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Research Into Payload Swaying 
Reduction Through Cable Length 
Manipulation During Boom Crane 
Motion 
 
This paper is focused on an investigation into the control dynamics of a 
boom crane through a study of guided payload pendulum motion with a 
non-uniformly rotating boom-driven pivot center and variable cable 
length. A time-optimal control problem was formulated and numerically 
solved with constraints on the allowable payload swaying value using 
JModelica.org freeware with Optimica extension. Solutions of the optimum 
speed problem for the dynamic model describing the movement of the 
payload from the initial position to the final position are found, taking into 
account the nonlinearities associated with the Coriolis force, and the 
change in cable length during the motion. Two cases are considered: with 
and without taking into account the constricts on the swaying value. It was 
found that taking into account the constricts on the swaying value leads to 
an overshoot of the phase variable length. The obtained results can be 
used for cargo transportation by crane in various fields: industry, 
construction, etc. The resulting control will allow a reduction in cargo 
transfer time, which will lead to an increase in labor productivity. It will 
also reduce the amount of payload swaying, which will reduce the 
likelihood of injury during loading and unloading operations. The model is 
nonlinear, and the Coriolis force and other nonlinearities are taken into 
account. The model is electromechanical; the characteristics of the electric 
motors of the tower and the winch are taken into account. A comparative 
analysis of the problem of optimal control with and without allowance for 
restrictions on the cargo swaying value is provided and differences in the 
control functions for each of these cases are defined. The optimal control, 
taking into account the change in rope length, allows the solution of 
practical tasks in moving the cargo, taking into account the presence of 
obstacles that arise on the way of the cargo. 
 
Keywords: Boom crane, cable length variation, payload swaying, absolute 
trajectory, electric drive control, optimal control problem, JModelica.org 
freeware, numerical simulation. 

 
 

1. INTRODUCTION 
 

1.1 The state of the art and review 
 

The development trends of modern controlled crane 
dynamics include: complication of mathematical models 
of the system by increasing the number of degrees of 
freedom (DoFs), application of more sophisticated 
control methods, accounting for external nondeter-
ministic disturbances such as a constant or random wind 
load [1-22]. 

At the present stage of the development of research 
instruments, a general approach to the analysis of cont-
rolled crane dynamic systems should consider the 

electromechanical system as a complex of interrelated 
subsystems. In this case, subsystem 1 is a representation 
of the unchangeable part of the original crane system in 
the form of a complex of ordinary differential equations 
(ODEs) and/or differential algebraic equations (DAEs) 
with constant coefficients determined by the parameters 
of the system. Subsystem 2 is a control subsystem in 
which servo communications, open and closed loop 
control algorithms of the original system, and digital 
and analogue state variable regulators are used. 
Subsystem 3 consists of modern control approaches. 
Accounting for the elasticity of the crane construction 
leads to the complication of the differential equations of 
the controlled crane system too. Along with classical 
approaches to the synthesis of correcting devices, new 
modern approaches have also been widely used. 

The choice of a particular or specific technique is 
completely determined by the goal that needs to be 
achieved: increasing of the speed of manipulation 
operations, increasing the accuracy of positioning the 
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load at the boundary points of the trajectory or 
throughout the entire process of load transportation, or 
increasing energy savings during the operating cycle of 
the crane system etc. [1-22]. 

According to the Abe’s (2013) article [1], the length 
of the pendulum cable was controlled to reduce 
swinging of the payload in the 2D case, shown in Fig. 1 
of Abe’s research [1]. A feedback control, that contains 
terms proportional to the change in the cable length, its 
speed, and the cable angle of deviation from the 
vertical, was used in Abe’s approach [1]. So, the task of 
constructing the automatic control law was reduced to 
finding three coefficients, which are optimization 
parameters and determine the feedback gain factors [1]. 
To optimize these coefficients, a numerical Particle 
Swarm Optimization (PSO) technique was used [1]. 

Abdel-Rahman and Nayfeh (2002) have proposed 
both 2D and 3D mechanical models of boom crane-
assisted lifting and pulling down of cargo [2]. Abdel-
Rahman and Nayfeh (2002) have developed their 2D 
model by making the assumption that the angular 
acceleration of the crane boom tip can be described by 
harmonic law [2]. The equation for small motion of the 
crane boom tip in the vicinity of the equilibrium 
position was derived by accounting for the first two 
terms of the Taylor series expansion of the payload’s 
forced motion equation [2]. This linearized boom tip 
slow motion equation was analytically solved by a 
multiple scales computational technique [2]. They found 
that using a 2D model yields numerical simulation 
results with delay and lag [2]. They also showed that it 
is more efficient and preferable to solve this class of 
problems using 3D models only [2]. Abdel-Rahman and 
Nayfeh (2002) have derived their 3D model through the 
use of Lagrange equations of the second kind [2]. They 
have reduced the quantity of governing equations for 
boom-assisted payload motion from three to two in their 
3D model by eliminating the geometric constraint 
equation for the cable length [2]. The amplitude and 
phase of the oscillatory motion of the crane boom tip 
were determined with a multiple scales analytical 
technique with their 3D model [2]. The stationary 
analytical solution as well as conditions for stability of 
this solution were determined for their 3D model [2]. 
Gain-frequency characteristics for the nonlinear 3D 
model were derived and plotted in [2]. In this paper 
Abdel-Rahman and Nayfeh have estimated the influence 
of both cable length and payload lifting rate on payload 
swaying [2]. They also found that it is possible to 
achieve suppression of payload swaying by changing 
cable length in both the upward and downward 
direction. 

