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Short Term Prediction of Wind Speed 
Based on Long-Short Term Memory 
Networks 
 
Power utilities, developers, and investors are pushing towards larger 
penetrations of wind and solar energy-based power generation in their 
existing energy mix. This study, specifically, looks towards wind power 
deployment in Saudi Arabia. For profitable deplopement of wind power, 
accurate knowledge of wind speed both in spatial and time domains is 
critical. The wind speed is the most fluctuating and intermittent parameter 
in nature compared to all the meteorological variables. This uncertain 
nature of wind speed makes wind power more difficult to predict ahead of 
time. Wind speed is dependent on meteorological factors such as pressure, 
temperature, and relative humidity and can be predicted using these 
meteorological parameters. The forecasting of wind speed is critical for 
grid management, cost of energy, and quality power supply. This study 
proposes a short-term, multi-dimensional prediction of wind speed based 
on Long-Short Term Memory Networks (LSTM). Five models are 
developed by training the networks with measured hourly mean wind speed 
values from1980 to 2019 including exogenous inputs (temperature and 
pressure). The study found that LSTM is a powerful tool for a short-term 
prediction of wind speed. However, the accuracy of LSTM may be 
compromised with the inclusion of exogenous features in the training sets 
and the duration of prediction ahead. 
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1. INTRODUCTION  
 

Wind amongst other renewable sources, is becoming 
more popular for both grids connected large appli-
cations and isolated grids for small loads. The grid 
connectivity issues and power grid managements 
control are getting advanced with time.  Saudi Arabia, 
for example, is targeting a new wind power capacity of 
2.0GW by 2030 [1] and is planning to achieve 20% of 
wind power penetration in its total capacity by the end 
of 2030 [2]. However, the challenge associated with 
wind power is its uncertain nature [3, 4]. Wind power is 
mainly affected by wind speed and weather factors such 
as wind direction, temperature, atmospheric pressure, 
and relative humidity [5]. The geographical and topo-
graphical conditions at the wind farm sites have an 
influence on the output of the wind energy [6, 7]. An 
accurate information of the wind speed availability, that 
drive the wind turbines, is crucial for microgrid-siting 
and later for profitable and proper operation and main-
tenance of the system [8, 9]. The integration of wind 
power in microgrids where the effects of wind power 
fluctuations significantly affect the microgrid operation 
and other distributed generation were studied in [7–10].  

In micro-grids, the integration of large-scale wind 
power may result in the fluctuations of the output power 

and can cause disturbances to the power system and 
may lead to grid failures [11, 12]. Consequently, power 
quality, voltage, and frequency may be seriously affec–
ted [5, 11].  

There are physical parameters of the wind turbines 
such as pitch, rotor diameter, blade length, and wind–
farm layout design that greatly affect the power output 
from the turbine. A study of wind farm layout design is 
presented in [13], where particle swarm optimization 
(PSO) algorithm is used to solve wind farm opti–
mization problem. Besides, the authors in [14] studied 
the optimal location of wind turbines and their per–for–
mance in Iraq considering the costs and maximum 
possible capacities from the wind turbines in different 
sites. Furthermore, the steady-state deformation and 
stress that occur in wind turbine blades were inves–
tigated in [15]. A review of studies involving the design, 
optimization and techniques of different wind turbine 
blades were reported in [16]. 

 The ability to accurately forecast wind speed can 
reduce the adverse effects of wind power fluctuations on 
the power system. Reliable prediction of wind speed 
ahead of time can allow the power management system 
enough time to manage the fluctuations in power 
through other controls. It is reported that wind speed 
and ultimately wind power forecasting methods are 
divided into statistical learning methods, physical 
models, modern machine learning techniques, and 
hybrid methods. The statistical approaches are simple 
and use historical data to predict wind speed in future 
time domain [2]. These are based on statistical time 
series or machine learning algorithms [17] which may 
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include the artificial neural network (ANN) and support 
vector machine continuous association rule mining 
algorithm (CARMA) methods [18–20]. 

