
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2019) 47, 749-756 749

Received: November 2018, Accepted: June 2019
Correspondence to: Dr Nuno Lopes
Polytechnic Institute of Cávado and Ave.
School of Technology, Barcelos – Portugal.
Email: nlopes@ipca.pt
doi: doi:10.5937/fmet1904749L

Nuno Lopes
Assistant Professor

Polytechnic Institute of Cávado and Ave
Barcelos

Algoritmi Research Centre
Guimarães

Portugal

Goran Putnik
Full Professor

University of Minho
Algoritmi Research Centre

Guimarães
Portugal

Luís Ferreira

Assistant Professor
Polytechnic Institute of Cávado and Ave

Barcelos
Algoritmi Research Centre

Guimarães
Portugal

Bruno Costa

Polytechnic Institute of Cávado and Ave
Barcelos
Portugal

Towards a High Performance
Computing Scalable Implementation of
Cyber Physical Systems

Cyber Physical Systems (CPS) establish an interdependency between the
physical world and the cyber world. When considering a real world setup,
CPS will receive a considerable input from the physical world that
demands a timely response. Without the computer capacity to handle the
input data, a CPS will not be able to react in a very short term to changes
in the environment and provide proper output. Current CPS are unable to
react in near real-time to challenges when considering a realistic problem
size. Our objective is to harness the performance of High Performance
Computing systems to make CPS capable of handling the necessary
computation demands in order to be able to interact with the physical
world. We present a case study on scheduling algorithms to demonstrate
the current limitations in the computing performance and point possible
solutions to achieve it.

Keywords: Cyber Physical System (CPS), High Performance Computing
(HPC), scheduling algorithm, greedy algorithms, parallel programing,
real-time CPS.

1. INTRODUCTION

The general literature considers Cyber-Physical Systems
(CPS) or, better in the context of this paper, Cyber-
Physical Production Systems (CPPS), as the capacity to
state an efficient interaction and collaboration between
physical (machines, sensors, actuators, etc.) and digital
(software, control, monitoring decision systems, etc.)
worlds [1,2].

The path to full digitalization with Internet of Things
and Industry 4.0 force, the concept to be realigned since
new processing capacities arise, new participating ele-
ments exist and new requirements of integration
emerge. The common triad controller-sensor-actuator
[2] will behave as a mix of computational and physical
parts [3], able to be changed or redesigned, during
learning processes. The productions units (machines,
actuators, etc.) should continue to be reconfigured and
the processes agilely rescheduled [4]. Furthermore, the
software-based control units, should be prepared to be
context-ware refactored, according to accuracies faults,
uncertainty or other disturbances.

The shop-floor is a very dynamic environment
where an optimal static configuration setup becomes
obsolete in face of external disturbances, which for
some cases happen permanently [5]. This feature
requires an CPPS that reacts in real-time to the system
changes and adapts the system configuration to pursue
the best possible setup [6,7].

Scheduling algorithms are an application example of
CPPS that are well explored in the literature and being

known as NP-hard. NP-hard problems have the charac-
teristic that, as the problem size grows, the computation
is required to find an optimal solution that grows
exponentially. As such, this complexity implies that the
execution time does not drop significantly even when
increasing significantly the computing resources [8].

A CPPS system should support real world setups
with a large number of both jobs and machines, in order
to have practical applicability. Therefore, the CPPS
should be scalable on the problem size, i.e., it should
remain performant by producing valid scheduling
results, in a useful time interval (as close to real-time as
possible), as the problem size increases.

The traditional approach to overcome this problem
complexity is to use heuristics. Heuristics reduce the
number of calculations needed to achieve a valid
solution to the problem [8,9]. However, they do not
guarantee that the optimal solution to the problem is
found, but instead that a valid solution is found even if
not the optimal one. By reducing the number of
calculations, the time the algorithm takes to complete
will also decrease.

