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INTRODUCTION

Research Into Payload Swaying
Reduction Through Cable Length
Manipulation During Boom Crane
Motion

This paper is focused on an investigation into the control dynamics of a
boom crane through a study of guided payload pendulum motion with a
non-uniformly rotating boom-driven pivot center and variable cable
length. A time-optimal control problem was formulated and numerically
solved with constraints on the allowable payload swaying value using
JModelica.org freeware with Optimica extension. Solutions of the optimum
speed problem for the dynamic model describing the movement of the
payload from the initial position to the final position are found, taking into
account the nonlinearities associated with the Coriolis force, and the
change in cable length during the motion. Two cases are considered: with
and without taking into account the constricts on the swaying value. It was
found that taking into account the constricts on the swaying value leads to
an overshoot of the phase variable length. The obtained results can be
used for cargo transportation by crane in various fields: industry,
construction, etc. The resulting control will allow a reduction in cargo
transfer time, which will lead to an increase in labor productivity. It will
also reduce the amount of payload swaying, which will reduce the
likelihood of injury during loading and unloading operations. The model is
nonlinear, and the Coriolis force and other nonlinearities are taken into
account. The model is electromechanical; the characteristics of the electric
motors of the tower and the winch are taken into account. A comparative
analysis of the problem of optimal control with and without allowance for
restrictions on the cargo swaying value is provided and differences in the
control functions for each of these cases are defined. The optimal control,
taking into account the change in rope length, allows the solution of
practical tasks in moving the cargo, taking into account the presence of
obstacles that arise on the way of the cargo.

Keywords: Boom crane, cable length variation, payload swaying, absolute
trajectory, electric drive control, optimal control problem, JModelica.org
freeware, numerical simulation.

electromechanical system as a complex of interrelated
subsystems. In this case, subsystem 1 is a representation

1.1 The state of the art and review

The development trends of modern controlled crane
dynamics include: complication of mathematical models
of the system by increasing the number of degrees of
freedom (DoFs), application of more sophisticated
control methods, accounting for external nondeter-
ministic disturbances such as a constant or random wind
load [1-22].

At the present stage of the development of research
instruments, a general approach to the analysis of cont-
rolled crane dynamic systems should consider the
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of the unchangeable part of the original crane system in
the form of a complex of ordinary differential equations
(ODEs) and/or differential algebraic equations (DAEs)
with constant coefficients determined by the parameters
of the system. Subsystem 2 is a control subsystem in
which servo communications, open and closed loop
control algorithms of the original system, and digital
and analogue state variable regulators are used.
Subsystem 3 consists of modern control approaches.
Accounting for the elasticity of the crane construction
leads to the complication of the differential equations of
the controlled crane system too. Along with classical
approaches to the synthesis of correcting devices, new
modern approaches have also been widely used.

The choice of a particular or specific technique is
completely determined by the goal that needs to be
achieved: increasing of the speed of manipulation
operations, increasing the accuracy of positioning the

FME Transactions (2019) 47, 464-476 464



load at the boundary points of the trajectory or
throughout the entire process of load transportation, or
increasing energy savings during the operating cycle of
the crane system etc. [1-22].

According to the Abe’s (2013) article [1], the length
of the pendulum cable was controlled to reduce
swinging of the payload in the 2D case, shown in Fig. 1
of Abe’s research [1]. A feedback control, that contains
terms proportional to the change in the cable length, its
speed, and the cable angle of deviation from the
vertical, was used in Abe’s approach [1]. So, the task of
constructing the automatic control law was reduced to
finding three coefficients, which are optimization
parameters and determine the feedback gain factors [1].
To optimize these coefficients, a numerical Particle
Swarm Optimization (PSO) technique was used [1].

Abdel-Rahman and Nayfeh (2002) have proposed
both 2D and 3D mechanical models of boom crane-
assisted lifting and pulling down of cargo [2]. Abdel-
Rahman and Nayfeh (2002) have developed their 2D
model by making the assumption that the angular
acceleration of the crane boom tip can be described by
harmonic law [2]. The equation for small motion of the
crane boom tip in the vicinity of the equilibrium
position was derived by accounting for the first two
terms of the Taylor series expansion of the payload’s
forced motion equation [2]. This linearized boom tip
slow motion equation was analytically solved by a
multiple scales computational technique [2]. They found
that using a 2D model yields numerical simulation
results with delay and lag [2]. They also showed that it
is more efficient and preferable to solve this class of
problems using 3D models only [2]. Abdel-Rahman and
Nayfeh (2002) have derived their 3D model through the
use of Lagrange equations of the second kind [2]. They
have reduced the quantity of governing equations for
boom-assisted payload motion from three to two in their
3D model by eliminating the geometric constraint
equation for the cable length [2]. The amplitude and
phase of the oscillatory motion of the crane boom tip
were determined with a multiple scales analytical
technique with their 3D model [2]. The stationary
analytical solution as well as conditions for stability of
this solution were determined for their 3D model [2].
Gain-frequency characteristics for the nonlinear 3D
model were derived and plotted in [2]. In this paper
Abdel-Rahman and Nayfeh have estimated the influence
of both cable length and payload lifting rate on payload
swaying [2]. They also found that it is possible to
achieve suppression of payload swaying by changing
cable length in both the upward and downward
direction.