The physical approaches use the physical description 
(solving differential equation of mass, energy, and 
velocity) of the wind to model the onsite conditions and 
it is good for long term prediction [10]. However, the 
physical methods are complex and make use of many 
inputs resulting in a high computational cost [5]. The 
hybrid or combination methods on the other hand, com-
bines the predictive ability of various methods to imp-
rove the accuracy of the model. Owing to its memory 
retaining capability and its performance on sequence 
models, especially in natural language processing 
(NLP), recurrent neural networks (RNN) and its variants 
have become the de-facto models in renewable energy 
forecasting. The Long-Short Term Memory (LSTM) 
networks particularly have shown tremendous perfor-
mance in their use for wind speed energy prediction and 
there is no shortage of work that has been done in this 
area. However, the vast majority of these applications 
have been based on certain environments. The major 
reason for this is the fact that environments play a vital 
role in how renewable energy systems behave. This in 
turn have effect on their prediction. As such, each 
environment is unique and thus often require unique 
strategy for their predictions. Hence, the need for our 
research.  

In the presence of extensive dataset, a hybrid of 
Ensemble Empirical Model Decomposition (EEMD), 
Genetic Algorithm (GA), and LSTM was proposed in 
[21] as a way to achieve short-term wind speed 
prediction. The EEMD was utilized to decompose the 
sequence wind speed data for feature extraction and the 
GA-LSTM algorithm was applied to the extracted 
features to predict future wind speed. The feature extra-
ction step culminates in a 38.48% increase in prediction 
accuracy as opposed to the non EEMD model. The data 
utilized was extracted from the wind speed data of 
various sites across the United States. A combination of 
variational mode decomposition (VMD), singular spec-
trum analysis (SSA), LSTM, and extreme learning 
machines (ELM) was adopted in [22] for wind speed 
forecasting. The SSA step was utilized as a form of fea-
ture extraction step to boost the prediction accuracy. 
Several experiments were performed in which their 
multi-step algorithm was compared with several other 
algorithms and achieved better accuracy. The data uti-
lized here is from the samples obtained from one 
observation site of a wind farm in China between May 
to December, 2015. Again, the ELM and LSTM was 
combined with differential evolution algorithm for wind 
speed forecasting in [23]. In their work, data was 
gathered from a wind farm in Inner Mongolia, China. 
Two forecasting models were developed in which one 
was for short-term prediction of 10 minutes and the 
other for slightly longer prediction of one-hour ahead. 
Autoencoders with LSTM [24], two-stage LSTM [25] 
are some other methods that have been employed in 
wind speed forecasting. A comprehensive review of the 
various LSTM and support vector machines (SVM) 
models utilized for wind speed forecasting is equally 
presented in [26]. 

In this study, a short-term prediction of wind speed 
based on LSTM is proposed. The study presents five 
different Cases to investigate the predictive ability of 
LSTM in the short-term prediction of wind speed. 
Besides, four Scenarios of time step ahead predictions 
are further proposed to investigate the performance of 
LSTM network in the presence of exogenous inputs. 
The strategy adopted in this paper unveils unique 
characteristics of LSTM in short term prediction of 
wind speed when the training features are selected in 
different combination. 

 
2. DATA PREPARATION 

 
Predication of wind speed requires the use of weather 
parameters temperature, atmospheric pressure, and 
relative humidity. Although, highly correlated para-
meter has the strongest impact on the wind data, it 
usually not a good practice to include such data in ANN 
forecast in the presence of other parameters [27]. How-
ever, in this study, wind direction data is not considered 
because of its even extremely high fluctuating nature. 
Furthermore, it does not add to the wind speed intensity 
as well. The hourly mean data is obtained from a 
meteorological station located in Dhahran, Eastern 
Province, Saudi Arabia and covers a period of 40 years 
from 1980 to 2019 resulting in 342,624 data points out 
of which 100,000 have been used for training. 

 
Figure 1. Wind speed measured at 50m height, Dhahran 
2018. 

 
Figure 2. Atmospheric pressure measured near the ground; 
Dhahran 2018. 
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The erratic nature of the whether parameters, hourly 
variation with time (during January and June months for 
2018), is shown in Figs. 1, 2 and 3. Higher magnitudes 
of wind speed values are observed in June compared to 
January (Fig. 1). This indicates the wind speed seasonal 
variability which must be addressed by the models. 
Higher values of atmospheric pressure measured are 
observed during winter (January) compared to summer-
time (June) as shown in Fig. 2. The effect of height (2m 
and 10m) and the season on ambient temperature values 
is clearly visible in Figs. 3 (a & b). Two temperature 
measurements are considered at heights of 10m and 2m 
because vertical temperature difference causes the 
movement of the air masses [28, 29].   