Sato and Sakawa (1988) have developed an original 
approach to formulation and solution of the 
electromechanical optimization problem of payload 
swaying reduction [17]. Sato and Sakawa (1988) have 
developed a dynamic model of flexible rotary crane 
control with three degrees of freedom (crane rotation, 
load lifting, boom lifting) [17]. The goal of the optimal 
control was load delivery to the desired position in such 
a way that at the end of the transfer the swaying of the 
load would decrease as quickly as possible [17]. They 
have implemented a stage-by-stage approach to the 

control process for the studied dynamic system [17]. For 
this goal, two types of control have been applied [17]. 
Initially, the control loop is open in order to ensure the 
transition of the dynamic system to the stability 
threshold (to bring the system to the equilibrium 
boundary) [17]. Open-loop control has been used for 
load movement to the desired position [17]. Then, after 
delivery of the payload to the desired position, the 
feedback coupling is turned on in the system to 
minimize the time required for the complete decay of 
the residual payload oscillations [17]. Feedback control 
has been applied for oscillation damping at the end of 
the transfer [17]. Another distinctive feature of the study 
[17] is the additional mechanical accounting for a new 
degree of freedom associated with the linkage joint in 
the two-component rotary crane boom structure [17]. 
Generality of the created model, which takes into 
account load lifting, boom rotation, and boom lifting 
should be attributed to the dignity of the model [17]. 
Also, the original constructed optimal control strategy 
should be noted, which allows switching from open-
loop control to feedback control [17]. However, the 
important phase variables like the angle between the 
cable and the vertical as well as the additional angle 
introduced by the linkage joint between the two parts of 
crane boom, were linearized and simply approximated 
as negligible infinitesimal quantities [17]. This appro-
ximation and linearization of phase variables resulted in 
the fact that the derived optimal control solution of this 
problem was valid only for small oscillations of the 
dynamic system [17]. The disadvantage of such control 
is the possibility of significant swaying during the 
transfer of the load from one position to another, which 
is unsafe [17]. Also, the absence of experiment should 
be noted, and therefore the impossibility of a 
comparison of the modeling results and empirical data 
[17]. Technical implementation of the proposed optimal 
control is lacking also [17]. 

In Sawodny et al.’s (2009) paper [18] in fig. 8 and 
fig. 11 the experimental absolute trajectories of payload 
swinging are shown. These were derived for the case of 
slewing motion of the full-scale model of the Liebherr 
Harbor Mobile Crane [18]. However, the computational 
scheme in fig. 5 of Sawodny et al.’s (2009) paper [18] 
assumes the appearance of payload oscillations only in 
the vertical plane. This simplifying assumption does not 
allow Sawodny et al.’s research [18] to properly address 
and account for the Coriolis inertial forces. Therefore, 
experimental absolute paths of payload motion in figs. 
8, 11 of Sawodny et al.’s (2009) paper [18] cannot be 
properly theoretically modeled with the extra-simplified 
Sawodny et al.’s model, shown in fig. 5 of [18]. 

Uchiyama et al (2013) have proposed suppressing 
the residual sway of the load of the rotary crane only 
due to the horizontal movement of the boom [22]. From 
their point of view, such an approach, i.e. leveling the 
possibility of suppressing the residual swaying of the 
load, also due to the vertical movement of the boom, 
will make the crane system safer and more 
economically preferable during its operation [22]. The 
peculiarity of their study was the exclusion of the need 
for a direct measurement of the load swing, which also 
reduces the total cost of the sensors entering the system 
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[22]. The rationale for this approach was the use of a 
simple velocity trajectory template widely used today 
(S-curve) [22]. A drawback of the work [22] is the 
number of assumptions made when simplifying the ori-
ginal differential equations of the dynamic crane 
system. The initial system has undergone linearization, 
and when recording the original equations only the most 
significant forces have been taken into account: centri-
fugal force and Coriolis force [22]. At the stages of 
modeling and experiment, the length of the cable, with 
fixed load at the end, was assumed constant [22]. Con-
sequently, the possibility of using length variation of the 
cable outlet for suppressing the residual load swaying 
was not considered [22]. However, it should be noted 
that the modeling and experimentation results turned out 
to be very similar, which implies that the approach 
proposed by the authors is really workable [22]. 