Sato and Sakawa (1988) have developed an original
approach to formulation and solution of the
electromechanical optimization problem of payload
swaying reduction [17]. Sato and Sakawa (1988) have
developed a dynamic model of flexible rotary crane
control with three degrees of freedom (crane rotation,
load lifting, boom lifting) [17]. The goal of the optimal
control was load delivery to the desired position in such
a way that at the end of the transfer the swaying of the
load would decrease as quickly as possible [17]. They
have implemented a stage-by-stage approach to the
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control process for the studied dynamic system [17]. For
this goal, two types of control have been applied [17].
Initially, the control loop is open in order to ensure the
transition of the dynamic system to the stability
threshold (to bring the system to the equilibrium
boundary) [17]. Open-loop control has been used for
load movement to the desired position [17]. Then, after
delivery of the payload to the desired position, the
feedback coupling is turned on in the system to
minimize the time required for the complete decay of
the residual payload oscillations [17]. Feedback control
has been applied for oscillation damping at the end of
the transfer [17]. Another distinctive feature of the study
[17] is the additional mechanical accounting for a new
degree of freedom associated with the linkage joint in
the two-component rotary crane boom structure [17].
Generality of the created model, which takes into
account load lifting, boom rotation, and boom lifting
should be attributed to the dignity of the model [17].
Also, the original constructed optimal control strategy
should be noted, which allows switching from open-
loop control to feedback control [17]. However, the
important phase variables like the angle between the
cable and the vertical as well as the additional angle
introduced by the linkage joint between the two parts of
crane boom, were linearized and simply approximated
as negligible infinitesimal quantities [17]. This appro-
ximation and linearization of phase variables resulted in
the fact that the derived optimal control solution of this
problem was valid only for small oscillations of the
dynamic system [17]. The disadvantage of such control
is the possibility of significant swaying during the
transfer of the load from one position to another, which
is unsafe [17]. Also, the absence of experiment should
be noted, and therefore the impossibility of a
comparison of the modeling results and empirical data
[17]. Technical implementation of the proposed optimal
control is lacking also [17].

In Sawodny et al.’s (2009) paper [18] in fig. 8 and
fig. 11 the experimental absolute trajectories of payload
swinging are shown. These were derived for the case of
slewing motion of the full-scale model of the Liebherr
Harbor Mobile Crane [18]. However, the computational
scheme in fig. 5 of Sawodny et al.’s (2009) paper [18]
assumes the appearance of payload oscillations only in
the vertical plane. This simplifying assumption does not
allow Sawodny et al.’s research [18] to properly address
and account for the Coriolis inertial forces. Therefore,
experimental absolute paths of payload motion in figs.
8, 11 of Sawodny et al.’s (2009) paper [18] cannot be
properly theoretically modeled with the extra-simplified
Sawodny et al.’s model, shown in fig. 5 of [18].

Uchiyama et al (2013) have proposed suppressing
the residual sway of the load of the rotary crane only
due to the horizontal movement of the boom [22]. From
their point of view, such an approach, i.e. leveling the
possibility of suppressing the residual swaying of the
load, also due to the vertical movement of the boom,
will make the crane system safer and more
economically preferable during its operation [22]. The
peculiarity of their study was the exclusion of the need
for a direct measurement of the load swing, which also
reduces the total cost of the sensors entering the system
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[22]. The rationale for this approach was the use of a
simple velocity trajectory template widely used today
(S-curve) [22]. A drawback of the work [22] is the
number of assumptions made when simplifying the ori-
ginal differential equations of the dynamic crane
system. The initial system has undergone linearization,
and when recording the original equations only the most
significant forces have been taken into account: centri-
fugal force and Coriolis force [22]. At the stages of
modeling and experiment, the length of the cable, with
fixed load at the end, was assumed constant [22]. Con-
sequently, the possibility of using length variation of the
cable outlet for suppressing the residual load swaying
was not considered [22]. However, it should be noted
that the modeling and experimentation results turned out
to be very similar, which implies that the approach
proposed by the authors is really workable [22].

1.2 Aims and scopes of the present research

The goal of the study is the reduction of the load swing
during controlled boom rotation with a simultaneous
controlled change of cable length.

The object of the study is the development of a
dynamic mode of controlled load movement via the
electromechanical system “electric drive — boom —
load”, considering variable cable length.

The subject of the study is optimal control of electric
drives, providing controlled movement of the load,
which minimizes the time of load movement during
boom rotation and determines the allowable swinging in
case of variable cable length.

A mathematical model has been developed which
takes into account the nonlinearities associated with the
Coriolis inertia force and the unevenness of angular
portable rotation.

In the electromechanical part of the system, control
processes have been applied during the acceleration and
deceleration of the electric motor by introducing the
term responsible for the damping.

For the constructed model of the dynamic system,
the optimal control problem has been posed and
numerically solved, minimizing the time of load transfer
with restrictions on the amount of load swing.

A numerical analysis of simulation results has been
performed with and without accounting for restrictions
on swinging. The interpretation of the results is given.

For an open-loop system there is no need for
calculation and technical implementation of regulators.
The solution of the optimal control problem is to find
the time dependences of the anchor voltage separately
for each electric drive (tower, winch).

1.3 Prime novelty statement of research (highlights)

In most of the previous articles, nonlinearities have not
been taken into account. Instead, linearization has been
used.

