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Study of Geometric Characteristics of 
the Arc Teeth Semi-Rolled Cylindrical 
Gear Meshing 
 
In the conditions of unbraced machine body parts, arc teeth cylindrical 
gears have a higher load capacity, durability and reliability as well as the 
ability to compensate for the twist angle by self-adjustment of one of the 
wheels compared to straight and helical teeth gears. Use of such gears in a 
semi-rolled version allows simplifying significantly the technological 
process of cutting wheels and making gears with large gear ratios. In this 
article, mathematical models of wheel and gear arc teeth forming process 
are built for a semi-rolled cylindrical gear. The geometric characteristics 
of the gear arc teeth meshing in the presence of errors in the wheel and 
gear relative position, required to solve the problem of calculating the 
gear load capacity and durability, have been determined. 
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1. INTRODUCTION 
 

The load capacity and durability of the most common 
cylindrical gears with straight and helical teeth depend on 
the errors in the relative position of the usable flanks of 
the contacting teeth. The twist angle is the dominant 
error. The angle is a composition of two random vari-
ables: the gear elements manufacturing and assembly 
error and gear parts and bodies deformation due to the 
power flow. Since the second component of the twist 
angle for energy-saturated machines often significantly 
exceeds the gear manufacturing and assembly tolerances, 
in many cases, it is not possible to achieve the required 
performance and durability of cylindrical gears. 

An effective way to solve the problem is to use arc 
teeth cylindrical gears in the transmissions of tractors, 
locomotives, coal harvesters and other energy-saturated 
machines (Figure 1) [1,2].   

 
Figure 1. Arc teeth cylindrical gear 

Spiral (circular, arc) teeth in bevel gears have been 
used since the beginning of the past century. For their 
production, Gleason, Klingelnberg, Oerlikon specialists 

have developed various cutting methods and created 
task-specific gear cutting machines and tools [3-6]. 

When cutting teeth on Gleason machines, they use a 
circular cutting head implementing the Face Milling 
Method [7-9], or a multi-thread cutting head implemen-
ting the Face Hobbing Method [8, 10]. Klingelnberg and 
Oerlikon gear cutting machines implement methods for 
cutting cyclo-palloid bevel wheels [11-15]. 

In this case, either bevel gear hobs or special multi-
thread cutting heads are used as the tools. Cutting  cyclo-
palloid teeth is performed with the Continuous Generation 
Method. The bevel wheel meshing in all the proposed met-
hods is performed on the basis of the general gear wheel.  

A significant reduction in the cost of the bevel gear 
manufacture in their mass production on Gleason mac-
hines is achieved by using semi-rolled bevel gears [16-
18]. In this method, cutting the wheel teeth is carried out 
without generating process. Gleason specialists have de-
veloped the FORMATE and HELIXFORM Methods in 
this scope. Despite the more difficult task of finding the 
optimal geometry [16,18], the technology of manufac-
turing such gears is more advanced. 

Currently, a number of methods are proposed for 
cutting cylindrical gear arc teeth, which differ in the 
tools used and shaping movements [19-27]. The met-
hods used for cutting bevel wheel spiral teeth are the 
basis of most of these methods. Arc teeth cylindrical 
gear meshing in the proposed methods is based on the 
counterpart rack. In this case, the helix angle of the arc 
tooth in its midsection is equal to zero. In [28-30], 
options for cutting cylindrical wheel arc teeth with 
circular cutting heads by means of generating with a 
single division on CNC machines are presented. 

The analysis of the works related to the study of 
geometry, contact and bending strength of arc teeth 
gears shows that all of them are dedicated to generating 
cylindrical gears. For semi-rolled cylindrical gears, the 
issues of forming arc teeth and their meshing contact 
have not been considered. This does not allow to imple-
ment maximum gear ratios for cylindrical gears and inc-
rease the durability of high-load drives of modern mac-
hines by using self-adjusting arc teeth cylindrical gears. 
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2. FORMING WHEEL AND GEAR ARC TEETH 
FLANKS OF THE SEMI-ROLLED CYLINDRICAL 
GEAR 
 

According to the methods of forming semi-rolled bevel 
gears [16-18], in the manufacture of semi-rolled cylin-
drical gears, the arc teeth of the wheel are cut by the 
single division method without generating with a cutting 
head, the generating surface of which is a straight cir-
cular cone. In this case, the usable flank of the wheel arc 
tooth will also be the surface of the straight circular 
cone. Forming the usable flank of the gear arc tooth is 
possible in two different ways. According to the first 
method, the gear arc tooth is processed with a tool 
(circular cutting head) on the basis of the counterpart 
rack. To obtain the gear tooth profile mated to the pro-
file of the wheel arc tooth, the counterpart rack is pro-
vided with some overtravel, consistent with the rotation 
of the gear around its axis.  