 
1.2 Aims and scopes of the present research 

 
The goal of the study is the reduction of the load swing 
during controlled boom rotation with a simultaneous 
controlled change of cable length. 

The object of the study is the development of a 
dynamic mode of controlled load movement via the 
electromechanical system “electric drive – boom – 
load”, considering variable cable length. 

The subject of the study is optimal control of electric 
drives, providing controlled movement of the load, 
which minimizes the time of load movement during 
boom rotation and determines the allowable swinging in 
case of variable cable length. 

A mathematical model has been developed which 
takes into account the nonlinearities associated with the 
Coriolis inertia force and the unevenness of angular 
portable rotation. 

In the electromechanical part of the system, control 
processes have been applied during the acceleration and 
deceleration of the electric motor by introducing the 
term responsible for the damping. 

For the constructed model of the dynamic system, 
the optimal control problem has been posed and 
numerically solved, minimizing the time of load transfer 
with restrictions on the amount of load swing. 

A numerical analysis of simulation results has been 
performed with and without accounting for restrictions 
on swinging. The interpretation of the results is given. 

For an open-loop system there is no need for 
calculation and technical implementation of regulators. 
The solution of the optimal control problem is to find 
the time dependences of the anchor voltage separately 
for each electric drive (tower, winch). 

 
1.3 Prime novelty statement of research (highlights) 

 
In most of the previous articles, nonlinearities have not 
been taken into account. Instead, linearization has been 
used. 

In this paper, the problem of optimal control has been 
solved taking the nonlinearities into account, which is 
very important in the case of open-loop control. 

The open-loop control problem has been solved 
numerically, taking the nonlinearities into account. 

The problem of optimal performance has been 
solved with and without accounting for the restrictions 
on the amount of swing. 

A comparative analysis of the above results has been 
given. 

The developed optimal control can be implemented 
in software and hardware. 

Controls sufficient for the hardware implementation 
have been found. 

Taking into account the variability of length allows 
us to find the optimal control that provides maximum 
performance compared with other controls, which is 
especially important for the periods of acceleration and 
deceleration. 

The efficiency of the cable length changing during 
the stages of acceleration and deceleration has been 
shown. 

The contribution to the field of crane dynamics is the 
original dynamic system for which a new optimal 
performance problem has been formulated and solved. 

The solution of a practical task of avoiding obstacles 
during load transportation by the boom crane can be 
realized by changing the cable length. 

 
2. COMPUTATIONAL APPROACH 
 
2.1 Mechanical formulation of the problem and 

governing equations 
 

A three-dimensional model of a boom crane is shown in 
Figure 1. This is a model of a three-dimensional 
dynamic system that consists of: 

a boom (DB), 
a cable (BM(t)), the length of which (l(t)[m]) can be 

varied with a winch, 
the torque of which depends on the voltage 

(U1(t)[V]) applied to the anchor circuit of the electric 
winch motor, and  

the swinging payload (M), suspended on the cable 
BM(t)). 

The movement of this dynamic system is shown in 
Figure 1. The system has 4 (four) degrees of freedom: 

the angle of rotation of the crane boom (φe(t)[rad]); 
the angle of winch rotation (θ(t)[rad]), which 

determines the current length of the cable (l(t)[m]); and 
2 (two) relative angular coordinates (α1(t)[rad]) and 

(α2(t)[rad]). 
The absolute motion of payload (M) in Figure 1 is 

combined (compound) motion, which includes both 
relative and translational (transportation) motions of 
point material particle (M). 

The relative motion of load (M) is a spherical motion 
of particle (M) about a point (B), which has 3 (three) 
degrees of freedom and is determined by spherical 
angles (α1(t)[rad]), (α2(t)[rad]), and (θ(t)[rad]). The first 
spherical angle (α1(t)[rad]) is the angle of deflection of 
cable (BM(t) from the vertical (O1z1). The second 
spherical angle (α2(t)[rad]) determines the precessional 
motion of particle (M). The second angle (α2(t)[rad]) is 
the dihedral angle between the two vertical planes 
(x1O1z1) and (BMO1M1). The first vertical plane (x1O1z1) 
is perpendicular to the crane boom (DB). The second 
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vertical plane (BMO1M1) passes through the line seg-
ments (BM), (BO1), (MM1) and (O1M1). Both spherical 
angles (α1(t)[rad]) and (α2(t)[rad]) determine the nuta-
tional character of the relative motion of payload (M). 

The rotational motion (φe(t)[rad]) of the tower (O2D) 
with crane boom (DB) determines the translational 
motion of payload (M). 

The absolute motion of payload (M) in Figure 1 is 
the resulting motion, which is the vector sum of relative 
and translational motions of point material particle (M). 

 
Figure 1. Three-dimensional model of the boom crane 

The control of this dynamic system is carried out by 
2 electric motors: 

the tower motor, the output torque of which (M(t) 
[N·m]) depends on the applied control voltage (U2(t) 
[V]), 

and the winch motor, the output torque (Mw(t)[N·m]) of 
which depends on the applied control voltage (U1(t) [V]). 

