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Artificial Neural Network-Based Modeling 
of Surface Roughness in Machining of 
Multiwall Carbon Nanotube Reinforced 
Polymer (Epoxy) Nanocomposites 
 
In the manufacturing process, the surface roughness acts as one of the 
vital response to define the machined product quality.This manuscript 
platforms on the modeling of surface roughness(Ra) during milling of 
Multiwall Carbon Nanotube (MWCNT) reinforced polymer nanocom-
posites using an artificial neural network (ANN). ANN developed as a cost-
effective approximation module that is competent of self- learning and 
pliable to complicated data variables.Taguchi based L27 orthogonal 
design was perfectly utilized to perform the machining operation. The con-
sequence of process parameters, i.e., MWCNT (wt.%), Spindle speed (N), 
Feed rate(F), and depth of cut (D) have been investigated to attain the 
minimalRa of the machined samples.The ANOVA study shows that  Feed 
rate(F) has the most significant (55.25%) parameters for Ra followed by 
Spindle speed (N), MWCNT weight percentage (wt.%), and depth of 
cut(D). The Feed forward back propagation network is used for the ANN 
model with TRAINLM and LEARNGDM functions used as training and 
learning algorithms.The selection of an adequate model based on the 
correlation coefficient (R2), mean squared error (MSE), and the average 
percentage error (APE) was achieved. The designated model has high 
accuracy with R2> 99%, MSE < 0.2%, and APE < 3%,.Further,the plot 
between experiment value and predicted value shows the adequacy and 
feasibility of the proposed ANN model in the machining environment. 
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1. INTRODUCTION 
 
The polymer composites possess a wide range of 
applications in aircraft, automobile, space, sensors, 
PCB, biomedical industries [1]. In this series, MWCNT 
plays a vital role in the carbon family to improve the 
mechanical and chemical properties of the composites. 
The nano-size carbon reinforcing agent into the epoxy 
matrix creates better dispersion and high aspect ratio 
that enrich the synergetic effect. This effect is highly 
required in high-performance and multifunctional app-
lications like sensors, biomedical, aviation, textile sec-
tors, etc. Also, these nanocomposites possess relatively 
reduced weight and high strength and high fatigue and 
creep resistance t to confirm economic efficiency and 
safety issues [2-4]. Carbon nanomaterials exhibit extra-
ordinary electrical, magnetic as well as mechanical pro-
perties. The high aspect ratio of the carbon nanoma-
terials makes them a primary candidate to strengthen 
the thermoset epoxy matrix for various industrial appli-
cations. The standard reinforcement from the nanocar–
bon family is a single-wall carbon nanotube (SWCNT), 
MWCNT, carbo nanofiber, graphene carbon dots. 
These carbon nanomaterials enhance the desired pro-

perties by adding in little quantity. Sometimes inapp-
ropriate ratio can create the chance of agglomeration 
that deteriorates the mechanical features. Romha´ny et 
al. [5] evaluated the mechanical properties of MWCNT 
filled polymer(epoxy). They noticed that bending mo-
dulus increases by 10%,  Young’s modulus by 12%, 
and impact strength by 20%; however, tensile strength 
has decreased by 4.6%. Hadavand et al. [6] reinforced 
distinct weight ratios(0.1–0.3 wt.%) of treated 
MWCNT and untreated MWCNT into polysulfide 
resin and observed that fracture strain from 0.16% to 
0.25%, tensile strength from 5.29 to 8.83 MPa, and 
Young’s modulus from 458 to 723 MPa. Tariq et al.[7] 
fabricated multi-scale reinforcement composites by 
MWCNT and carbon fabric in an epoxy matrix and 
during their mechanical characterization, it was found 
that flexural strength improved by 54% and tensile 
strength by 60% with reinforcing small amounts 
(0.25%) of MWCNTs into CFRP. Kalakonda et al.[8] 
developed MWCNT dispersed thermoplastic polyure-
thane and 200-fold over in tensile modulus at 19% 
MWCNT loadings than pristine epoxy. Leopold et al. 
[9] added nanotubes into the epoxy and found that it 
led to increases in Young’s modulus and toughness of 
the nanocomposites. The application of MWCNT /po-
lymer composites has broad application potential as 
electronic packing, shielding, storage capacitors, and 
for structural use. 