Even when using heuristics to reduce the number of
computations, the minimum number of computations
necessary to handle a realistic problem size still remains
large enough to prevent the system to reply in real-time.
This leads to simulations with relatively small number of
machines or jobs, because of the algorithm complexity.

In order to obtain performance scalability, i.e., to
maintain the time necessary for the algorithm to reach a
valid solution when the problem size increases, two
approaches are possible: to reduce the number of
computations or to increase the computing capacity per
time unit. The first approach reduces the execution time
of the algorithm by running fewer computations. This is
the case of heuristics. Nevertheless, heuristics still

750 ▪ VOL. 47, No 4, 2019 FME Transactions

exhibit a significant amount of computations that limit
scalability. Hence, the second approach needs to be
adopted, i.e., being able to execute more computations
on the same amount of time.

According to Putnik et al., the approach of running
more computations within the same amount of time can
be obtained by: 1) upgrading the capacity of existing
resources or 2) incrementing the number of resources
(replication) [10]. In the CPPS case, this is equivalent to
upgrade existing processors, in order to increase its
computing capacity, or to increase the number of
computers. The first case (from Moore’s Law) is
nowadays no longer observable when considering the
increase of processor frequency. Therefore, the only
scalability path available is the increase in the number
of processors (and computers).

We propose the use of High Performance
Computing (HPC) to increase the computation capacity
and reduce the execution time, aiming at obtaining a
CPPS implementation capable of achieving a problem
solution as close to real-time as possible.

The structure of this paper is as follows. Section 2
presents an overview on High Performance Computing.
Section 3 presents a literature review on HPC
applications for Industry 4.0. Section 4 presents an
application performance assessment to improve
parallelization. Section 5 shows a case study for a
scheduling simulation implementation and its
performance evaluation. Section 6 presents a framework
for a HPC scalable implementation of a CPPS system
and finally section 7 concludes the paper.

2. HIGH PERFORMANCE COMPUTING

High performance computing can be defined as the
capacity to run a computer program that is efficiently
executed on a parallel computer [11]. A parallel com-
puter is a computer capable of executing multiple inst-
ructions at the same time through the support of mul-
tiple processors or cores. According to Flynn's Taxo-
nomy, this computer falls into the Multiple-Instruction-
Multiple-Data type, i.e., multiple instructions are exe-
cuted concurrently (on different processors or cores)
operating on different data items.

Parallel computers use a shared-memory or a distri-
buted-memory approach for the processor-main memory
communication architecture (see Figure 1). The shared-
memory computer has multiple processors, or multiple
cores within a single processor chip, that connect into a
single shared main memory. The distributed-memory
computer has multiple pairs of processor-memory, that
are independent from each other, and communicate
exclusively through a message passing network.

Figure 1. Shared-memory (left) versus distributed-memory
(right) computers.

Shared-memory computers have multiple processors
accessing a single shared main memory. Due to hardware
optimizations, the traditional approach for shared-
memory is to use a cache-coherent Nonuniform Memory
Access (ccNUMA). In this design, the non-uniform
memory access implies that memory is not uniformly
accessed by all processors, but instead, each processor
accesses a part of the physical memory, and an internal
connection bus between processors shares the memory
logical parts among each other. Hence, the access of a
memory part that is locally connected into a processor
will be faster than accessing a memory part that is
connected into another processor. The use of multiple
logical memory parts, together with cache techniques to
improve performance raise a consistency requirement
when two processors try to access the same memory
address or position. Cache coherent techniques assure
that all processors view a consistent memory data.

On the distributed memory computer, each element
contains a processor and main memory pair that is
independent from all others. The communication
between processors is made though a communication
network that exchanges (read-only) messages, i.e., the
contents of messages are not altered after the message
being sent even if the data is updated on the sending
node’s memory afterwards. Messages are explicitly sent
and received through an API. Although this model
differs from the shared-memory model, it is possible to
use the distributed-memory model on a shared-memory
computer, and vice-versa.