In this paper, the problem of optimal control has been
solved taking the nonlinearities into account, which is
very important in the case of open-loop control.

The open-loop control problem has been solved
numerically, taking the nonlinearities into account.
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The problem of optimal performance has been
solved with and without accounting for the restrictions
on the amount of swing.

A comparative analysis of the above results has been
given.

The developed optimal control can be implemented
in software and hardware.

Controls sufficient for the hardware implementation
have been found.

Taking into account the variability of length allows
us to find the optimal control that provides maximum
performance compared with other controls, which is
especially important for the periods of acceleration and
deceleration.

The efficiency of the cable length changing during
the stages of acceleration and deceleration has been
shown.

The contribution to the field of crane dynamics is the
original dynamic system for which a new optimal
performance problem has been formulated and solved.

The solution of a practical task of avoiding obstacles
during load transportation by the boom crane can be
realized by changing the cable length.

2. COMPUTATIONAL APPROACH

2.1 Mechanical formulation of the problem and
governing equations

A three-dimensional model of a boom crane is shown in
Figure 1. This is a model of a three-dimensional
dynamic system that consists of:

a boom (DB),

a cable (BM(?)), the length of which (/(f)[m]) can be
varied with a winch,

the torque of which depends on the voltage
(U(H[V]) applied to the anchor circuit of the electric
winch motor, and

the swinging payload (M), suspended on the cable
BM(?)).

The movement of this dynamic system is shown in
Figure 1. The system has 4 (four) degrees of freedom:

the angle of rotation of the crane boom (¢.(?)[rad]);

the angle of winch rotation (6(¢f)[rad]), which
determines the current length of the cable (/(¢)[m]); and

2 (two) relative angular coordinates (a,(¢)[rad]) and
(oa(D)[rad]).

The absolute motion of payload (M) in Figure 1 is
combined (compound) motion, which includes both
relative and translational (transportation) motions of
point material particle (M).

The relative motion of load (M) is a spherical motion
of particle (M) about a point (B), which has 3 (three)
degrees of freedom and is determined by spherical
angles (a,(f)[rad)), (ax(t)[rad]), and (6(¢t)[rad]). The first
spherical angle (a,(?)[rad]) is the angle of deflection of
cable (BM(f) from the vertical (O;z;). The second
spherical angle (a,(¢)[rad]) determines the precessional
motion of particle (M). The second angle (ay(¢)[rad]) is
the dihedral angle between the two vertical planes
(x10:z)) and (BMO,M,). The first vertical plane (x,0,z,)
is perpendicular to the crane boom (DB). The second
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vertical plane (BMOM)) passes through the line seg-
ments (BM), (BO;), (MM,) and (O;M;). Both spherical
angles (a,(f)[rad]) and (ay(t)[rad]) determine the nuta-
tional character of the relative motion of payload (M).

The rotational motion (¢ (f)[rad]) of the tower (O,D)
with crane boom (DB) determines the translational
motion of payload (M).

The absolute motion of payload (M) in Figure 1 is
the resulting motion, which is the vector sum of relative
and translational motions of point material particle (M).

Zoy My /(A_»Wmc/h Boom

D N*| 21

— —
< & 7 -—/ B Cable

I

¢” ~—Tower

t— Payload < — —
M N V

— (Cargo o r V
C (Carg )\\ 1 e

— ——
(Pe AN —_—

*
X, (o) M \&%

X2
Figure 1. Three-dimensional model of the boom crane
The control of this dynamic system is carried out by

2 electric motors:

the tower motor, the output torque of which (M(?)
[N-m]) depends on the applied control voltage (U,(?)

VD,
and the winch motor, the output torque (M, (£)[N-m]) of
which depends on the applied control voltage (U,(?) [V]).

The following velocity vector components [m/s] are
shown in Figure 1:

(V,0) = (d(U(t))/dt)[mis]) and vector (V,,(¢)) is
directed along cable (BM(?));

vectors (le (t)[m/ s]) and (sz (t)[m/ s]) are per-
pendicular to the cable BM(¥));

vector (le(t)[m/s]) is in the vertical plane
(BMO\M));

[vml e @:(o:mj.z@:(;1<f>j.<BM<t»]

[m/s]; where vector (le (1) L(BM (t))),

vector (sz (t)[m s]) is parallel to the horizontal
plane (x,0,),); where vector (sz (t) L (oM, (t))),

Featfnf0-{ 200} 00

([0 st ]
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velocity (Ve(t) [m s]) of portable transportation is
parallel to the horizontal plane (x,0,),);

vector (Ve(t) 1L (0uM (t)));
[Febfrato-ton .0l

vector (sz (t)[m/s]) is parallel to the horizontal
plane (x,0,y,); where vector (sz (t) L (01M 1 (t))),

(x20,)2,) — fixed inertial reference system,;
(x101y1z;) — movable noninertial reference frame.