To realize this method, a special machine tool 
attachment that implements the overtravel of the 
machine table from the copy templet is required. The 
shape of the templet is calculated depending on the 
geometric parameters of the gear tooth profile. The 
second method of forming the gear arc tooth is carried 
out on the basis of the generating gear. In this method, 
the flank of the gear arc tooth is the enveloping flank 
of the wheel tooth at a given relative movement of the 
wheel and gear in the transmission, and its 
implementation is possible on modern four-axes CNC 
machines [29, 30]. The gear formed according to this 
scheme, in the absence of errors in the relative position 
of the gear and wheel, is matched and theoretically 
accurate. 

The generating surface of the cutting head (straight 
circular cone) can be described in coordinate system 
Sp(xp,yp,zp) rigidly connected to it (Figure 2), as follows: 

ϑcos⋅= gx p ; 0cosα⋅= uy p ; ϑsin⋅= gz p ,   (1) 

where, 20sin grug −⋅= α , u, ϑ are linear and angular 

parameters of the generating surface; α0 is a basic 
profile angle; rg2 is a calculated radius of the cutting 
head rotating around axis yp of coordinate system 

),( , pppp zyxS . 

 
Figure 2. Cuitting head generating surface 

Taking into account the way of forming the usable 
surface of the wheel tooth, radius-vector ),( , pppp zyxr  
is to be written into coordinate system S2(x2,y2,z2) that is 
rigidly connected to the wheel:  

                        pp rAr ~~~
,22 ⋅=  ,                            (2) 

where, 2
~r , pr~  are columns matrixes made up of vector 

radii coordinates 2r  and pr ; pA ,2
~  is a fourth-order 

matrix describing the transition from coordinate system 
Sp(xp,yp,zp) to system S2(x2,y2,z2); its elements bij, i,j = 
1,4 , based on Figure 3, have the following values: 

   
11 22 33 44

12 13 21 23 31 32 34

41 42 43 14 2 14 2

1
0

0; ;g w

b b b b
b b b b b b b
b b b b r b R

= = = =

= = = = = = =

= = = = =

 (3) 

where, Rw2 is the radius of the initial circle of the wheel. 

 
Figure 3. Coordinate systems to define elements of matrix  

pA ,2
~

 

We find the projections of the wheel radius-vector 
),( 2,222 zyxr  based on (1) and (3), opening equation (2): 

2 2 2 0 2

2

cos ; cos

sin
g wx g r y u R

z g

ϑ α

ϑ

= ⋅ + = ⋅ +

= ⋅
 (4) 

Projections m2x, m2y, m2z of the surface normal uni-
tary vector (4) have the form: 

2 0 2 0

2 0

cos cos ; sin ;

cos sin
x y

z

m m

m

α ϑ α

α ϑ

= ⋅ = −

= ⋅
 (5) 

Expressions (4) and (5) describe radius-vector   
),( 2,222 zyxr  and normal unitary vector 2m  

2 2 2( , , )x y zm m m of the usable flank of the concave side 
of the wheel arc tooth in coordinate system S2(x2,y2,z2). 

To determine the usable flank of the concave side of 
the gear arc tooth, we use the fact that it is a one-
parameter envelope of the family of wheel tooth usable 
flanks in a given relative motion - the rotation of the 
gear and wheel with constant gear ratio 

constzzi == *
1

*
2 / , *

2
*
1 , zz  are the numbers of teeth of 

the gear and wheel. 
Using the methods of the spatial meshing theory 

[31], we write the equation of the gear tooth usable 
flank in the form: 

),(~)(~),,(~
222,121 ϑϕϕϑ urAur = ; 0),,( 2 =ϕϑuf .  (6) 
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Here: )(~
22,1 ϕA is a fourth-order matrix describing 

the transition from coordinate system S2(x2,y2,z2) to 
coordinate system S1(x1,y1,z1) rigidly connected to the 
gear (Figure 4); φ2 is the angle of the wheel rotation 
when forming the gear tooth flank, associated with the 
angle of its rotation φ1 through gear ratio i: 

                *
12

*
221 /)( zzi ϕϕϕ ⋅=⋅=  ;                  (7) 

The meshing equation  [31] is the last written in (6). 