 
2.1 Data Processing 

 
The original data include the wind speed, temperature at 
two heights, wind direction and pressure on hourly 
averaged basis. All the column data is scaled to a range 
of [0, 1] to obtain the best network performance. Since 
the inputs to the network is the past time data series, so 
to obtain better prediction accuracy, previous 60 hours 
measured values are considered. Based on the input data 
and the models, the future predictions are made under 
four Scenarios which are 1, 2, 5, and 7 hours ahead for 
all the cases presented here.  

As an instance, Case 2 utilizes wind speed data 
measured at 50m, and temperatures at 10m, and at 2m to 
predict the future wind speed. To demonstrate the accuracy 
and predictability of the models, several batches, each of 
60 input data points, are selected randomly from the total 
of 100,000 data points and next hour data as output. 
Although other values of input data points such as 30, 45 
and 75 were also tried but 60 gives the best trade-off 
between accuracy, and training time. This gives an input 
shape of (99940, 60, 3). The output is the corresponding 
future wind speed of shape (99940, 1). From this data, 
5000 randomly selected data points are used as the testing 
data and the remaining as training sets, respectively.    
 
2.2 Network Training 

 
The network was trained based on backpropagation thro–
ugh time (BPTT) using the Adam optimizer. The mean 
squared error (MSE) metric is used for the loss function. 
The goal of the optimizer is to minimize the MSE 
between the predicted future and the measured values. 
Furthermore, we desired that the network be retrained 
several times if the value of mean absolute error (MAE) 
exceeds a predefined some threshold value (0.5 m/s). If 
this is not achieved after several trials, then the best of the 
trained results will be retained.  During training, a batch 
of 128 data points are utilized and the network is trained 
for 40 epochs. For all the cases, training took on for an 
average of 28 minutes on an intel Core i7, 8th Generation 
CPU with 16 GB of RAM running on a windows 10 OS. 
 
3. METHODOLOGY 

 
Each parameter (wind speed, temperature, and pressure) 
of the training sample is modeled as time series used as 
input to the models. The time series samples are made of 

n observations [x1,x2,…,xn] which are used to predict the 
wind speed in future time domain. Five models are 
developed; each model is trained for one-hour ahead 
prediction and thereafter-tested 1 hour, 2 hours, 5 hours 
and 7 hours ahead. This implies that the input time series 
is a function of the past historical hourly mean values.   

The training input data for each sample is modeled as 
a function F(.), as represented in Equation (1): 

( ) ( ) ( )( ), , ,... 1i i i nx t F x t x t x t= −  (1) 

where i is the number of input parameters being consi–
dered, and t is the number of sample observations.  

 
3.1 Network Training 

 
ANN has network architecture consisting of neurons, 
connecting strength, nodes properties, and updating rules 
[30, 31]. The neurons have natural ability to store and 
figure out experimental knowledge which can be used to 
validate future occurrences [32]. Some of the unique 
attributes of the ANN are its capabilities to pro–cesses 
information with very high speed, mapping, tolerance for 
faults, robustness and generalization. Thus, an ANN is 
excellent in performance when it comes to system 
identification, system modeling, optimization, and 
prediction [33]. The ANN has been used to solve 
complex nonlinear engineering problems in real-world 
[32–35]. The ANN model is made of parametric compo-
nents like weights (wij), connecting synapses or links, bias 
(bj), and activation function f(*). These parameters relate 
the input xi to the output yj as shown in Fig. 4 and 
expressed in the following equations. Each input, xi is 
multiplied by the weight, wij to give the summation 
output sj, Equation (2a). The output of the summation 
applied to the activation function to give the final output 
signal yj, equation (2b) which is the desired limit or range 
of the amplitude. Example of activation functions listed 
in [33] are linear, sigmoid, Gaussian, and Gaussian 
complements which chosen based on specific problem.  

 
Figure 3. Temperature measured at height (a) 10m and (b) 
2m, Dhahran 2018. 

 
Figure 4. The model of a non-linear neuron. 
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where j and k are the numbers neurons and synapses 
respectively.  
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As suitable for this problem, a type of neural 
network proposed in this study is a recurrent neural 
network called long-short term memory (LSTM) 
networks. A typical structure of a LSTM is shown in 
Fig. 5.  
 
3.2 Long-short Term Memory Networks 
 
The LSTM NN was initially proposed in [36] and it is a 
special type of recurrent network. The LSTM is based 
on the principle that the status of a current cell can be 
affected by the status of the previous cells. This is in 
fact, a recurrent neural network. 