The interrelation between the relative spherical
(a1(9); ax(?)) and the relative Cartesian coordinates (x;(?);
y1(2); z1(?); I(¥)) in Figure 1 is as follows:

oMy (1) = 1(¢)-sin(e (¢));
x1(t)= OM (¢)- cos(a (1)) = 1(¢) i
y1(6)=0yM, (¢)-sin(a (1)) = 1(¢)-si
1( )=1lo—1(t)-cos(ex (¢))

The position of the payload (M) attached to the crane
boom (DB) can be described with 5 (five) dependent
coordinates:

B(0)=lpe(e). 1e), 31 (¢). 7 (0). 21 0)]:

where

f)(t) — vector, determining the position of the
payload (M),

(x1(H[m], 1(H[m], (z1(t)[m]) — the relative Cartesian
coordinates of the payload (M) in the non-inertial coor-
dinate system associated with the end (B) of the boom
(DB).

The relative coordinates of the payload (M) and the
length of the cable (I(f)[m]) are connected by the follo-
wing coupling equation:

@ = d(xy(0) (e), 2 (0) 1) 1)
@ =32 1)+ 32 0) + (g -2 () ~1(6)=0,

where (lo[m]) — initial length of the cable.

A system of differential equations, describing the
behavior of a dynamic controlled crane system in
relative coordinates (x;(£)[m]), (v1(¥)[m]), and (z,(¢)[m]):

d*(x (1)) _ 10)
m( dr? ]__N(Z){W]+

m(Mf (g0 m .{MJ-(R +n)+

(e (1))-cosla (1))
n(a (¢))-sin(a (0));

dt dr’
i (d(ﬁ([»j'[d(?z(t»} )

(0] (o - 5D )

dr®
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2 m (Ao s o

dt

m.[MJ:(_m.g)m(t).[W} ®

Ji (MJ = - N() =M, 1) 1y (4)
75 _[dz(%(f))J ZM(t)—R-N(t)-((xl(t;)], 5)

dr?

coupling equation:

2(0)= () 32 (0)+ tg - ()2 ©)

where

(I(t)[m]) — variable cable length;

(m[kg]) — load weight;

(Ji[kg'm’]) — moment of inertia of the winch;

(Jo[kg'm*]) — moment of inertia of the tower;

(R[m]) — boom (DB) radius;

(r,[m]) — winch radius;

(lo[m]) — distance (BO;) from the point (B) of
suspension to the base (O)) of the tower;

(M(%) [N-m]) — electromagnetic torque developed by
the drive motor of the tower;

(M,,(£) [N'm]) — electromagnetic torque developed by
the winch drive motor;

(N(#)[N]) — tension of the cable.

Equations (1) —(3) were obtained in our previous
work (A. V. Perig, A. N. Stadnik, et al., 2014) [12—-13].

Equation 4 is the equation of rotational motion of the
winch.

The length of the cable (/(f)[m]) is related to the
angle 6(¢) of winch rotation by the following expression:

I(t)=r,-6(r)

Equation 5 is the equation of the rotational motion of
the crane boom.

Because the electromagnetic torque developed by
the electric motor is proportional to the armature cur-
rent, then:

{ M()=k, -ilr) o

M (t)= k-, (¢),

where
(i(0); i (O[A])— currents of armatures of electric
motors of a tower and a winch respectively;

(kt; kot {%D — proportionality coefficients.

The voltages on the armature windings are deter-
mined by the relations:

{ue(t) =elt)+R,-i(t),

”w(t)zew(l)+ R, 'iw(t), (@)

where

(ut); u (O[V]) — voltages on the winding of the
armature of the electric motor of the tower and the
winch respectively;

(Re; Ry[Ohm]) — active armatures resistance,

(e(9); e (D[ V])(e(t)) — electric-motion force (emf) ar-
matures.

The emf of the armatures are related to the angular
velocity of rotation by the relations:

{ e(t) =k, a)(t);
e (t)= ke @, (¢)

Using relations (7) — (9), equations (4) and (5) can
be rewritten in the form:

Jl{—d“"f”}rafv(r)—

(©))

dr?

SR e B
Jz,[dzcE?(t))j:[kt :ee(z)]_
S eali) o

It is possible to express N(f) through x,(¢), y1(¢), /(¥
and their derivatives.
From equation (3) we get:

N(’):[<z(()m¥ift<)r)>>J'[g{dzc(fz(t))]]; "

Table 1. The first algebraic expression for cable tension force N = N(t) [N].

J- oy 2D, (D)

dt dt
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Table 2. Algebraic expressions for load velocity (d(z;(t))/dt) [m/s] and load acceleration (d*(z;(t))/dt?) [m/s?].

(xl (t)(d(xl(t))}r n(t): (d(yl(’))] —Z(I)(d

D

(d<zl<t>>j: d &

dt (\/ (1) = () = (0 () )
(dz(zl (,))] _ ! x

dr? (\/ (1) = () =0 ()P )

dt

x[(d(xl(t»f+x1<t>-{dzjg‘f”]{d(yl(f))f+y1<t).[dz_ i

Detailed expression (7) is shown in Table 1. The
following auxiliary expressions in Table 2 were used for
derivation of expression in Table 1:

I —21(0) = (1) = (6 ()P (010 -

2.2 Formulation of optimal control problem

It is possible to introduce the following phase variables:

nile)=x0):

o (1)= d(x (1)) :
dt
p3(t)=x(0);
pall)= d(n(t)).
dt
ps(t)=1();
o= 211,
dt
pr(0)=0lt);
-

It is possible to introduce the following control vari-
ables:

(1)
and

uw(t).