Generally, polymer composites fabricated near net 
shape, but secondary machining procedures such as 
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turning, drilling, and milling are highly required to 
assemble the finished product into the main component 
for final assembly. Surface roughness (Ra) is one of the 
leading quality performance indexes of a machined part 
that characterizes surface geography in manufacturing 
science. The tool geometry, work-tool materials, cut-
ting parameters, and statistical variation are profoundly 
affected during the manufacturing process. In indus-
tries, surface features are the basic description of finish 
quality product, and it is essential for different engi-
neering products and other aesthetic requirements. The 
reasonable surface roughness is desirable to enhance 
the covering appearance and tribological aspects, while 
disproportionate surface roughness comprises higher 
machining costs. 

From prior work, it could be narrowed down that 
Ra is the main factor that directs the relics, as men-
tioned earlier. Hence, it becomes the significant 
demand of the hour to optimize the desired performan-
ces of surface roughness during machining (milling, 
drilling, turning, etc.) of polymer nanocomposites. 
During the machining process, various quality and pro-
ductivity characteristics drastically influenced by 
speed, feed rate, depth of cut [10-11]. There are many 
machining performance optimization attempts perfor-
med bypioneer researches. Gopalsamy et al. observed 
the machinability aspects of hardened steel to attain 
optimal parametric combinations through the GRA 
module. They effectively introduced the Grey concept 
to examine the influence of machine constraints such 
as cutting speed, feed, cutting depth and cutting width 
on machining performances such as MRR, Ra, TWR. 
They were analyzed Tool wear pattern using optical 
microscopy investigations, SEM, and X-ray diffraction 
method (XRD). Finally, they have achieved a 
comparative study between rough machining and finish 
machining [12].  Fong and Ming-der carried out the 
experimental analysis with CNC milling machining for 
enhancement of the process adaptability, flexibility, 
and robustness. They have effectively implemented the 
Taguchi method combined with a suggested ideal 
function module used to identify optimal process para-
meters in high-speed CNC milling. Also, three typical 
geometries (square, circle, and triangle) were used to 
represent the geometric variants of the mold and die 
products. Experimental results revealed that the 
machined product dimensional accuracy has signifi-
cantly enhanced by optimal conditions [13]. Panshetty 
et al. performed CNC machining by considering Tagu-
chi based orthogonal design. In this study, milling, 
performance optimization has been done to get the 
optimum values for the surface finish and rate of mate-
rial removal. The impact of speed, rate of feed, cutting 
depth on machining performances has been considered 
to develop the mathematical modeling between them. It 
has been found that speed acts as the major attribute for 
surface roughness and material removal rate[14]. The 
various eminent scholars have used different tools and 
techniques to establish predictive models across 
multiple machining procedures. In the field of manu-
facturing, the ANN modeling is widely used for the 
investigations of machining performances like Ra, rate 
of material removal, thrust, cutting force, tool wear and 

its life, etc. [15]. A procedure that entails small size 
data set for biological neurons was utilized by Kohli et 
al. [16]. Risbood et al. [17] established a steel turning 
operation with four process parameters using  High-
Speed Steel (HSS) tool. The machining responses 
analyzed are surface roughness and dimensional 
indices to evaluate the quality of the turning samples 
with the help of a multilayer perceptron (MLP) model. 
The outcomes of the turning process scaleup that the 
proposed model augments well with the desired values. 
Krzywanski et al. [18] investigated the coefficient of 
heat transfer in the combustion chamberof the mixing 
fluidized bed boiler. ANN modeling was used effici-
ently to appraise the heat coefficient value. The outco-
mes of the study demonstrate that ANN gives quick 
and precise results in comparison to numerical models 
developed earlier. Manish et al. [19] performed machi-
ning of composite beams and proposed an ANN model 
for the prediction of machining induced damage, i.e., 
delamination. Tsai et al. [20] evaluated the machining 
performances during the Electro discharge machining 
(EDM) process and established a neural network 
between inputs and responses. It was noticed that 
RBFN gives the desired results with little errors. The 
proposed model validated the feasibility of the ANN 
module. Zain et al. [21] depicted an ANN model to 
envisage the surface roughness of the machined 
components during the milling operation. It is observed 
that for achieving a lower value of surface roughness, 
low feed rate with high speed and low radial angle 
plays a primary role. Artificial Neural Networks 
(ANNs) are intricate mathematical models that imitate 
successfully mimic biological neural networks. ANNs 
are often favored over regression model optimization 
and prediction purposes for the noisy data. ANNs were 
used for optimizing and prototypical highly” complex 
and nonlinear biological processes [21-25]. 