The following velocity vector components [m/s] are 
shown in Figure 1: 

(Vrl(t) = (d(l(t))/dt)[m/s]) and vector ( )( )trlV  is 
directed along cable (BM(t)); 

vectors ( )[ ]( )smtr 1αV  and ( )[ ]( )smtr 2αV  are per-
pendicular to the cable BM(t)); 

vector ( )[ ]( )smtr 1αV  is in the vertical plane 
(BMO1M1); 
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velocity ( ) [ ]( )smteV  of portable transportation is 
parallel to the horizontal plane (x2O2y2); 

vector ( ) ( )( )( )tMOt 12⊥eV ; 

( ) ( ) ( )( ) ( ) [ ]⎟⎟
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vector ( )[ ]( )smtr 2αV  is parallel to the horizontal 

plane (x2O2y2); where vector ( ) ( )( )( )tMOtr 112 ⊥αV ; 

(x2O2y2z2) – fixed inertial reference system; 
(x1O1y1z1)  – movable noninertial reference frame. 
The interrelation between the relative spherical 

(α1(t); α2(t)) and the relative Cartesian coordinates (x1(t); 
y1(t); z1(t); l(t)) in Figure 1 is as follows: 

( ) ( ) ( )( )ttltMO 111 sin α⋅= ; 
( ) ( ) ( )( ) ( ) ( )( ) ( )( )tttlttMOtx 212111 cossincos ααα ⋅⋅=⋅= ; 
( ) ( ) ( )( ) ( ) ( )( ) ( )( )tttlttMOty 212111 sinsinsin ααα ⋅⋅=⋅= ; 
( ) ( ) ( )( )ttlltz 101 cos α⋅−= . 

The position of the payload (M) attached to the crane 
boom (DB) can be described with 5 (five) dependent 
coordinates: 

( ) ( ) ( ) ( ) ( ) ( )[ ]tztytxtltt e 111 ,,,,ϕ=p ; 

where  
( )tp  – vector, determining the position of the 

payload (M),  
(x1(t)[m], (y1(t)[m], (z1(t)[m]) – the relative Cartesian 

coordinates of the payload (M) in the non-inertial coor-
dinate system associated with the end (B) of the boom 
(DB).  

The relative coordinates of the payload (M) and the 
length of the cable (l(t)[m]) are connected by the follo-
wing coupling equation: 
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where (l0[m]) – initial length of the cable. 
A system of differential equations, describing the 

behavior of a dynamic controlled crane system in 
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coupling equation: 
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where 
(l(t)[m]) – variable cable length; 
 (m[kg]) – load weight; (J1[kg·m2]) – moment of inertia of the winch; 
(J2[kg·m2]) – moment of inertia of the tower; 
 (R[m]) – boom (DB) radius; 
 (rw[m]) – winch radius; 
 (l0[m]) – distance (BO1) from the point (B) of 

suspension to the base (O1) of the tower; 
(M(t) [N·m]) – electromagnetic torque developed by 

the drive motor of the tower; 
(Mw(t) [N·m]) – electromagnetic torque developed by 

the winch drive motor; 
 (N(t)[N]) – tension of the cable. 
Equations (1) – (3) were obtained in our previous 

work (A. V. Perig, A. N. Stadnik, et al., 2014) [12–13]. 
Equation 4 is the equation of rotational motion of the 

winch. 
The length of the cable (l(t)[m]) is related to the 

angle θ(t) of winch rotation by the following expression: 

 ( ) ( )trtl w θ⋅=   

Equation 5 is the equation of the rotational motion of 
the crane boom. 

Because the electromagnetic torque developed by 
the electric motor is proportional to the armature cur-
rent, then: 
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where 
(ue(t); uw(t)[V]) – voltages on the winding of the 

armature of the electric motor of the tower and the 
winch respectively; 

(Re; Rw[Ohm]) – active armatures resistance, 
(e(t); ew(t)[V])(e(t)) – electric-motion force (emf) ar-

matures. 
The emf of the armatures are related to the angular 

velocity of rotation by the relations: 
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Using relations (7) – (9), equations (4) and (5) can 
be rewritten in the form: 
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It is possible to express N(t) through x1(t), y1(t), l(t) 
and their derivatives. 

From equation (3) we get: 
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Table 1. The first algebraic expression for cable tension force N = N(t) [N]. 
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Table 2. Algebraic expressions for load velocity (d(z1(t))/dt) [m/s] and load acceleration (d2(z1(t))/dt2) [m/s2]. 
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Detailed expression (7) is shown in Table 1. The 

following auxiliary expressions in Table 2 were used for 
derivation of expression in Table 1: 
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2.2 Formulation of optimal control problem 

 
It is possible to introduce the following phase variables: 

( ) ( )txtp 11 = ; 

( ) ( )( )
dt

txdtp 1
2 = ; 

( ) ( )tytp 13 = ; 
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( ) ( )tltp =5 ; 

( ) ( )( )
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( ) ( )ttp ϕ=7 ; 

( ) ( )( )
dt

tdtp ϕ
=8 . 