 
Figure 4. Coordinate systems to define elements of matrix   

)(~
22,1 ϕA  

Using Figure 4, we define elements jia , 4,1=i ; 

4,1=j  of matrix )(~
22,1 ϕA : 

11 1 2cos( );a φ φ= +   12 1 2sin( );a φ φ= +  13 0;a =  

14 1sin ;wsa a φ= −  );sin( 2121 ϕϕ +−=a  

);cos( 2122 ϕϕ +=a  23 0;a =                    (8) 
24 1cos ;wsa a φ= −  31 32 0;a a= =  33 1;a =  

;034 =a  41 42 43 0;a a a= = =   44 1,a =  

where, aws is the center distance in the machine meshing 
of the gear and the generating gear.  

Opening matrix equation (6), with respect to (4) 
and (8), we find the expressions for radius-vector 

),( 1,111 zyxr projections of the usable flank of the gear 
arc tooth:  

( )

1 1 2 1 2 1

1 1 2 1 2 1

1 0 1

cos( ) sin( ) sin

sin( ) cos( ) cos

sin sin

w s

w s

g

x A B a

y A B a

z u r

φ φ φ φ φ

φ φ φ φ φ

ϑ α

= ⋅ + + ⋅ + − ⋅

= − ⋅ + + ⋅ + − ⋅

= ⋅ −

 (9) 

where: 1cos gA g rϑ= ⋅ + ; 0 2cos wB u Rα= ⋅ + . 
We obtain the meshing equation by the method 

described in [31]. According to the method, the meshing 
equation is written in the form: 

             2 2( , , ) 0f u V mφϑ φ = ⋅ = ,                 (10) 

where, ϕV  is the vector analog of the relative speed, 

2m is the normal unitary vector of the generating gear (5). 
Projections xVϕ , yVϕ , zVϕ  

of vector ϕV  
are calcu-

lated using the expression [31]: 

                   1,21
1,2 2

2

dA
V A r

dφ φ
−= ⋅ ⋅ .                        (11) 

Here, ϕV~  is a column matrix composed of projections 

xVϕ , yVϕ  , zVϕ  . 
Opening dependence (10) based on (5), (11) and (8), 

we obtain: 

( )
( )

( ) ( )

2

0 2 2

0 1 2

( , , ) cos 1

cos cos 1 cos

sin 1 1 cos sin 0

w ws

g ws

f u u i

R i ia

i r ia

ϑ φ ϑ

α ϑ φ

α ϑ φ

= ⋅ ⋅ + +

+ ⋅ + − +⎡ ⎤⎣ ⎦
⎡ ⎤+ + − − =⎣ ⎦

  (12) 

Dependences (9) jointly with equation (12) fully 
describe the geometry of the usable flank of the gear arc 
tooth concave side. 

The normal unitary vector projections of the gear arc 
tooth usable flank are defined based on the matrix 
equation: 

             1 2 1,2 2 2( , , ) ( ) ( , )m u A m uϑ φ φ ϑ= .           (13) 

We open expression (13) based on (5) and (8) and find: 

1 1 2 0

0 1 2

1 1 2 0

0 1 2

1 0

cos( ) cos cos
sin sin( )

sin( ) cos cos

sin cos( )
cos cos

x

y

z

m

m

m

φ φ α ϑ
α φ φ

φ φ α ϑ

α φ φ
α ϑ

= + −

− +

= − + −

− +

=

 (14) 

3. CALCULATION OF LINES OF ACTION IN SEMI-
ROLLED CYLINDRICAL GEAR WHEEL AND 
GEAR ARC TEETH MESHING   

 
Meshing of semi-rolled cylindrical gear arc teeth in the 
presence of errors in the relative position of the wheel 
and gear in transmissions belongs to the class of 
nonenveloping meshing [9, 16]. When the specified 
errors are absent, the contact between the active flanks 
of the gear and wheel teeth occurs at the points of the 
tooth transverse midsection. In this tooth section, the 
helix angle is zero. When the contact is localized in the 
longitudinal direction of the teeth, the gear is matched to 
eliminate their interference. 