A common supercomputer architecture nowadays
consists of clusters of commodity processors [11]. This
architecture makes use of multiple core individual
computers, which are alone capable of executing con-
current instructions. However, the total computing capa-
city of a single individual computer is not sufficient to
harness the computing capacity demand for large com-
putational applications. The solution adopted for incre-
asing performance was to scale on the number of
individual computers, interconnecting them through the
use of a low latency high bandwidth network. In sum, the
final architecture is composed of multi-core computers
using shared-memory model that are interconnected
through a message-passing distributed-memory model.

3. HPC APPLICATIONS FOR INDUSTRY4.0: LITE-

RATURE REVIEW

The use of HPC in industry is not new. Recently the
Fortissimo EU project has established a marketplace for
running HPC based research projects for industry [12].
However, most of the projects and solutions presented
fall into the simulation approach whose execution time
falls outside the real-time time frame, being in the order
of minute, hours or days. Nevertheless, the HPC solu-
tion is offered as a cloud-based service, where custo-
mers pay for the time use of the HPC infra-structure.

Bozejko presents the use of HPC through massive
parallelism to solve the job-shop problem through meta-
heuristics [13]. The results show that the parallel algo-
rithms exhibit a linear speedup with the number of pro-
cessors (although some considerations are made). This
work shows that well designed parallelization algorithms

FME Transactions VOL. 47, No 4, 2019 ▪ 751

can exhibit performance gains and justify the para-
llelization use. Nevertheless, the use of meta-heuristics
continue to impose a high number of calculations.

A more recent work of Dabah et al. also propose the
use of HPC with multiple cores and general purpose
graphical processing units (GPGPUS) to improve the
execution time of a job-shop scheduling problem using
optimization algorithms [12]. Their best results exhibit a
speedup of 160x compared to the sequential execution
time, for a simulation problem size of 100 jobs and 20
machines that takes 418 seconds. While the speedup is
considerable, again, the global execution time is in the
order of 418 secs.

Kan et al. proposed the use of parallel computing for
improving the performance of a monitoring system that
reacts to changes in the machine behaviour [14]. The
parallelism used 12 nodes, with a speedup of 3x the
time of the sequential counterpart, for a 180.000
machine network simulation.

Zhong and Xu propose a job-shop scheduling model
that captures the real-time feedback from the
environment to improve the decision making [7]. The
simulation considers a setup of 48 jobs and the
algorithm applied does not produce an optimum
solution. This work presents the case for using real-time
feedback, a feature of a CPPS, to improve the
production scheduling output.

In summary, the works that make use of HPC target
scheduling optimization algorithms that are computing
intensive and take too much time (in the order of
hundreds of seconds) to reach a solution for a
reasonable problem size. In turn, other works that do not
use HPC rely on simple heuristics to provide some kind
of feedback in order to improve the existing scheduling
of a very small problem size. The problem sizes
considered in the previous works are not representative
of a real setup scenario in the context of Industry 4.0,
where we expect to have thousands if not millions of
machines and the same amount of jobs respectively.

4. APPLICATION PERFORMANCE ASSESSMENT:

TOWARDS PARALLELIZATION

To improve the overall efficiency of an application, the
goal is to reduce its execution time while maintaining its
correction. The correction of an application can be
defined as the ability to produce a correct output result
for any input, regardless of the implementation details.
Starting from a sequential implementation, it is expected
that a parallel version will be able to produce a correct
output but using less execution time. Another aspect of
the execution is determinism. In determinism, it is
expected for the application to produce always the same
output from the same input. Sometimes, parallel
algorithm implementations do not assure determinism.
Nevertheless, this property can be skipped if all the
possible output results are considered correct.