It is possible to introduce the following control vari-
ables: 

( )tue  
and 

( )tuw . 

The optimum performance problem for the above 
dynamic controlled crane system is set as follows: 

find such control 

( )tue  
and 

( )tuw , 

that gives a minimum of the functional 
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now expression for N = N(t) from the Table 1 is written 
in the Table 3. 
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Table 3. The second algebraic expression for cable tension force N = N(t) [N]. 
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There are not only phase variables but also their 

derivatives in N = N(t) expression in the Table 3. 
Initial conditions are as follows: 

( ) 001 =p ; 
( ) 002 =p ; 
( ) 003 =p ; 
( ) 004 =p ; 
( ) 05 0 lp = ; 
( ) 006 =p ; 
( ) 007 =p ; 

0)0(8 =p . 

Final conditions are as follows: 
( ) 01 =ftp ; 

( ) 02 =ftp ; 

( ) 03 =ftp ; 

( ) 04 =ftp ; 

( ) ff ltp =5 ; 

( ) 06 =ftp ; 

( ) π=ftp7 ; 

( ) 08 =ftp . 

Constraints on the control variables are as follows: 

( )
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≤
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;

wbw

ebe

utu

utu
 

Constraints on the amount of swing are given in the 
form: 

( ) ( ) ε≤+ tptp 2
3

2
1 , 

where ε – allowable amount of payload swing. 
The numerical solution of this problem (Figs. 2 – 18) 

was obtained using the Optimica application [8-9, 14-15, 
23-25]. Optimica is the extension of JModelica.org, whi-
ch solves the optimal control problem. Optimica obtains 
solutions of the optimal control problem by its reduction 
to a nonlinear programming problem (Benson et al. 
(2006), [24]). The use of JModelica.org with Optimica 
extension [8,9,14,15,23-25] has made it possible to easily 
solve the problem of optimal control [26]. 

 
3. NUMERICAL SOLUTION RESULTS OF THE 

OPTIMAL PERFORMANCE PROBLEM 
 

The aim of our numerical simulation was to identify the 
effect of the permissible value of payload swing on the 
optimal performance problem solution. 

Modeling results for the case of no restriction on the 
payload swaying value are shown in Figures 2 – 8. 

 
Figure 2. Optimal control voltage uw = uw(t) [V] for the winch 
electric drive in the unconstrained case for the absence of 
restrictions 

 
Figure 3. Optimal control voltage ue = ue(t) [V] for the boom-
rotating tower electric drive in the unconstrained case for 
the absence of restrictions 

 
Figure 4. Graph of cable length changing L = L(t) [m] in the 
dynamic crane system under optimal control without 
constraints on the payload swaying value 
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Figure 5. Graph of cable length changing velocity d(L)/dt = 
d(L(t))/dt [m/s] in the dynamic crane system under optimal 
control without constraints on the payload swaying value 

 
Figure 6. Graph of cable length changing acceleration 
d2(L)/dt2 = d2(L(t))/dt2 [m/s2] in the dynamic crane system 
under optimal control without constraints on the payload 
swaying value 

 
Figure 7. Optimal control rope tension N = N(t) [N] in the 
unconstrained case for the absence of restrictions 

Figures 9 – 15 show modeling results in the case of 
the restriction 

( ) ( ) ε≤+ tptp 2
3

2
1  

on the payload swaying value. 
Absolute trajectory graphics of the payload are 

presented below (Figures 8, 15, 17). 
Figures 2 – 18 are obtained with the following 

numerical values of the parameters: where 

[ ]kgm 5.1= ; 

⎥⎦
⎤

⎢⎣
⎡ ⋅

==
A

mNkk ewwt 0261.0 ; 

[ ]mrw 15.0= ; 

[ ]25
1 1058.2 mkgJ ⋅⋅= − ; 

[ ]2
2 5 mkgJ ⋅= ; 

[ ]OhmRe 4.11= ; 
[ ]OhmRw 1.7= ; 
[ ]mR 73.0= ; 

⎥⎦
⎤

⎢⎣
⎡ ⋅

==
A

mNkk et 119.0 ; 

[ ]ml 9.00 = ; 
[ ]ml f 7.0= ; 

[ ]Vuu wbeb 3== ; 

[ ]201.0 m=ε . 