We consider the derivation of mathematical rela-
tionships to determine the coordinates of the contact 
points on the active flanks of the arc teeth of the wheel 
and gear installed with errors. The solution of this 
problem allows evaluating the arc teeth semi-rolled 
cylindrical gear sensitivity to errors in the relative 
position of the gear and wheel for the purpose of 
scientific substantiation of the tolerances for the error 
values. On the other hand, knowing the contact point 
coordinates is required to solve the problem of 
calculating the gear contact loading.  

The relationships of the radius-vectors and normal 
unitary vectors of the gear and wheel arc teeth flanks are  
initial parameters for solving the problem. In the 
designation of vectors and normal unitary vectors, we 
use superscript "1", if they are defined in coordinate 
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system S1(x1,y1,z1), and superscript "2", if they are 
defined in coordinate system S2(x2,y2,z2). 

Based on relationships (4) and (5), the projections of 
radius-vector 2

2 2 2( , )r u ϑ  and normal unitary vector 

)( 2
2
2 ϑm  of the wheel arc tooth flank in coordinate 

system S2(x2,y2,z2), rigidly connected to the wheel, will 
have the form: 

( )

( )

2 2 2 2 2 0 2 2

2 2 2 0 2

2 2 2 2 2 0 2

( , ) cos sin

( ) cos

( , ) sin sin

g g

w

g

x u u r r

y u u R

z u u r

ϑ ϑ α

α

ϑ ϑ α

= ⋅ − +

= ⋅ +

= ⋅ −

 (15) 

2 2 0 2

2 0 2 2 0 2

( ) cos cos

sin ; ( ) cos sin
x

y z

m

m m

ϑ α ϑ

α ϑ α ϑ

= ⋅

= − = ⋅
 (16) 

where: u2, �2 are the linear and angular parameters of 
the wheel tooth flank. 

Radius-vector ),,( 111
1

1 ϕϑur  and normal unitary 
vector ),( 11

1
1 ϕϑm  projections of the gear tooth flank in 

coordinate system 1S , rigidly connected to the gear, 
taking into consideration formulas (9), (12) and (14), are 
described as follows: 

1 1 1 1 1 2( , , ) cos( )x u Aϑ φ φ φ= ⋅ + +  

1 2 1sin( ) sinw sB aφ φ φ+ ⋅ + − ⋅ ; 

1 1 1 1 1 2( , , ) sin( )y u Aϑ φ φ φ= − ⋅ + +            (17) 

1 2 1cos( ) cosw sB aφ φ φ+ ⋅ + − ⋅ ; 

( )1 1 1 1 1 0 1( , ) sin sin gz u u rϑ ϑ α= ⋅ − , 

( )1 1 1 1 1( , , ) cos 1f u u iϑ φ ϑ= + +  

 ( )0 1 2 2cos cos 1 cosw wsR i iaα ϑ φ+ + − +⎡ ⎤⎣ ⎦    (18) 

( ) ( )0 1 1 2sin 1 1 cos sin 0,g wsi r iaα ϑ φ⎡ ⎤+ + − − =⎣ ⎦  

1 1 1 1 2 0 1( , ) cos( )cos cosxm ϑ φ φ φ α ϑ= + −  

0 1 2sin sin( )α φ φ− + ; 

1 1 1 1 2 0 1( , ) sin( ) cos cosym ϑ φ φ φ α ϑ= − + −   (19) 

0 1 2sin cos( )α φ φ− + ; 

1 1 0 1( ) cos coszm ϑ α ϑ= , 

where: ( )1 1 0 1 1cos sin g gA u r rϑ α= ⋅ − + ;   

       wRuB 201 cos +⋅= α ; 21 ϕϕ ⋅= i ; 1u , 1ϑ  are the 
linear and angular parameters of the gear tooth flank; 1ϕ  
is the gear rotation angle in forming the arc tooth flank 
on the basis of the generating wheel.  