From the literature work underwent for purpose, it 
has been observed that eminent scholars did ample 
practice in the machining of polymer composites, but 
very limited data are available on modeling and simu-
lation of the machining process. But it has been reali-
zed that machining behavior of MWCNT polymer 
composites is by-passing through an openingstage, 
work is not satisfactorilyprospered in this area. How-
ever, it is widely used in the fabrication of various 
components in aviation, battery applications, sensors, 
biomedical devices, circuit boards, automotive parts, 
and other multifunctional engineering components. 
Hence it can become a potential area of research for 
academia, industry, and research organization. The 
application of ANN modeling was not performed by 
any scholars earlier for machining of MWCNT nano-
composites. Therefore, the present work explores the 
biological behavior of the neural networks to calculate 
the surface roughness for the enhancement of the qua-
lity of the machined product. ANN modeling is pro-
posed to control the varying constraints for the 
optimized value of the machined surface.It is directly 
responsible for the quality and productivity functions 
of any machined product. Taguchi based L27 ortho-
gonal array (OA) was employed to layoutmilling 
experimentation. An attempt has been made to inves-
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tigate the machining behavior of nanocomposites for 
the minimal values of surface roughness.  
 

2. EXPERIMENTAL DETAILS 
 
The milling experiment was performed on MWCNT 
reinforced epoxy composites with Taguchi based L27 
OA. The composites were developed by the solution 
casting method. The three-varying wt.% of MWCNT 
(0.5%,1.0%,1.5%) was used to reinforced into epoxy 
(Lapox, L-12). The nano reinforcement is having an 
average length of 15 µm and an average diameter of 
10-15 nm, and the X-ray diffraction (XRD) pattern, as 
displayed in Figure 1. It gives the extent of graphi-
tization and CNT degree with the highest peak at 26.2 
and lowest at 30 degrees that validates the graphitic 
plane existence.  The milling experiment was perfor-
med on the Vertical CNC setup Model: TC20-BMV35 
(Figure 2). The surface roughness values were levied 
bythe Surtronic S128 surface roughness tester made by 
Taylor Hobson (Figure 3).  

 
Figure 1. MWCNT XRD result 

 
Figure 2. Vertical CNC milling machine setup 

Table 1: Process constraints 

Machining 
Parameters Symbol Level 1 Level 2 Level 3 

Wt.% Wt 0.5 1.0 1.5 
Spindle Speed N 500 1000 1500 

Feed Rate F 50 100 100 
Depth of Cut D 1      2 3 

 
For milling experiments, four process parameters 

were considered, and their variation at four levels was 
done, as indicated in (Table 1). The milling experiment 
was based on Taguchi L27 orthogonal array, and 
corresponding observed data of surface roughness are 
mentioned in Table 2. The images of machined sam-
ples are shown in Figure. 4. 

 
Figure 3. Surface Roughness Tester (Surtronic S128) 

 
Figure 4. Machined Sample 

Table 2: L27 orthogonal array and corresponding surface 
roughness 

S.No. 

MWCNT 
weight % 
(Wt. %) 

Spindle 
Speed 
(Rpm) 

Feed rate 
(mm/min) 

Depth 
of Cut 
(mm) 

Ra(µm) 

1 0.5 500 50 1 2.432 
2 0.5 500 100 2 3.613 
3 0.5 500 150 3 3.873 
4 0.5 1000 50 1 1.908 
5 0.5 1000 100 2 2.996 
6 0.5 1000 150 3 3.596 
7 0.5 1500 50 1 1.888 
8 0.5 1500 100 2 2.906 
9 0.5 1500 150 3 3.41 

10 1 500 50 2 2.473 
11 1 500 100 3 3.303 
12 1 500 150 1 3.098 
13 1 1000 50 2 1.996 
14 1 1000 100 3 2.696 
15 1 1000 150 1 2.859 
16 1 1500 50 2 2.251 
17 1 1500 100 3 2.81 
18 1 1500 150 1 2.81 
19 1.5 500 50 3 2.24 
20 1.5 500 100 1 3.256 
21 1.5 500 150 2 2.976 
22 1.5 1000 50 3 2.068 
23 1.5 1000 100 1 2.429 
24 1.5 1000 150 2 2.77 
25 1.5 1500 50 3 2.043 
26 1.5 1500 100 1 2.722 
27 1.5 1500 150 2 2.701 
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3. METHODOLOGY 
 
3.1 Neural Network 
 
A biological network made up of one input layer and 
one output layer with one or more than one hidden 
layer. Input layer neurons handover the input variables 
Xi (i=1,2, 3…n) to neurons of the hidden layer. The 
following description illustrates the fundamental 
feature of neural networks. 
• Differentiable nonlinear activation function inclu-

des each neuron of the network  
• The network consists of one or more than one 

layer, which is hidden from neurons of input and 
output.  