4.1 Application Parallelization

According to the Foster’s Methodology [15], there are
four steps that can be taken to design a parallel appli-
cation: Partitioning, Communication, Aggregation and

Mapping. Partitioning is about dividing the computation
algorithm in smaller computation tasks so that it is
possible to identify parallelization opportunities, i.e.,
more than one task than can be executed at the same time.
Communication deals with the coordination of task
executions and auxiliary data that needs to be exchanged
among the previous tasks in order to conclude the
computation. Aggregation is an optimization step where
some tasks are grouped into a single composite task due
to data dependencies, or computation load to improve
performance. Mapping is the final step where tasks are
assigned to logical processors in order to load balance
resource usage and reduce overall communication costs.

When applying this methodology, one has to iden-
tify what is the computational problem to be analysed,
and if a previous sequential implementation exists.
When starting from an already existing sequential appli-
cation, the parallelization approach must first identify
the critical hotspots that are present in the sequential
implementation. Critical hotspots are pieces of code that
take a considerable amount of time to execute, which
makes them good candidates to be parallelized and
hence, to have its execution time reduced. By targeting
specific parts of the sequential implementation, one
considers the computational problem to be only specific
pieces of the sequential implementation, the hotspots,
and not necessarily the whole sequential application.

4.2 Application Performance Assessment

To assess the hotspots of an application, an application
profiler is necessary. The purpose of this tool is to run the
application with additional monitoring to trace its internal
behaviour so that an execution count and elapsed time
spent at each internal code piece (functions) can be collec-
ted and analysed further with a global function call graph.

Multiple profiler tools exist that are capable of
collecting such information, both commercial and open-
source based [16-18]. It is possible to trace the exe-
cution time of the inner functions and have a global
overview where computing time is spent. Some tools
perform a statistical approximation for the execution
time, therefore an error exists in the trace result.
Nevertheless, these results allow the identification of
pieces of code (functions) that for a significative large
execution profile are hotspots.

5. CASE STUDY: SCHEDULING SIMULATION

ALGORITHM

A scheduling simulation algorithm was selected as a
case study for the implementation of a Cyber Physical
Production System with the objective of producing a
correct output for a real size domain problem input. The
scheduling problem has as its inputs a set of jobs and a
set of machines. Each job requires a small set of
operations which may run on some specific machines.
This scheduling problem is generically named Job Shop.

5.1 Case Study Implementation Details

The algorithm implemented allocates job operations into
machines using a variant of a “greedy” algorithm which

752 ▪ VOL. 47, No 4, 2019 FME Transactions

selects the best machine based only on local knowledge
at the moment, that may not necessarily be the best
possible machine among all. This approach skips the
use of any classical optimization solution on the output
schedule [5]. Although not optimal, the algorithm result
is close enough to be considered a good solution, while
taking much less time to compute.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

64 Jobs 128 Jobs 180 Jobs 256 Jobs

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Windows Visual Studio Linux NetBeans
Figure 2. Execution time for a scheduling simulation of 64
Machines with different job sizes (64, 128, 180 and 256).

The algorithm implementation was developed using the
NetBeans IDE and compiled using the sequential C++
programming language. Two auxiliary libraries were
used to support file and directory management (MinGW)
and the JSON file format used to store simulation data
into persistent files (RapidJSON). The original imple-
mentation runs on Windows OS, but a later
implementation was ported to both Windows and Linux.
The porting did not changed any algorithm specific code,
but only platform dependent code, i.e., the algorithm code
(C++) remains identical for both platforms. The
application uses a command line textual interface, which
has a very low impact on computing resource usage
during execution. The porting of the application for a

second operating system was motivated for the analysis
of the OS impact in the performance of the application,
which in theory should be null.

The problem size used in the simulation ranged from
a reference data set of 8 machines x 8 jobs (with 7
operations/job) up to 64 machines x 256 jobs, which
were obtained by scaling the original data set. The
Figure 2 shows the execution time for a scheduling
simulation of 64 machines with multiple job sizes (64,
128, 180 and 256) for the two platforms on a machine
with an Intel Core i7 CPU up to 3,5 GHz, 32 GBytes of
RAM, and storage of 512 GBytes SSD and 1 TByte
HDD.