The optimum performance problem for the above
dynamic controlled crane system is set as follows:
find such control

ue(t)
and

0, (1),

that gives a minimum of the functional

J=tf

FME Transactions

under the following restrictions:

(MJ=P2(Z);

dt

(d(’jz(’”}—(N,,ﬂ’))[iﬁiﬁi}((”g(’))'”(”)*
(42D, 1y 0+ 2- )
1)

(0){) (28 b i
(D))l

(4sD)_

d(plt)

Using notation

0=0(p1. p3. ps)=

W psle )) |

now expression for N = N(f) from the Table 1 is written
in the Table 3.
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Table 3. The second algebraic expression for cable tension force N = N(t) [N].

N(t)=(m-g - ps(r)-0)+

b N P {22
oo 07 ol M

(z-m-p5<>-(Q4))-<<pl<> A(0)- a(0)-

()) (P1()'P5f Y )P6()) (P3(f)'P5()'P4()'P6(f)))

e
OF (o5t )( 7))

] Pt (4242 .

There are not only phase variables but also their
derivatives in N = N(#) expression in the Table 3.
Initial conditions are as follows:

Final conditions are as follows:
ple L )— 0;

ply
(

]

3
ale

f
f
5(’/‘
S
S

B

=

B

~

Ly

S

’

lt
(e

psles)=

hS]

B

)=0
)=0
)=0
)
)
)

S

0;
T,
0.

Constraints on the control variables are as follows:

{|ue (t) SUgps
|uw(tl Suyp.

Constraints on the amount of swing are given in the
form:

pi(0)+p3()<e,

where ¢ — allowable amount of payload swing.

The numerical solution of this problem (Figs. 2 — 18)
was obtained using the Optimica application [8-9, 14-15,
23-25]. Optimica is the extension of JModelica.org, whi-
ch solves the optimal control problem. Optimica obtains
solutions of the optimal control problem by its reduction
to a nonlinear programming problem (Benson et al.
(2006), [24]). The use of JModelica.org with Optimica
extension [8,9,14,15,23-25] has made it possible to easily
solve the problem of optimal control [26].

3. NUMERICAL SOLUTION RESULTS OF THE
OPTIMAL PERFORMANCE PROBLEM

The aim of our numerical simulation was to identify the
effect of the permissible value of payload swing on the
optimal performance problem solution.

470 = VOL. 47, No 3, 2019

Modeling results for the case of no restriction on the
payload swaying value are shown in Figures 2 — 8.

%JnConstraineq Case(The apsencq of resltriction)

Lifting Winch Control Voltage, u,, [V]

30 05 10 15 20 25 30 35
Time, t [s]

Figure 2. Optimal control voltage u, = u,(t) [V] for the winch
electric drive in the unconstrained case for the absence of
restrictions

ynConstrained Case(The absence of restriction)

Boom Slewing Control Voltage, u, [V]

80 05 10 15 20 25 30 35
Time, t [s]

Figure 3. Optimal control voltage u. = u(t) [V] for the boom-
rotating tower electric drive in the unconstrained case for
the absence of restrictions

o 9éJnConstrained Case(The absence of restriction)

0.80f

0.75f

Rope Length, 1 [m]

0.701

0.63

0 05 1.0 15 20 25 30 35
Time, ¢ [s]

Figure 4. Graph of cable length changing L = L(t) [m] in the
dynamic crane system under optimal control without
constraints on the payload swaying value
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UnConstrained Case(The absence of restriction)

0.01

0.00
w -0.01
E om
sk
2 -0.03
S
S —0.04
Q
>
v —0.05
Q
o
€ -0.06
)
-0.07,
-0.08
8.0 05 1.0 15 2.0 25 3.0 35

'Time, t [s]'

Figure 5. Graph of cable length changing velocity d(L)/dt =
d(L(t))/dt [m/s] in the dynamic crane system under optimal
control without constraints on the payload swaying value

8 UnConstrained Case(The absence of restriction)

— 6
o~

<

o 4

E

o2

i

s o J
2

E -2

ot

S -4

<

v -6

[oX

[]

x -8

_18.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time, ¢ [s]

Figure 6. Graph of cable length changing acceleration
d’(L)/dt? = d}(L(t))/dt? [m/s?] in the dynamic crane system
under optimal control without constraints on the payload
swaying value

3(SJn(ions;trained Case(The absence of restriction)

= N N
w o ul

Rope Tension, N [N]

=
o

80 05 10 15 20 25 30 35
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Figure 7. Optimal control rope tension N = N(t) [N] in the
unconstrained case for the absence of restrictions

Figures 9 — 15 show modeling results in the case of
the restriction

pi(e)+p3(e)<e

on the payload swaying value.

Absolute trajectory graphics of the payload are
presented below (Figures 8, 15, 17).

Figures 2 — 18 are obtained with the following
numerical values of the parameters: where

m=1.5 [kg];

N-
kyy; =k, =0.0261 {T’"} ;
ry=0.15[m];
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7, =2.58:107 [kg - m?];
Js :Slkg-sz;
R, =11.4[Ohm];

R, =7.1[Ohm];
R=0.73[m];

N -
k, =k, :0.119[7’”}
lp=0.9[m];
1r=0.7[m];
Ugp =Uyyp =3 [V];
8:0.Ollm2J.