• The degree of connectivity shows by the network, 
resolute by the connection and synaptic weights 
among neurons. 

The additional function characterized assembly of an 
artificial neuron (j), which sumps inputs Xi after 
weighting them with the corresponding weights Wji 
from the input layer. The weighted sum Sj given as Eq.1 

1

n

i ji i
i

S w x
=

= ∑   (1) 

An activation function f which stimulates the 
neurons by the following equation: 

1

n

i ij i j
i

y f w x b
=

⎛ ⎞
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⎝ ⎠
∑   (2) 

The function f can also be called “Transfer func-
tion,” The commonly used is the sigmoid function as 
follows 

( ) ( )
1

1 exp
f x

x
=

+ −
  (3) 

The training algorithm can use for weight adjust-
ment in ANN. In this context, frequently used the back 
propagation algorithm for MLP networks [26]. This 
algorithm defines error function and practice gradient 
descent to evaluate a set of weights in a specific task 
[27]. The training of the ANN process forward and 
backward stage. In the forward phase, fixed synaptic 
weights for connections between neurons and propa-
gate input signal through the network’s layers until it 
reaches the output layer [28-29]. In the backward stage, 
generated an error signal by comparing the required 
response and network’s output. 

Further, propagate in backward direction through the 
network’s layers. The synaptic weights of the system 
subject to continuous adjustments in the second phase. 
The backpropagation algorithm incorporates several 
types of the algorithm such as gradient descent algo-
rithm, Levenberg–Marquardt, scaled conjugate gradient, 
resilient backpropagation, and one step secant. 
 
4. RESULTS AND DISCUSSION 
 
After machining of MWCNT/polymer nanocomposites, 
the surface roughness was observed according to Tagu-
chi based L27 experiments,and ANOVA was effecti-

vely done to identify the prominent factor.From Table 
3, it wasnoticed that  Feed rate(F) has the most signifi-
cant (55.25%) parameters for Ra followed by Spindle 
speed (N), MWCNT weight percentage (wt.%), and 
depth of cut(D).   
Table 3. ANOVA For Surface Roughness (Ra)  

Source DF Seq SS Adj SS Adj MS F-Value P-Value
Regression 11 7.52888 7.5288 0.68444 41.64 0.000 

Wt. 1 0.64832 0.00012 0.00011 0.01 0.934 
N 1 0.76963 0.51263 0.51262 31.19 0.000 
F 1 4.29597 0.47910 0.47910 29.15 0.000 
D 1 0.38623 0.11390 0.11390 6.93 0.019 

Wt.*Wt. 1 0.02819 0.02819 0.02819 1.72 0.210 
N*N 1 0.32202 0.32202 0.32201 19.59 0.000 
F*F 1 0.68209 0.30623 0.30623 18.63 0.001 
D*D 1 0.00011 0.01600 0.01600 0.97 0.339 

Wt.*N 1 0.04184 0.04184 0.04184 2.55 0.131 
Wt.*F 1 0.24970 0.07338 0.07338 4.46 0.052 
Wt.*D 1 0.10479 0.10479 0.10479 6.37 0.023 
Error 15 0.24657 0.24657 0.01643   
Total 26 7.77545     

 
For modeling of surface roughness, ANN archi-

tecture with one hidden layer was considered. The 
feed-forward backpropagation network is widely used 
by research scholars to model various kinds of pro-
cesses into different fields.In this network,the algor-
ithm subtracts the training response from the target to 
the obtained error signal. Afterward, it regulates the 
weights and biases in the input and hidden layers to 
overcome the error. The structure composed of three-
layer, the first layer for four input parameters 
(MWCNT wt.%, spindle speed, feed rate and depth of 
cut) and the second layer for is the hidden layer with j 
neurons and the third layer is output layer for surface 
roughness (as shown inFigure.5). Generally, the sub-
stantial number of neurons causes the overfitting and 
fewer number of neurons responsible for underfitting. 
A suitable amount of neurons are selected for enhan-
cing the performance of the neural network. Generally, 
a large number of neurons cause the overfitting and 
less number of neurons responsible for underfitting. 
Therefore four different ANN structure was developed 
by variation of neurons, i.e., 5,10,15, and 20 number of 
neurons and for these structure R2, MSE% is calculated 
using Eq.4,and Average percentage error (APE%)is 
calculated asdepicted in Table 4. 