The results show that the execution time grows
exponentially with the job size, showing that the
algorithm complexity is not negligible, although based on
a heuristic and hence theoretically with low complexity.
Additionally, the results also show a considerable
difference between operating system platforms, which we
believe to be related with compiler optimizations and
library implementations, attending that the algorithm in
itself was not modified in its source code form.

5.2 Hotspot Analysis

The simulation application was profiled using the Intel
Vtune Amplifier v2019 in order to trace potential
hotspots [16]. This simulation used a problem size of 64
machines with 64 jobs on a Linux OS with the debug
option activated, which took 879 secs to execute. The
execution time of the application in debug mode within
the profiler has a considerable overhead when compared
to the release mode, which would be 170 seconds.
However, the use of the debug mode is a requirement to
run the profiler and trace the execution time spent
within the application. The results are shown in Figures
3 and 4.

Figure 3. Top-Down Call Graph with relative execution time.

FME Transactions VOL. 47, No 4, 2019 ▪ 753

Figure 4. Bottom-Up Call Graph with absolute execution time

The Figure 3 shows the Top-Down Call Graph of the
application where the first column shows the function stack
and the second column shows the accumulated percentage
of the global execution time spent on the function. The
main() function, which encompasses all the application
functionality, accounts for 100% of the execution time. As
expected the application is running the schedule algorithm
at 100% of the total time, which means that any other
auxiliary code accounts for a very small percentage of
time. Within the scheduling, we observe that 76% of the
total time accounts for “load DataWithMatches” that is
where data is loaded from auxiliary files from disk. Within
this, 15% of time is spent in reading data from files using
the JSON library and an additional 16.4% is spent in
auxiliary data processing from the JSON library into
internal data structures. Overall, 31.4% of the total time is
spent in loading and processing data, which is a
considerable amount of time devoted to loading data rather
than computing the scheduling.

The Figure 4 shows the Bottom-Up Call Graph
with the absolute execution time spent within each
function. The total time of the application was around
800 secs. The two functions that take the most execution
time are the constructor and destructor of the Map
auxiliary data structure and the new object constructor.

5.3 Results Analysis

The first hotspot found is the significative time spent in
creating and destroying auxiliary data structures (map)
while calculating the schedule. Overall, the application
spends about half of its global execution time within
these auxiliary functions (the sum of the map const-
ructor, destructor, new object operator and the new allo-
cator function account for more than 400 secs). The map
data structure is an auxiliary data structure needed for
the calculation of the output result, and presents a
parallelization opportunity.

The scheduling algorithm in itself, after the
auxiliary data structures are built in place, does not
account for any significative computing load. This is
due to the “greedy” heuristic nature of the algorithm,
with very low complexity on the problem size.

The hotspot analysis also revealed that the auxiliary
JSON library took 15% of the total application time, which

is not efficient at handling the amount of data that is tem-
porarily stored in disk for supporting the planning of the
scheduling. This was an unexpected hotspot, considering
that this application is cpu intensive, making use of the cpu
for creating a schedule as its only major operation. The disk
access is made through a single bus, hence it is not easily
parallelizable as parallel requests to the disk would have to
pass through the same single hardware path. The handling of
temporary data has to be designed in a different way, either
through a different file format other than JSON that
optimizes the disk access and processing (both tasks account
for 30% of the execution time), or trying to avoid storing
data in disk and keep all data in main memory if possible
(depends on the amount of RAM available).

5.4 Identifying Requirements for HPC

The initial results for the simulator reveal that taking
2653 secs (about 44 minutes) for producing a valid sche-
duling solution for a problem size of about 64 machines
and 256 jobs is not feasible to reach a near real-time exe-
cution. We expect that with the use of a parallel algorithm
implementation deployed on an HPC computer that the
execution time will decrease to a near real-time range.