UnConstrained Case(Thfe absence of restriction)
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Figure 8. Absolute trajectory y, =y,(x) [m] of the payload in
the case of optimal control without the constraint on the
payload swaying value

3Constrained Case(The presence of restriction)

Lifting Winch Control Voltage, u,, [V]
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Figure 9. Optimal control voltage u,, = uy(t) [V] for the winch
electric drive in the constrained case for the presence of
restrictions

3Constrained Case(The presence of restriction)

Boom Slewing Control Voltage, u, [V]
(=]
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Figure 10. Optimal control voltage u. = uc(t) [V] for the
boom-rotating tower electric drive in the constrained case
for the presence of restrictions
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Figure 11. Graph of cable length changing L = L(t) [m] in
the dynamic crane system under optimal control with
constraints on the payload swaying value
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Figure 12. Graph of cable length changing velocity d(L)/dt =
d(L(t))/dt [m/s] in the dynamic crane system under optimal
control with constraints on the payload swaying value
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Figure 13. Graph of cable length changing acceleration
d’(L)/dt? = d}(L(t))/dt? [m/s?] in the dynamic crane system
under optimal control with constraints on the payload
swaying value

Constrained Case(The presence of restriction)
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Figure 14. Optimal control rope tension N = N(t) [N] in the
constrained case for the presence of restrictions
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Constrained Case(The presence of restriction)
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Figure 15. Absolute trajectory y, =y,(xz) [m] of the payload
in case of optimal control with restrict on the payload
swaying value
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Figure 16. Complex graph of cable length changing

L = L(t) [m] in the dynamic crane system under optimal
control with and without constraints on the payload
swaying value
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Figure 17. Complex graph of absolute payload trajectory
Y2 =y2(X2) [m] in the dynamic crane system under optimal
control with and without constraints on the payload
swaying value
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There are comparisons below of some characteristics
of the dynamic crane system under optimal control with
and without constraints on the payload swaying value
(Figures 16 — 18).

4. DISCUSSIONS

The damping of the oscillations of the load is
accomplished by the control torque. The simulation
results show that increasing the torque developed by the
electric motor moves the load quickly to the desired
position. However, such action leads to the appearance
of overshoot in the controllable parameter “cable
length” (Figures 4, 14, 16), and also leads to overloads
in the subsystem “crane boom — suspension — cable”. In
the case of no constraint on the module of the amplitude
of the load swing during transportation, the overshoot of
the controlled parameter “cable length” is not observed
(Figure 4). When the allowable control torque is incre-
ased, overshoot of the parameter “cable length” occurs
earlier. However, such changing of the torque increases
the performance of the entire crane system (Figure 1).

From the obtained graphs (Figure 10) it is evident
that during half a second from the beginning of the
movement a steady state is reached. Then the system
behaves in accordance with the specified requirements
when the control torque is non-zero constant. At the end
of the turn phase, in order to ensure that the system is in
a state of static equilibrium, it is necessary for the load
to arrive at the final point of the trajectory with zero
speed (Figures 8, 15, 17). Such a constraint on the final
load speed is rigid. Therefore, in future studies, it is
planned to specify a final velocity as a certain near-zero
value.

The system transition from dynamic equilibrium to
static equilibrium is accompanied by switching control
moments (relay mode) (Figures9, 10, 18). For the
model without the constraint on the amount of load
swing this transition takes about a half a second
(Figures 2 — 7). For the model with the constraint the
transition takes about a second (Figures 9 — 14).

A special study interest is the graph of the optimal
torque control of the crane boom (Figures 3, 10). In the
absence of a restriction on the value of the load swing,
the function u.(¢)[V] has a pronounced oscillatory cha-
racter (Figure 3). This is most likely due to the natural
frequencies of the crane system and its properties.

To determine the natural frequencies of a system, a
consistent reduction in the number of degrees of
freedom is required.

It is possible to make a qualitative comparison
between the numerical simulation results by Kostikov et
al., which were derived in the present study (Figures 2 —

18), and the well-known computational results, which
were previously found and reported in the well-known
paper by Abdel-Rahman & Nayfeh (2002) [2].

At the first step we will make an estimation of the
numerical value of the dimensionless coefficient of the
length scale through a comparison of the numerical va-
lues of the initial cable length /, for both boom crane
models. It is written at p. 263 of paper [2] that /y apder-
Rahman & Nayfeh) = 89 [ft]. The initial value of cable length
in our paper is equal to [ kostikov et a1y =0.9 [m].
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Therefore, it is possible to introduce a new length scale
dimensionless coefficient for the length of the crane
rope, attached to the boom tip, as [y =
= (1o (Abdel-Rahman & Nayfeh))/ (/o (Kostikov ctat)).  The numerical
value of this dimensionless quantity /e 1S Leqe = (89
[ft])/(0.9 [m]) =~ 30.141.

At the second step we will make an estimation of the
numerical value of the velocity scale dimensionless
coefficient through a comparison of the numerical
values of the payload lifting velocity V; for both boom
crane models. It is written at p. 264 of paper [2] that
Vi (Abdel-Rahman & Nayfehy = 1.5 [ft/s]. The computational 2D
plots for payload lifting velocity, which were derived in
the present paper by Kostikov et al., are shown in our
graphical plots in Figures 5 and 12. These plots yield
that our numerical value of the payload lifting velocity
18 V} kostikov etary = 0.065 [m/s]. Therefore, it is possible
to introduce a new payload velocity scale dimensionless
coefficient for the linear velocity of the lifting of the
crane rope, attached to the boom tip, as Vg
= (Vl(Abdel-Rahman&Nayfeh))/(I/I(Kostikov et aL))~ The numerical
value of this dimensionless quantity Vjcle)y 1S
Vi (scatey = (1.5 [ft/s])/(0.065 [m/s]) = 7.034.