( )21 ˆn
i iiMSE y y

n
= −∑   (4) 

where yi is the desired Neural Network output, and  
ˆiy  is the neural network output.The assortment of the 

suitable transfer function is also uniformly significant. 
The “randperm” function, which returns the data sam-
ple in random order, while the order of columns hol-
ding milling process surface roughness. Before feeding 
data to the network, data samples were normalized 
within a range of 0.1 to 0.9 to equalize the importance 
of variables.” After that, the neural network was deve-
loped, conferring the presented parameters in Table 5. 

For training of the neural network, 17 samples out 
of 27 (i.e., 60% of the total sample) are used and 10 
samples (i.e., 20%) for validation and 09 samples (i.e., 
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20%) for test the capability of the trained neural 
network. The training was accomplished by altering the 
synaptic weights to diminish the MSE and the weight 
and bias for the hidden layer shown in Table 6. The 
regression plot for the ANN structure (Figure.6).The 
“development of neural network starts with interpreting 
the data from an excel file, where every testspecified 
by a grouping of milling factors (Wt.%, N, F, and D) 
and the subsequent value of surface roughness. After 
that, randomized the data sample with the help of: 

 
Figure 5. ANN structure (4-15-1) 

Table 4. ANN Performances of the proposed networks. 

MLP network R2 (%) MSE (%) APE (%) 
4-5-1 95.1 7.8 4.08 

4-10-1 92.11 3.9 6.08 
4-15-1 99.7 2.1 2.08 
4-20-1 98.1 4.5 5.08 

Table 5: ANN Parameters  

Network Type Feed-forward backpropagation 

Transfer function Hidden layer -Sigmoid 
Output layer- Linear 

Training Algorithm TRAINLM 
Learning Algorithm LEARNGDM 

Data division 
Training data-60% 

Validation data-60% 
Test data-20% 

Table 6. Weights and biases between input and hidden layer 

Neuron 
(j) 

Wj1 Wj2 Wj3 Wj4 Bj 

1 0.31217 -0.34498 -2.2318 -0.9925 -3.0652 
2 1.7984 0.23244 -0.70899 -1.9255 -2.3282 
3 1.6092 -1.5216 1.093 -1.3858 -1.6781 
4 0.43679 1.2214 0.74388 -2.5858 -1.6221 
5 -1.2592 -1.9934 0.12518 1.6079 1.0009 
6 2.0492 -1.8611 -0.51232 -0.16767 -0.57506
7 -0.8339 -1.3796 -1.3778 1.9305 0.71615
8 1.4282 -1.1657 0.61017 -2.0719 -0.29933
9 -2.1547 1.1314 0.80839 -0.96541 0.48395

10 0.31719 2.6834 1.0712 -0.73149 1.7771 
11 1.301 1.9875 0.39188 -0.31075 -2.0294 
12 -1.4005 0.49061 1.2086 1.7069 -0.41595
13 -0.79041 1.6951 0.566 2.2773 -1.6537 
14 -1.858 -0.48896 -1.8857 -0.59084 -2.2934 

15 -0.80283 -1.568 0.0812 -2.3054 -2.6266 
 
After the training, validation, and testing of the 

neural network, network simulates with a combination 
of process parameters and getting predicted value of 
surface roughness corresponding to simulated experi-
mental run. 

Figure. 7 displays the plot between the predicted and 
experimental value of surface roughness. It was noted 
that predicted value has a good agreement between 
experimental value, where a small number of points 
show the divergence between the two values. It is mainly 
because of some errors instigated by the measurement 
and other uncontrollable factors. Still, the pattern of the 
points can be ignored as the R2 for training, and testing 
data surpassed 95%. These outcomes of the milling 
examinations validate the capability of ANNs to assess 
the surface roughness during machining of MWCNT 
polymers with high accuracy.  