A possible solution to overcome the hotspot found in
the management of the auxiliary data structures, necessary
for the algorithm, is to redesign the object allocation stra-
tegy, in order to incorporate a parallel approach through the
Foster methodology. The first step is to partition the cre-
ation of the data structures through multiple smaller tasks
so that parallelization is possible. In this case, multiple
threads of execution create local data structures that have to
be integrated into a single global data structure (on the
shared-memory model). Since each object constructor is
not computing intensive by itself, the hotspot is created by
calling the constructor multiple times. This execution time
can therefore be split through multiple execution proces-
sors and hence decrease the execution time spent within
these functions. The communication step consists in the
integration of the memory references of multiple local aux-
iliary data structures (variable references) into the global
data structure. The aggregation and mapping steps might
group some constructors into the same logical group for
performance since there will be more auxiliary objects than
processors.

754 ▪ VOL. 47, No 4, 2019 FME Transactions

 User Layer

Multimodal Immersive

Business Layer - Simulation Model Layer

Maintenance
Management &

Operation
Collaborative

Support Layer

Cloud

MicroServices Oriented Architecture

Services RESTful

Simulation Engine Layer

Integrated Modules External Modules

PaaS

SaaS

Data Layer

Big Data

Realtime
Data

Forecasted
Data

Predefined
Data

Streaming DataBases

Operating System

Windows Linux iOSAgnostic OS Android

Structured
Data

Production Planning and
Control & Scheduling

Technological
Processes

(Machining)

Maintenance
Management &

Operation

Technological Processes

Production Planning and
Control & Scheduling

Machining

Responsive Cross-Platform

API/SDK

Artificial
Intelligence

...

Scalability HPC

Distributed
DataUnstructured

Data

Figure 5. CPPS supporting platform stack of technologies and methods, HPC is present in the Support Layer.

6. FRAMEWORK PROPOSAL FOR HPC SCALABLE

IMPLEMENTATION FOR CPPS

To have a Cyber Physical Production System be res-
ponsive in almost real-time, and considering the need
for running scheduling simulations, a proposal to inte-
grate HPC into the CPPS framework is presented next.
The previous experiences with “traditional” approach to
simulations, based on common PC technology, mea-
ning, single or dual processor with at most 16 cores,
shows that for large problems, the simulations lasted too
long, from several hours (for smaller cases) to several
days (for larger cases). The simulation times experi-
enced, even if much lesser than few hours, are, in
principle, not acceptable for simulations in CPS in whi-
ch it is supposed to have the capacity of response in,
virtually, real-time. That is, the capacity to provide ope-
ration of the system and associated decision making,
which includes simulation as one of the decision making
instruments, to be realised on the “flow”. The inclusion
of HPC technology emerges as necessary within a CPPS
framework.

The case study presented identifies which of the
algorithm components that can benefit from the parallel

programing approach, open the possiblity for the
algorithm to run on large HPC computers.

We propose the following components, technologies
and methods for a CPPS framework in Figure 5. The
framework follows the N-Tier pattern architecture with
6 main tiers of (1) User Layer, (2) Business Layer
(Simulation Model Layer), (3) Support Layer, (4) Simu-
lation Engine Layer, (5) Data Layer, and (6) Operating
System. Each “Layer” comprises two different types of
components, represented graphically by two different
graphical symbols: elliptical, and rectangular, which
corresponds to the layer’s characteristics or parti-
cularities and to the layer’s components, respectively:
1) User Layer: represents applications and support for

all interfaces, views, presentations and commu-
nications for users; Immersive environments of
Mixed Reality will offer more real predictive and
simulations experiences.

2) Business Layer - Simulation Model Layer: repre-
sents applications and support for all main CPPS
phases, including Machining and Production
Control, as well as Management, all in co-designing
collaborative and creative environment;

3) Support Layer: represents cloud applications and su-
pport for all cross-platform applications; Sustains the

FME Transactions VOL. 47, No 4, 2019 ▪ 755

required scalability and High Performance Com-
puting for the required real-time feature in CPPS.