At the third step we take into account that the scaling
condition for the kinematic similarity yields that
Vi (scate) = (lscale)/(fscatle), Where the new dimensionless
quantity £, is the timescale factor, which can be esti-
mated as fyeate = (Jscale) (Vi seate)- The previous estimations
yield the following numerical value of this dimensionless
quantity as . ~ (30.141)/(7.034) =~ 4.285.

At the fourth step we recall the following expression
between the dimensionless quantities of time scale #;.y
and frequency scale @y in the form of #;ye = 1/@gcare
and  Wgcate = V/tseale = (7.034)/(30.141) = 0.233.  Additio-
nally, the same dimensionless quantity for frequency
scale can be standardly determined through the follo-
wing expression:

Wscale = (C() (Abdel-Rahman & Nayfeh))//(a)(l(ostikov et al.))'

It is written at p. 262 of paper [2] that the numerical
value of the excitation frequency is equal to @ (abdel-
Rahman & Nayfeh) = 0.601 [rad/s]. It is possible to find the
following algebraic expression @ kostiovetal) = (€0 (Abdel-
Rahman & Nayfeh))/(@scale) for the calculation of the nume-
rical value of the excitation frequency @ (ostikov etal) 11
our case for the present problem by Kostikov et al.:

® Kostikov etaly = 0.601 [rad/s])/(0.233) = 2.579 [rad/s].

At the fifth step we take into account that the
dimensionless value of the linear acceleration scale dgce
for linear motion of a rope-lifted, boom-transported
payload is determined as d@scae = (Vi (scale))/(fscale)- The
numerical value of agg. in our case is as follows:
Ascale = (7.034)/(4.285) =~ 1.642.

At the sixth step we address concepts of the dynamic
similarity theory. It is well known that the mass scale
dimensionless parameter can be calculated with the
following expression: mgee = (pscale)'[(lscalef], where
Pscale 1S the mass density scale dimensionless parameter.
For simplicity of further comparison, we assume that
Pscale has @ unity value pgue = 1. Then, for a numerical
value of the dimensionless mass scaling factor we have
Mgeate = [(Leate)’] = (30.141)° = 27382.492.
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At the seventh step we are ready to determine the
algebraic equation for the force scale Fi.. dimension-
less parameter as Fiae = (Mscate) (@seale). The numerical
value of Fy. is as follows: Fyue~ (27382.492)
-(1.642) = 44962.052. We can additionally check the
correctness of this estimated numerical value of the
force scale Fi.,. dimensionless parameter through the
use of the following alternative algebraic expression
Fscalel = (pscale)'[(lscale)z]'[(Vl(scale))z]- In our case we have
the following numerical value of Fy e = [(30.141)2]
~[(7.034)2] ~44949. It 1s obvious that Fg,. almost
coincides with the previous numerical value of Fie;.

At the eighth step we can make an approximate
estimate of the numerical value of the scale of the non-
reduced dimensionless damping coefficient Sy, thro-
ugh the use of the following dimensionless expression:
Fcate = (Bscale)*(Vi(scate)). The algebraic expression for the
scale of the S, is the solution of the previous equation,
which yields (Bscaie) = (Ficate)/(Vi(scale).- The numerical
value of the Sy is as follows: (Bsae) = (44962.052)
/(7.034) = 6392.243. In order to make the bridge
between this estimation for the scale of the non-reduced
dimensionless damping coefficient fy,. and p. 258 of
the paper [2], we introduce a new dynamic similarity-
based dimensionless expression for the scale of the
reduced, normalized and normed dimensionless dam-
ping coefficient p.q. through the use of the following
dimensionless expression:  (Uscate) = (Bscale)  /(Mscale),
which yields (tcare) = (6392.243)/ (27382.492) ~ 0.233.
From another viewpoint, the scale of the reduced,
normed and normalized dimensionless damping
coefficient e can be calculated as (uscare) =
(;u(Abdel-Rahman&Naytéh))/(/l (Kostikov et aL))~ It is written on
p. 262 of paper [2] that the numerical value of the redu-
ced, normalized and normed linear damping coefficient
is equal tO K (Abdel-Rahman & Nayfehy = 0.01. The following
algebraic expression M (Kostikov etal) — (,u (Abdel-Rahman
& Nayfehy)/(Uscale) €an be used for the calculation of the
numerical value of the reduced, normalized and normed
linear damping coefficient u kostikov etal) 11 OUr case for
the present problem by Kostikov et al.: g kostikov etal)
~(0.01)/(0.233) = 0.043.

These kinematic and dynamic similarity-based engi-
neering estimations expand our understanding of the
authors-derived results of numerical simulations in the
present paper, shown in computational Figures 2 — 18.

5. CONCLUSION

Computational plots of time dependencies of control
voltages (u.(f); u,(f)[V]) in Figures 2, 3,9, 10 have a
stick-slip nature. This fact allows us to make a conc-
lusion that our numerical solution for the optimal cont-
rol voltages really fits the Bang-Bang type of optimal
control within some specific time intervals.