 
Figure 8. Absolute trajectory y2 =y2(x2) [m] of the payload in 
the case of optimal control without the constraint on the 
payload swaying value 

 
Figure 9. Optimal control voltage uw = uw(t) [V] for the winch 
electric drive in the constrained case for the presence of 
restrictions 

 
Figure 10. Optimal control voltage ue = ue(t) [V] for the 
boom-rotating tower electric drive in the constrained case 
for the presence of restrictions 
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Figure 11. Graph of cable length changing L = L(t) [m] in 
the dynamic crane system under optimal control with 
constraints on the payload swaying value 

 
Figure 12. Graph of cable length changing velocity d(L)/dt = 
d(L(t))/dt [m/s] in the dynamic crane system under optimal 
control with constraints on the payload swaying value 

 
Figure 13. Graph of cable length changing acceleration 
d2(L)/dt2 = d2(L(t))/dt2 [m/s2] in the dynamic crane system 
under optimal control with constraints on the payload 
swaying value 

 
Figure 14. Optimal control rope tension N = N(t) [N] in the 
constrained case for the presence of restrictions 

 
Figure 15. Absolute trajectory y2 =y2(x2) [m] of the payload 
in case of optimal control with restrict on the payload 
swaying value 

 
Figure 16. Complex graph of cable length changing 
L = L(t) [m] in the dynamic crane system under optimal 
control with and without constraints on the payload 
swaying value 

 
Figure 17. Complex graph of absolute payload trajectory 
y2 =y2(x2) [m] in the dynamic crane system under optimal 
control with and without constraints on the payload 
swaying value 

 
Figure 18. Complex graph of optimal control voltage ue =  
ue(t) [V] with and without constraints on the payload 
swaying value 
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There are comparisons below of some characteristics 
of the dynamic crane system under optimal control with 
and without constraints on the payload swaying value 
(Figures 16 – 18). 

 
4. DISCUSSIONS 

 
The damping of the oscillations of the load is 
accomplished by the control torque. The simulation 
results show that increasing the torque developed by the 
electric motor moves the load quickly to the desired 
position. However, such action leads to the appearance 
of overshoot in the controllable parameter “cable 
length” (Figures 4, 14, 16), and also leads to overloads 
in the subsystem “crane boom – suspension – cable”. In 
the case of no constraint on the module of the amplitude 
of the load swing during transportation, the overshoot of 
the controlled parameter “cable length” is not observed 
(Figure 4). When the allowable control torque is incre-
ased, overshoot of the parameter “cable length” occurs 
earlier. However, such changing of the torque increases 
the performance of the entire crane system (Figure 1). 

From the obtained graphs (Figure 10) it is evident 
that during half a second from the beginning of the 
movement a steady state is reached. Then the system 
behaves in accordance with the specified requirements 
when the control torque is non-zero constant. At the end 
of the turn phase, in order to ensure that the system is in 
a state of static equilibrium, it is necessary for the load 
to arrive at the final point of the trajectory with zero 
speed (Figures 8, 15, 17). Such a constraint on the final 
load speed is rigid. Therefore, in future studies, it is 
planned to specify a final velocity as a certain near-zero 
value. 

The system transition from dynamic equilibrium to 
static equilibrium is accompanied by switching control 
moments (relay mode) (Figures 9, 10, 18). For the 
model without the constraint on the amount of load 
swing this transition takes about a half a second 
(Figures 2 – 7). For the model with the constraint the 
transition takes about a second (Figures 9 – 14). 

A special study interest is the graph of the optimal 
torque control of the crane boom (Figures 3, 10). In the 
absence of a restriction on the value of the load swing, 
the function ue(t)[V] has a pronounced oscillatory cha-
racter (Figure 3). This is most likely due to the natural 
frequencies of the crane system and its properties. 

To determine the natural frequencies of a system, a 
consistent reduction in the number of degrees of 
freedom is required. 

It is possible to make a qualitative comparison 
between the numerical simulation results by Kostikov et 
al., which were derived in the present study (Figures 2 –
 18), and the well-known computational results, which 
were previously found and reported in the well-known 
paper by Abdel-Rahman & Nayfeh (2002) [2]. 

At the first step we will make an estimation of the 
numerical value of the dimensionless coefficient of the 
length scale through a comparison of the numerical va-
lues of the initial cable length l0 for both boom crane 
models. It is written at p. 263 of paper [2] that l0 (Abdel-

Rahman & Nayfeh) = 89 [ft]. The initial value of cable length 
in our paper is equal to l0 (Kostikov et al.) = 0.9 [m]. 

Therefore, it is possible to introduce a new length scale 
dimensionless coefficient for the length of the crane 
rope, attached to the boom tip, as lscale = 
= (l0 (Abdel-Rahman & Nayfeh))/(l0 (Kostikov et al.)). The numerical 
value of this dimensionless quantity lscale is lscale = (89 
[ft])/(0.9 [m]) ≈ 30.141. 