4) Simulation Engine Layer: represents applications and
support for all simulation modules for Technological
Processes, Management and Maintenance Control;

5) Data Layer: represents applications and support for
all applications for data repository and manage-
ment, including real-time data and streaming data
coming from external systems;

6) Operating System: represents the portability and
scalability of operating system that supports all the
components.

7. CONCLUSION

Cyber Physical Production Systems (CPPS) in the con-
text of Industry 4.0 will have to process a tremendous
amount of data in a continuous stream for dealing with
permanent environment disturbances that create an
impact on the scheduling decisions already made. Hence
CPPS are required to respond in (near) real-time to
these changes by reconfiguring decisions. We present
the use case of a scheduling algorithm that must face
continuous rescheduling for a realistic problem size in
face of external disturbances.

Although the real-time requirement of CPPS is
already identified in the literature, all CPPS examples
present a relatively small problem size that ranges up to
50 machines. This problem size is small when compared
to the expected size of future production systems, in the
context of I4.0, where the number of machines and num-
ber of jobs might scale up to the thousands, theoretically
up to millions. The HPC literature surveyed considers 20
machines and 100 jobs, which again is less than what to
be expected from a real world Industry 4.0 setup.

We identify some scalability limitations on our case
study that must be overcome to obtain a responsive
CPPS, capable of adapting to continuous disturbances
by presenting a rescheduling at each change. We
propose to use HPC technology to support the scalable
implementation of a scheduling algorithm, so that a
rescheduling is obtained in a very short period of time.
We propose to use a greedy algorithm that very quickly
points a good (but not necessarily optimal) solution. The
HPC back-end will facilitate the production of a
reschedule in a timely manner for realistic problem
sizes, larger than the ones observed in the current
literature. Although possible, the use of cloud based
solutions to support the virtualization of the
infrastructure is not in itself a sufficient solution since
the scalability of the system depends on the efficient use
of multiple machines, which can only be obtained
through HPC technologies, provided either as a
standalone or cloud service solutions. We study the
weak points in our current implementation and point out
some possible improvements to reach an algorithm that
scales out on an HPC infrastructure.

ACKNOWLEDGMENT

This work has been supported by FCT – Fundação para
a Ciência e Tecnologia, Portugal, within the Project
Scope: UID/CEC/00319/2019.

REFERENCES

[1] Monostori, Kádár, Bauernhansl, Kondoh, Kumara,
Reinhart, Sauer, Schuh, Sihn and Ueda, "Cyber-
physical systems in manufacturing," CIRP Annals -
Manufacturing Technology, vol. 65, pp. 621-641,
2016.

[2] Tomiyama and Moyen, Resilient architecture for
cyber-physical production systems, CIRP Annals -
Manufacturing Technology, vol. 67, 161-164, 2018.

[3] Putnik, G. D., Ferreira, L., Lopes, N., Putnik, Z.:
What is Cyber-Physical System: Definitions and
Models Spectrum, in FME Transactions. Vol. 47
No. 4, pp. 663-674, 2019.

[4] Petrovic, Milica, Miljkovic, Zoran, and Babic,
Bojan: Integration of process planning, scheduling,
and mobile robot navigation based on triz and
multi-agent methodology, in FME Transactions,
vol. 41, no. 2, pp. 120-129, 2013.

[5] C. Alves, Modelling and Evaluation of “Fixed
Horizon”, “Rolling Horizon” and “Real Time
Management” Production Scheduling Paradigms in
Ubiquitous Production Networks under Conditions
of Dynamic Environments for Economic and
Environmental Sustainability, PhD Thesis,
University of Minho, 2017.

[6] Mourtzis, Vlachou, Milas and Xanthopoulos, "A
cloud-based cyber-physical system for adaptive
shop-floor scheduling and condition-based
maintenance," Journal of Manufacturing Systems,
vol. 47, pp. 179-198, 2018.