The gear movable links (gear and wheels) rotate 
around the axes z1 and z2. The gear and wheel are 
connected to coordinate systems S1and S2. The starting 
point of the rotation angle ψk of the kth mobile link (k = 
1,2) in operating meshing corresponds to the position of 
axis yk (k=1,2) in the axial plane of the gear. The 
relative position of the gear and wheel in operating 
meshing (in the absence of rotation) is characterized by 
center distance awp, angle η of the teeth alignment error, 
teeth twist angle γ  and value of the wheel tooth mid-

plane displacement δS relative to the same plane on the 
gear tooth. 

To study meshing of semi-rolled cylindrical arc 
teeth, we determine the position of coordinate system  
S2 relative to system S1 using fourth-order transition 
matrix 1,2 1 2 ,( , ) i jD dψ ψ = , , 1, 4i j = . The elements of 

this matrix have the following form: 

11 11 2 12 2cos sind c cψ ψ= − ; 

12 11 2 12 2sin cosd c cψ ψ= + ; 

13 1 1sin sin cos sin cosd ψ γ ψ η γ= + ; 

14 1 13sinwpd a S cψ δ= − + ⋅ ; 

21 21 2 22 2cos sind c cψ ψ= − ; 
 22 21 2 22 2sin cosd c cψ ψ= + ;             (20) 

23 1 1cos sin sin sin cosd ψ γ ψ η γ= − ; 

24 1 23coswpd a S cψ δ= − + ⋅ ; 

31 2 2sin cos cos sin sind η ψ η γ ψ= − + ; 

32 2 2sin sin cos cos cosd η ψ η γ ψ= − − ; 

33 cos cosd η γ= ; 34 cos cosd Sδ η γ= ; 

41 42 43 0d d d= = = ;  44 1d = , 

where:  11 1cos cosc ψ η= ;  

12 1 1sin cos cos sin sinc ψ γ ψ η γ= − ;  

13 1 1sin sin cos sin cosc ψ γ ψ η γ= + ; 

21 1sin cosc ψ η= − ;  

22 1 1cos cos sin sin sinc ψ γ ψ η γ= + ; 

23 1 1cos sin sin sin cosc ψ γ ψ η γ= − . 
With 0wS aγ η δ δ= = = =  the elements of matrix 

1,2 1 2( , )D ψ ψ  (20) coinside with the elements of matrix 

1,2 1 2( , )A φ φ  (8). If the function of gear links displace-
ment 

2 2 1( )ψ ψ ψ=                         (21) 

for given values γ, η, δS and awp is known, then, matrix 
),(~

212,1 ψψD describes a relative motion of the wheel 
and gear during the gear operation. In the nonenve-
loping gear, the law of parameter ψ2 variation is 
established after determining the contact points of the 
active flanks of the gear and wheel teeth within the 
single-contact mesh. According to studies [16,20] of the 
gearing theory, the contact point on the active flanks of 
the gear tooth for a fixed value of its rotation angle (ψ1 
= const) is determined by solving the inverse meshing 
problem [20, 31], the mathematical description of which 
is the following system of equations:   

1 2
1 1 1 1 1,2 1 2 2 2 2( , , ) ( , ) ( , )r u D r uϑ φ ψ ψ ϑ= ; 

  1 2
1 1 1 1 1,2 1 2 2 2 2( , , ) ( , ) ( , )m u A m uϑ φ ψ ψ ϑ= ;      (22) 

1 1 1( , , ) 0f u ϑ φ = . 

Here, the superscript defines the coordinate system 
in which the vector projections are calculated; 2

2
~r , 2

2
~m   

are columns matrixes made up of the coordinate projec-
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tions of radius-vector 2
2r  (15) and normal unitary vector 

2
2m  (16) of the wheel tooth active flank in coordinate 

system S2; 1
1

~r , 1
1

~m  are columns matrixes made up of the 
coordinate projections of radius-vector 1

1r  (17) and nor-
mal unitary vector 1

1m   (19) of the wheel tooth active 
flank in coordinate system S1; f(u1,�1,φ1) = 0 is the equ-
ation of meshing in processing the gear teeth flank (18). 