At the second step we will make an estimation of the 
numerical value of the velocity scale dimensionless 
coefficient through a comparison of the numerical 
values of the payload lifting velocity Vl for both boom 
crane models. It is written at p. 264 of paper [2] that 
Vl (Abdel-Rahman & Nayfeh) = 1.5 [ft/s]. The computational 2D 
plots for payload lifting velocity, which were derived in 
the present paper by Kostikov et al., are shown in our 
graphical plots in Figures 5 and 12. These plots yield 
that our numerical value of the payload lifting velocity 
is Vl (Kostikov et al.) = 0.065 [m/s]. Therefore, it is possible 
to introduce a new payload velocity scale dimensionless 
coefficient for the linear velocity of the lifting of the 
crane rope, attached to the boom tip, as V1(scale) 
= (Vl (Abdel-Rahman & Nayfeh))/(Vl (Kostikov et al.)). The numerical 
value of this dimensionless quantity Vl (scale) is 
Vl (scale) = (1.5 [ft/s])/(0.065 [m/s]) ≈ 7.034. 

At the third step we take into account that the scaling 
condition for the kinematic similarity yields that 
Vl (scale) = (lscale)/(tscale), where the new dimensionless 
quantity tscale is the timescale factor, which can be esti-
mated as tscale = (lscale)/(Vl (scale)). The previous estimations 
yield the following numerical value of this dimensionless 
quantity as tscale ≈ (30.141)/(7.034)  ≈ 4.285. 

At the fourth step we recall the following expression 
between the dimensionless quantities of time scale tscale 
and frequency scale ωscale in the form of tscale = 1/ωscale 
and ωscale = 1/tscale ≈ (7.034)/(30.141) ≈ 0.233. Additio-
nally, the same dimensionless quantity for frequency 
scale can be standardly determined through the follo-
wing expression:   

ωscale = (ω (Abdel-Rahman & Nayfeh))//(ω(Kostikov et al.)).  

It is written at p. 262 of paper [2] that the numerical 
value of the excitation frequency is equal to ω (Abdel-

Rahman & Nayfeh) = 0.601 [rad/s]. It is possible to find the 
following algebraic expression ω (Kostikov et al.) = (ω (Abdel-

Rahman & Nayfeh))/(ωscale) for the calculation of the nume-
rical value of the excitation frequency ω (Kostikov et al.) in 
our case for the present problem by Kostikov et al.:  

ω (Kostikov et al.) ≈ 0.601 [rad/s])/(0.233) ≈ 2.579 [rad/s]. 

At the fifth step we take into account that the 
dimensionless value of the linear acceleration scale ascale 
for linear motion of a rope-lifted, boom-transported 
payload is determined as ascale = (Vl (scale))/(tscale). The 
numerical value of ascale in our case is as follows: 
ascale ≈ (7.034)/(4.285) ≈ 1.642. 

At the sixth step we address concepts of the dynamic 
similarity theory. It is well known that the mass scale 
dimensionless parameter can be calculated with the 
following expression: mscale = (ρscale)•[(lscale)3], where 
ρscale is the mass density scale dimensionless parameter. 
For simplicity of further comparison, we assume that 
ρscale has a unity value ρscale = 1. Then, for a numerical 
value of the dimensionless mass scaling factor we have 
mscale = [(lscale)3] ≈ (30.141)3 ≈ 27382.492. 
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At the seventh step we are ready to determine the 
algebraic equation for the force scale Fscale dimension-
less parameter as Fscale = (mscale)·(ascale). The numerical 
value of Fscale is as follows: Fscale ≈  (27382.492) 
·(1.642) ≈ 44962.052. We can additionally check the 
correctness of this estimated numerical value of the 
force scale Fscale dimensionless parameter through the 
use of the following alternative algebraic expression 
Fscale1 = (ρscale)·[(lscale)2]·[(Vl (scale))2]. In our case we have 
the following numerical value of Fscale1 ≈  [(30.141)2] 
·[(7.034)2] ≈ 44949. It is obvious that Fscale almost 
coincides with the previous numerical value of Fscale1. 

At the eighth step we can make an approximate 
estimate of the numerical value of the scale of the non-
reduced dimensionless damping coefficient βscale thro-
ugh the use of the following dimensionless expression: 
Fscale = (βscale)•(Vl (scale)). The algebraic expression for the 
scale of the βscale is the solution of the previous equation, 
which yields (βscale) = (Fscale)/(Vl (scale)). The numerical 
value of the βscale is as follows: (βscale) ≈  (44962.052) 
/(7.034) ≈ 6392.243. In order to make the bridge 
between this estimation for the scale of the non-reduced 
dimensionless damping coefficient βscale and p. 258 of 
the paper [2], we introduce a new dynamic similarity-
based dimensionless expression for the scale of the 
reduced, normalized and normed dimensionless dam-
ping coefficient μscale through the use of the following 
dimensionless expression: (μscale) = (βscale) /(mscale), 
which yields (μscale) ≈ (6392.243)/ (27382.492) ≈ 0.233. 
From another viewpoint, the scale of the reduced, 
normed and normalized dimensionless damping 
coefficient μscale can be calculated as (μscale) =  
(μ (Abdel-Rahman & Nayfeh))/(μ (Kostikov et al.)). It is written on 
p. 262 of paper [2] that the numerical value of the redu-
ced, normalized and normed linear damping coefficient 
is equal to μ (Abdel-Rahman & Nayfeh) = 0.01. The following 
algebraic expression μ (Kostikov et al.) = (μ (Abdel-Rahman 
& Nayfeh))/(μscale) can be used for the calculation of the 
numerical value of the reduced, normalized and normed 
linear damping coefficient μ (Kostikov et al.) in our case for 
the present problem by Kostikov et al.: μ (Kostikov et al.)  
≈ (0.01)/(0.233) ≈ 0.043. 