[7] Zhong and Xu, "A Job-Shop Scheduling Model
with Real-time Feedback for Physical Internet-
based Manufacturing Shopfloor," in 2015 IEEE
12th Intl Conf on Ubiquitous Intelligence and
Computing and 2015 IEEE 12th Intl Conf on
Autonomic and Trusted Computing and 2015 IEEE
15th Intl Conf on Scalable Computing and
Communications and Its Associated Workshops
(UIC-ATC-ScalCom), Beijing, China, 2015.

[8] Garey and Johnson, Computers and Intractability,
W. H. Freeman, 1979.

[9] Sathish, Jayaprakash and Saravanan: Multi period
disassembly-to-order of end of life product based
on scheduling to maximize the profit in reverse
logistic operation, in FME Transactions, vol. 45,
no. 1, pp. 172-180, 2017.

[10] G. Putnik, A. Sluga, H. ElMaraghy, R. Teti, Y.
Koren, T. Tolio and B. Hon, "Scalability in
manufacturing systems design and operation: State-
of-the-art and future developments roadmap," CIRP
Annals - Manufacturing Technology, vol. 62, pp.
751-774, 2013.

[11] G. Hager and G. Wellein, Introduction to High
Performance Computing for Scientists and
Engineers, CRC Press, 2011.

[12] A. Dabah, A. Bendjoudi, A. AitZai, D. El-Baz and
N. N. Taboudjemat, "Hybrid multi-core CPU and
GPU-based B&B approaches for the blocking job
shop scheduling problem," Journal of Parallel and
Distributed Computing, vol. 117, pp. 73-86, 2018.

756 ▪ VOL. 47, No 4, 2019 FME Transactions

[13] W. Bożejko, "Solving the flow shop problem by
parallel programming," Journal of Parallel and
Distributed Computing, vol. 69, pp

[14] C. Kan, H. Yang and S. Kumara, " Parallel
computing and network analytics for fast Industrial
Internet-of-Things (IIoT) machine information
processing and condition monitoring," Journal of
Manufacturing Systems, vol. 46, pp. 282-293,
2018.. 470-481, 2009

[15] P. Pacheco, An Introduction to Parallel Progra-
mming, Morgan Kaufmann, 2011.

[16] Intel, "Intel Vtune Amplifier," 2019. [Online].
Available: https://software.intel.com/en-us/vtune.

[17] GNU Software Foundation, "Gprof Documen-
tation," 2019. [Online]. Available: https://source-
ware.org/binutils/docs/gprof/.

[18] Valgrind Developers, "Valgrind - Callgrind," 2019.
[Online]. Available: http://valgrind.org/info/tools
.html#callgrind.

ПРЕМА СКАЛАБИЛНОЈ ИМПЛЕМЕНТАЦИЈИ
САЈБЕР-ФИЗИЧКИХ СИСТЕМА (СФС) НА

ОСНОВУ РАЧУНАРСКИХ СИСТЕМА
ВИСОКИХ ПЕРФОРМАНСИ

Н. Лопеш, Г.Д. Путник, Л. Фереира, Б. Кошта

Сајбер-Физичких Система (СФС) успоставља међу-
зависност физичког света и сајбер света. При
разматрању старног света, СФС ће добити значајне
улазне податке из физичког света који захтева
правовремени одговор. Без компјутерских капаци-
тета за обраду улазних података, СФС неће бити у
могућности да реагује у кратком року на промене у
окружењу и обезбеди одговарајуће излазне податке.
Садашњи СФС нису у стању да реагује у реалном
времену на изазове приликом разматрања проблема
реалних обима. Циљ је да искористимо перформансе
рачунарских система високих перформанси како
бисмо учинили СФС способним да одговори
потребним рачунарским захтевима како би били у
могућности да оперишу у интеракцију са физичким
светом. Представљена је студија случаја о алгорит-
мима програмирања производње како би се показала
тренутна ограничења у перформансама рачунања и
указали на могућа решења да би се циљеви
постигли.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