System (22) corresponds to the conditions of the 
correct contact of the gear and wheel teeth active flanks 
and is equivalent to six scalar transcendental equations 
(the equality of normal unitary vectors only gives two 
independent equations) with seven unknowns u1, �1, φ1, 
u2, ψ1, ψ2: 

1 1 1 1 11 1 2 2 2 2( , , ) ( , ) ( , )x u d x uϑ φ ψ ψ ϑ− =  

12 1 2 2 2 13 1 2 2 2 14 1( , ) ( ) ( ) ( , ) ( )d y u d z u dψ ψ ψ ϑ ψ= + + ; 

1 1 1 1 21 1 2 2 2 2( , , ) ( , ) ( , )y u d x uϑ φ ψ ψ ϑ− =  

22 1 2 2 2 23 1 2 2 2 24 1( , ) ( ) ( ) ( , ) ( )d y u d z u dψ ψ ψ ϑ ψ= + + ; 

1 1 1 31 2 2 2 2( , ) ( ) ( , )z u d x uϑ ψ ϑ− =           (23) 

32 2 2 2 33 2 2 2 2 34( ) ( ) ( ) ( , )d y u d z u dψ ψ ϑ= + + ; 

1 1 1 11 1 2 2 2( , ) ( , ) ( )x xm d mϑ φ ψ ψ ϑ− =  

12 1 2 2 13 1 2 2( , ) ( ) ( );y zd m d mψ ψ ψ ϑ= +  

1 1 31 2 2 2( ) ( ) ( )z xm d mϑ ψ ϑ− =  

32 2 2 33 2 2( ) ( );y zd m d mψ ϑ= +  1 1 1( , , ) 0f u ϑ φ = . 

To determine the coordinates of the contact point of 
the gear and wheel teeth flanks with specified errors of 
the relative position (γ, η, δS) of the gear and the wheel. 
It is sufficient to fix the meshing phase (ψ1 = const) 
within the gear tooth spacing angle and solve a system 
of six transcendental equations (23) relative to the 
unknowns u1, �1, φ1, u2, ψ1, ψ2.  

The solution of the system (23) is performed 
numerically using the program developed in MathCad. 

 
4. STUDY OF ARC TEETH SEMI-ROLLED 

CYLINDRICAL GEAR MESHING 
 

The developed program allows calculating the points of 
the line of action in meshing (working line) of the arc 
teeth semi-rolled cylindrical gear and the impact of 
errors in the gear and wheel relative position on the 
position of the working line. The coordinates of the 
points of this line are required for calculating the load 
distributed in the contact of arc teeth. 

We regard the results of the analysis on an example 
of studying a gear that has the following parameters: 

23*
1 =z ; 73*

2 =z ; the normal module is mn = 10 mm; 
the displacement coefficients, when cutting the gear and 
wheel teeth, are χ1 = 0,44 and χ2 = 0,42 repectively; the 
tooth width is bw = 120 mm; α0 = 20°, the radii of the 
initial circle of the gear and wheel are Rw1 = 116,115 
mm and Rw1 = 368,540 mm respectively, the center dis-
tance is aw = 484,655 mm. The calculations were 
performed for two variants of contact localization in the 
longitudinal direction of the arc teeth. In variant 1 (high 
localization), to cut the concave side of the gear arc 
teeth and the convex side of the wheel arc teeth, circular 

cutting heads with calculated radii of rg1 = 200 mm and 
rg2 = 215 mm are used. In variant 2 (contact close to 
linear one) the radii are rg1 = 200 mm and rg2 = 218 mm.  

Figure 5 shows active lines of action on the flank of 
the gear tooth of the studied gear (variant 1) with the 
alignment error of the gear and wheel axes: η=0 (0´); 
0,0003 (1´); 0,0009(3´); 0,0015(5´) and 0.0021 (7´). 

 
Figure 5. Active lines of action in meshing η =0  (▲); 1´ 
(× ); 3´ (□);5´ (○) and 7´ (∆) (variant 1) 

Figure 6 shows active lines of action in meshing 
with η =0´; 1´; 3´; 5´ and 7´ for variant 2. 