 

 

 

 
Figure 6.Regression Plot (a)testing (b) test (c) Validation (d) 
Over all for ANN structure (4-15-1) 
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Figure 7. Plot between experimental and predicted value 
5. CONCLUSIONS 
 
This manuscript examined the machining behavior of 
MWCNT/polymer nanocomposites to control the sur-
face roughness of the machined samples. ANN was 
efficiently utilized for modeling of the surface rough-
ness achieve during milling of MWCNT/epoxy compo-
sites. From the ANOVA report, it is observed that that 
Feed rate (F) is the most significant (55.25%) parame-
ters for surface roughness trailed by Spindle speed (N), 
MWCNT weight percentage (wt.%) and Depth of cut 
(D).ANN structure(4-15-1)demonstrates the high yield 
performance with R2 (%)= 99.7, MSE (%)= 2.1 and 
APE(%) with 2.08. The selection of suitable algorithm 
and number of neurons for numbers of the hidden layer 
is critical parameters for the modeling the complex 
machining behavior. In the proposed model, the feed-
forward back propagation network is used with 
TRAILM and LEARNGDM training and learning 
algorithms.The comparison plot between experimental 
and estimated value for the surface response shows 
good agreement between them. The desired impro-
vement in surface roughness values with very little 
error is highly required for a favorable machining envi-
ronment. Surface finishing is considered as the primary 
quality indices in the polymer manufacturing sector. 
Therefore, ANN is a reliable tool to predict and model 
the machining response. The ability of ANN to model 
complex and nonlinear behavior of the machining 
process can gather wide acceptance in manufacturing 
industries. After training, the functioncan efficiently 
produce response prediction within limited informa-
tion. It can be endorsed for quality and productivity 
control of conventional and non-conventional machi-
ning processes.   

FUTURE SCOPE OF WORK 

The present article deals with the machining of 
MWCNT reinforced epoxy nanocomposites using bio-
logical stimulating neurons system ANN models. The 
contribution ofother machine factors like different 
types of tool geometry and tool materials, mechanics of 

material removal, tooltip temperature in the future can 
develop a better machining interpretation for proper 
utilization of proposed novel material in society 
interest. The ANN models give a satisfactory agree-
ment in outcomes so it can be used in the appro-
ximation and prediction of performances of manufac-
turing procedures such as drilling, turning, diesinking, 
welding etc. and other complex case studies of 
industrial engineering.    
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МОДЕЛИРАЊЕ ПОВРШИНСКЕ ХРАПА-

ВОСТИ НА БАЗИ ВЕШТАЧКЕ НЕУРОНСКЕ 
МРЕЖЕ КОД ОБРАДЕ ПОЛИМЕРНИХ 

(ЕПОКСИ) НАНОКОМПОЗИТА ОЈАЧАНИХ 
ВИШЕЗИДНИМ УГЉЕНИЧНИМ 

НАНОЦЕВИМА 
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Површинска храпавост је у процесу производње 
најважнији елемент квалитета машински обрађеног 
производа. Рад се бави моделирањем површинске 
храпавости коришћењем ANN код обраде поли-
мерног нанокомпозита ојачаног са MWCNT. ANN 
је развијена као економичан модул за само-учење и 
флексибилан за променљиве вредности сложених 
података. Тагучијев план експеримента L27 је савр-
шено искоришћен за поступак обраде. Параметри 
обраде: MWCNT (теж.%), брзина вретена, брзина 
помоћног кретања и дубина резања су анализирани 
да би се добила минимална површинска храпавост 
обрађених узорака. АNOVA анализа је показала да 
су за храпавост најважнији параметри брзине 

помоћног кретања (55,25%), затим брзине вретена,  
тежинског процента MWCNT и дубине резања. 
Мрежа пропагације унапред и уназад је коришћена 
за ANN модел са функцијама TRAINLM и 
LEARNGDM које се користе као алгоритам за 
тренинг и учење. Избор адекватног модела је извр-
шен на бази коефицијента корелације (R2), средње 
квадратне грешке (MSE) и просечне процентне 
грешке (АРЕ). Добијени модел има велику пре-
цизност: R2 > 99%, MSE < 0,2%, APE < 3%. 
Приказана експериментална и предвиђена вредност 
показују да је модел адекватан и применљив за 
услове машинске обраде. 

 
 


