear 
variations are negligible and are not considered for 
roughness model. The research can be further extended 
by considering the state of tool wear for prediction and 
control of surface roughness. 
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ПРЕДИКЦИЈА И ГЕОМЕТРИЈСКА 
АДАПТИВНА КОНТРОЛА ХРАПАВОСТИ 

ПОВРШИНЕ  
КОД ОБРАДЕ БУШЕЊЕМ 

 
С. Мери Ј., С. Балаји М. А., Динакаран Д. 

 
Храпавост површине је примарни фактор у евалу-
ацији квалитета компоненте која одређује својства 
хабања и замора и квалитет склопа. Ово истра-
живање се бави контролом квалитета завршне об-
раде у реалном времену код обраде бушењем, при-
меном стратегије геометријске адаптивне контроле. 
Мерење силе и сигнала вибрација за време бушења 
обављено је динамометром са сензором и акце-
лерометром. Запремински СВМ модел је употре-
бљен за моделирање храпавости површине кориш-
ћењем силе, вибрација и параметара обраде. Утвр-
ђено је да тачност модела за предикцију износи 94% 
и модел је успешно коришћен за контролу храпа-
вости приликом обраде бушењем. Адаптивна шема 
користи контролер на бази неуронских мрежа за 
подешавање параметара бушења да би се обезбедила 
постављена толеранција храпавости. Перформансе 
контролера показују све могућности приказане 
методологије за практичну примену у индустрији.  

  