 
Figure 6. Active lines of action in meshing η =0  (▲); 1´ 
(× ); 3´ (□);5´ (○) and 7´ (∆) (variant 2) 

Figure 7 illustrates the position of active lines of 
action on the flank of the gear tooth of the studied gear 
(variant 1) when the gear and wheel axes are twisted; 
γ =0´; 1´; 3´; 5´ and 7´. 

 
Figure 7. Active lines of action in meshing γ =0  (▲); 1´ 
(× ); 3´ (□);5´ (○) and 7´ (∆) (variant 1) 

Figure 8 represents active lines of action in meshing 
with γ =0´; 1´; 3´; 5´ and 7´ for variant 2 

 
Figure 8. Active lines of action in meshing γ =0  (▲); 1´ 
(× ); 3´ (□);5´ (○) and 7´ (∆) (variant 2) 
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Figure 9 shows the position of the active lines of 
action in the arc teeth semi-rolled cylindrical gear 
(variant 1) with the axis displacement of the gear rela-
tive to the wheel by Sδ =0,0; -0,1; -0,2;-0,3;-0,4 mm.  

 
Figure 9. Active lines of action in meshing Sδ =0 (▲); -0,1 
(× ); -0,2(□); -0,3(○) and -0,4 mm (∆) (variant 1) 

Figure 10 illustrates the position of active lines of 
action in the arc teeth semi-rolled cylindrical gear (vari-
ant 2) with the axis displacement of the gear relative to 
the wheel by Sδ =0,0; -0,1; -0,2;-0,3;-0,4 mm.  

 
Figure 10. Active lines of action in meshing Sδ =0 (▲); -0,1 
(× ); -0,2(□); -0,3(○) and -0,4 mm (∆) (variant 2) 

 
5. CONCLUSION 

 
In this paper, mathematical models of the processes of 
forming the flanks of semi-rolled cylindrical gear arc 
teeth of the wheel and gear have been built. An 
algorithm and a program to calculate the coordinates of 
the points of the active line of action in meshing arc 
teeth have been worked out. Calculations have been 
performed to estimate the variations in active lines of 
action with various errors in the relative position of the 
gear and wheel. 

The analysis of the calculations (Figure 5... Figure 
10) shows that when the contact of the arc teeth flanks 
is close to linear (rg1 = 200 mm and rg2 = 218 mm), the 
gear sensitivity to errors in the relative position of the 
wheel and gear significantly increases compared to the 
localized contact (rg1 = 200 mm and rg2 = 215 mm). The 
effect of the teeth twist angle γ on the position of active 
lines of acvtion in meshing arc teeth of the gear and 
wheel (Figure 7 and Figure 8) is almost analogous to the 
effect of alignment error η (Figure 5 and Figure 6). An 
increase of  longitudinal contact localization in arc teeth 
meshing (Figure 9 and Figure 10) reduces the sensitivity 
of the gear to axial displacement of the gear relative to 
the wheel. 

The calculated geometric characteristics of arc teeth 
meshing in the presence of errors in the relative position 
of the wheel and gear are required to calculate the load 
capacity and durability of the gear. 
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ПРОУЧАВАЊЕ ГЕОМЕТРИЈСКИХ 
КАРАКТЕРИСТИКА СПРЕЗАЊА 

ПОЛУВАЉАНИХ ЦИЛИНДРИЧНИХ 
ЗУПЧАНИКА СА ЛУЧНИМ ЗУПЦИМА 

 
В.Н. Сизранцев, К.В. Сизранцева 

 
У условима непричвршћених делова машине 
цилиндрични зупчаници са лучним зупцима имају 
већи капацитет оптерећења, трајност и поузданост, 
као и капацитет да компензују угао увијања само-
прилагођавањем једног од зупчаника у поређењу са 
правозубим и хеликоидним зупчаницима. Употреба 
таквих зупчаника у полуваљаној верзији значајно 
поједностављује технолошки процес резања и изра-
де зупчаника са великим преносним односом. У 
раду је приказан математички модел зупчаника и 
процес израде лучних зубаца за полуваљани цилин-
дрични зупчаник. Геометријске карактеристике 
спрезања зупчаника уз присуство грешке код зупча-
ника и релативног положаја зупчаника намећу 
потребу решавања проблема израчунавања капаци-
тета оптерећења и трајности зупчаника, што је у 
раду и учињено.    

 