These kinematic and dynamic similarity-based engi-
neering estimations expand our understanding of the 
authors-derived results of numerical simulations in the 
present paper, shown in computational Figures 2 – 18. 

 
5. CONCLUSION 

 
Computational plots of time dependencies of control 
voltages (ue(t); uw(t)[V]) in Figures 2, 3, 9, 10 have a 
stick-slip nature. This fact allows us to make a conc-
lusion that our numerical solution for the optimal cont-
rol voltages really fits the Bang-Bang type of optimal 
control within some specific time intervals. 

Even in the simplest case of no restrictions, our 
problem is not reduced to a classical optimal control 
problem for Pontryagin’s type, in which the principle of 
Pontryagin’s maximum is proved. 

It is tied to the fact, that rope tension force N = N(t) 
depends on not only phase variables, but also on their 
derivatives (Figures 7, 14). The cable tension force N = 
N(t) is the internal force of the mechanical system 

“boom crane – payload”. The algebraic expressions for 
N = N(t) are listed in the Table 1 and Table 3. 
Expressions in the Table 1 and Table 3 show that the 
rope tension force N = N(t)  is a non-linear function of 
the first derivatives of the phase variables. Therefore, it 
is very difficult to express all first derivatives with the 
phase and control variables. 

In order to be able to apply Pontryagin’s 
(Pontriagin’s) maximum principle to the present 
optimization problem, it is necessary to express the 
studied dynamic system in the form  

( )( ) ( ) ( )( )tutxf
dt

txd ,=⎟
⎠
⎞

⎜
⎝
⎛ ,  

where x(t) is the phase variable and u(t) is the control 
variable. However, it is very complex assignment to 
express the system in this form. Therefore, it is very 
challenging assignment to directly apply Pontryagin’s 
(Pontriagin’s) maximum principle for our dynamic 
system in the present research. That is why our dynamic 
system in the staging of the optimal control problem, 
does not satisfy conditions for which Pontryagin’s 
principle of maximum is proved. Consequently, quali-
tative analysis of our optimal control problem using 
Pontryagin’s principle of maximum requires research 
data which is beyond the scope of this research. Addre-
ssing this problem will be a matter of further study by 
the authors. 
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ИСТРАЖИВАЊЕ РЕДУКЦИЈЕ ЊИХАЊА 
КОРИСНОГ ТЕРЕТА МАНИПУЛАЦИЈОМ 
ДУЖИНЕ КАБЛА ПРИЛИКОМ КРЕТАЊА 

СТРЕЛЕ КРАНА 
 

А.А. Костиков, А.В. Периг, О.В. Ларичкин, А.Н. 
Стадник, Е.П. Грибков 

 
Истражује се динамика управљања стрелом крана 
проучавањем вођеног кретања корисног терета нера-
вномерним ротирањем стрелом погоњеног средиш-
њег чвора и променљивом дужином кабла. Форму-
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лисан је проблем оптималног управљања и нуме-
рички је решен са ограниченом вредношћу дозво-
љеног њихања корисног терета применом 
JModelica.org са Optimica екстензијом. Решења 
оптималне брзине код динамичког модела који опи-
сује кретање корисног терета од почетног до крајњег 
положаја су нађена помоћу нелинеарности повеза-
них са Кориолисовом силом и променом дужине 
кабла током кретања. Размотрена су два случаја: са 
и без ограничења вредности за њихање. Утврђено је 
да ограничење вредности доводи до пребачаја фазне 
промене дужине. Добијени резултати се могу корис-
тити у различитим областима за пренос терета помо-
ћу крана: индустрији, грађевинарству, итд. Резултат 
управљања омогућава редуковање времена преноса 

терета, што доводи до веће продуктивности радне 
снаге. Такође се смањује њихање корисног терета, 
па тиме и вероватноћа повређивања приликом уто-
вара и истовара. Модел је нелинеаран и узима у 
обзир Кориолисову силу и друге нелинеарности. 
Модел је електро-механички; укључује каракте-
ристике електро-мотора торња и витла. Дата је 
упоредна анализа проблема оптималног управљања 
са и без рестрикција вредности за њихање терета и 
дефинисане су разлике између функција управљања 
за сваки од датих случајева. Оптимално управљање, 
узимајући у обзир промену дужине кабла, омогућава 
изналажење решења за практичне задатке код 
кретања терета на чијем путу се јављају бројне 
препреке.    

 
 
 