Even in the simplest case of no restrictions, our
problem is not reduced to a classical optimal control
problem for Pontryagin’s type, in which the principle of
Pontryagin’s maximum is proved.

It is tied to the fact, that rope tension force N = N(¢)
depends on not only phase variables, but also on their
derivatives (Figures 7, 14). The cable tension force N =
N(¢) is the internal force of the mechanical system
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“boom crane — payload”. The algebraic expressions for
N = N(f) are listed in the Table 1 and Table 3.
Expressions in the Table 1 and Table 3 show that the
rope tension force N = N(f) is a non-linear function of
the first derivatives of the phase variables. Therefore, it
is very difficult to express all first derivatives with the
phase and control variables.

In order to be able to apply Pontryagin’s
(Pontriagin’s) maximum principle to the present
optimization problem, it is necessary to express the
studied dynamic system in the form

(szﬂx@w»,

dt

where x(¢) is the phase variable and u() is the control
variable. However, it is very complex assignment to
express the system in this form. Therefore, it is very
challenging assignment to directly apply Pontryagin’s
(Pontriagin’s) maximum principle for our dynamic
system in the present research. That is why our dynamic
system in the staging of the optimal control problem,
does not satisfy conditions for which Pontryagin’s
principle of maximum is proved. Consequently, quali-
tative analysis of our optimal control problem using
Pontryagin’s principle of maximum requires research
data which is beyond the scope of this research. Addre-
ssing this problem will be a matter of further study by
the authors.
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NCTPAKUBAIBE PEAYKIIMJE BbUXAIBA

KOPHUCHOTI TEPETA MAHUITYJAII1JOM

JAYXKUHE KABJIA IPUJIMKOM KPETAIBA
CTPEJIE KPAHA

A.A. Koctukos, A.B. Ilepur, O.B. Jlapnukun, A.H.
Craanuk, E.II. I'pudkoB

Hctpaxyje ce AuHaMuKa ympaBibama CTPEIOM KpaHa
MIPOy4aBamEM BOEHOT KpeTama KOPUCHOT TepeTa Hepa-
BHOMEPHHM POTHPAEmEM CTPEJIOM MOTOHBEHOT CPEIUII-
BET YBOPa M IMPOMEHJBUBOM AY)XMHOM KabOma. ®opmy-
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JIUCaH je MpoOJieM ONTHUMAIHOT YyIpaBibatha M HyMe-
PHUKH je pellieH ca OrpaHuueHoM BpenHolhy J03BO-
JbCHOT  IbUXama  KOPUCHOT  Tepera  MPUMEHOM
JModelica.org ca Optimica ekcTeH3ujoM. Periema
ONTUMAJHE Op3HMHE KO/ JHHAMHYKOT MOJea KOjH OIHU-
Cyje KpeTame KOPUCHOT TepeTa O] MOYSTHOT JI0 KPajiber
noynoxaja cy HahjeHa momohy HEJIMHEApHOCTH TOBE3a-
HUX ca KOpHOIMCOBOM CHIIOM M TPOMEHOM MIYy>KHHE
Kalira TOKOM KpeTama. PazMoTpena cy 1Ba ciydaja: ca
u 0e3 orpaHnYeHa BPEAHOCTH 32 HHUXame. Y TBpHEHO je
Jla OTpaHNYeH-¢ BPESAHOCTH JOBOAX 10 mpebadaja dazHe
npomMeHe nyxuHe. JloOujeHn pe3ynTaTi ce MOry KOpHC-
THTH y PA3IMYUTUM 00JaCTHMA 32 MPEHOC TepeTa OMO-
hy kpaHa: uHIYCTpHjH, rpal)eBUHAPCTBY, UTH. Pe3ynTat
yhpaBjbarmba OMOryhaBa pelyKoBame BpeMeHa MpeHoca
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TepeTa, IITO JOBOAM 10 Behe MpOOyKTHBHOCTH pamHe
caare. Takohe ce cMmamyje BUXambe KOPHCHOT TepeTa,
na TMMe W BepoBaTHoha moBpehuBama MPHIMKOM YTO-
Bapa M ucroBapa. Mojein je HeluHeapaH W y3uma y
063up KopuosaucoBy cuiy M Apyre HEIMHEapHOCTH.
Mogen je eneKTpo-MeXaHWYKH; YKJbydyje Kapakre-
PHUCTHKE eNeKTpOo-MOTOpa Topma Hu BuTia. JlaTa je
yIopeaHa aHajuu3a NpodjeMa ONTHMAJHOT YIPaBJbaka
ca u 0e3 pecTpUKIHja BPETHOCTH 32 HHUXAme TEpeTa U
nepuHHCaHe Cy pasiuke n3Melhy QyHKIHja yrpaBibama
3a CBaKkW O]l MAaTHX ciy4ajeBa. ONTHMANHO yIIpaBIbake,
y3umMajyhu y 003up npomeny AyxuHe kabia, omoryhasa
M3HAIQKCHE pellelha 3a IPaKTHYHE 3aJaTKe KOA
KpeTama TepeTa Ha 4YHMjeM IIyTy Ce jaBJbajy OpojHE
Hpernpexe.
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