 
Figure 5. A typical structure of an LSTM Network. 

This description is depicted in Fig. 5. An LSTM cell 
has an output gate, input gate, and a forget gate layer 
also called the sigmoid layer. The function of the input 
gate is to control the amount of data that goes into a 
cell. The forget gate regulates the amount of the values 
left in a cell while the output gate together with values 
in the cell defines the output of an LSTM.  

The LSTM can extract relevant information from 
streams of data, remember them, and use them to 
predict future values [37]. The tanh network ensures 
that values stay between -1 and 1, thus regulate the NN 
output. The cell state acts as hardware. It can carry 
relative information through the sequence chain. It is 
essentially the memory of the network. Information 
from the earlier time steps carried to the previous time 
steps, this helps to reduce the short-term memory [38].  

The gates are types of NN that determine the 
information that are allowed in the cell state, they learn 
information that would be kept or forgetting during 
training. The activation function in the gates is sigmoid 
like the tanh function. The sigmoid squeezed infor-
mation between 0 and 1. This helps to decide what data 
to remember or to forget. When a value is multiplied by 
zero, it is forgotten and when it is multiplied by 1, it is 
remembered. So, the gates help to regulate information 
flow within a cell. 

The forget gate (Fig. 6(a)) decides which information 
is kept or discarded. Information from the previously 

hidden state, ht-1  is combined with the one in the current 
state and then fed into the forget gate. The output of the 
forget gate   is passed into the sigmoid (3) and the 
information in the hidden state is passed on for further 
processing. Information is further processed in the next 
stage which is made of a sigmoid layer, known as the 
input gate and a tanh layer. The input gate and a tanh 
layer, shown in Figure 6(b) determines what infor–
mation is stored in the cell state. While the tanh layer 
creates a vector of new candidate to be added to the 
state, the sigmoid layer decides the value to be updated. 
The output from the sigmoid output decides which 
information to be kept from the tanh activation output. 
Next, the cell state is calculated using the information 
from the gates and the hidden state using Equation (1). 
Because the hidden state has information about the 
previous inputs and it helps in prediction. The tanh 
output is multiplied with the sigmoid output (Fig. 7) to 
determine the information in the hidden state (  which 
is now the output. The new cell and the hidden states 
then carried over to the next time step. 

 
Figure 6. A section of the of an LSTM showing (a) forget 
gate, (b) hidden gate [37]. 

 
Figure 7. A section of the of an LSTM showing how the 
combination of the sigmoid and tanh output [37]. 

The steps involved in calculating the inputs, forget, 
and the output of the gates are described as follows: 

Step 1: We calculate the inputs of the three gates and 
the candidate cell using Equations (3) to (6). 
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[ ]1 1,f f t t fnet W h x b−= ⋅ +  (3) 

[ ]1 1,i i t t inet W h x b−= ⋅ +   (4) 

[ ]1 1,o o t t onet W h x b−= ⋅ +  (5) 

[ ]1 1,t tC C Cnet W h x b−= ⋅ +  (6) 

where , , ,f i oCnet net net net  are the candidate cell, forget 
gate, input gate, and output gate respectively.  

 Step 2: We compute the three gate units using 
equation (7-10). 

( )t ff netσ=   (7) 

( )t ii netσ=   (8) 

( )t oO netσ=   (9) 

( )tanht CC net=   (10) 

1t t t t tC f C i C−= × + ×   (11) 

where Ct is the new cell state, ft is forget gate, it is the 
input gate, Ot is the output gate and tC  is candidate all 
at time t. The activation function σ(·) and tahn( �) are 
defined in equation (12)  
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 Step 3: Finally, we calculate the output,  of the 
LSTM using equation (14). 

( )tanht t th O C= ×   (14) 

4. PROBLEM FORMULATION 
 

The training samples consist of training inputs and tar–
gets. The inputs are the hourly wind speed (HWS), 
hourly temperatures (at 10m and 2m) and hourly pres–
sure during 1980 to 2019. The training and the testing 
features are further described in the next subsections.  
 
4.1 Training Parameters 

 
The description of the training parameters and their 
combinations to achieve the different Cases is depicted in 
Fig. 8. Furthermore, the results of each cases compared 
and the effect of each exogenous parameter in the 
prediction of wind speed are investigated. The models are 
realized in each case and are tested to predict wind speed 
output in four Scenarios, which include predictions 1 
hour, 2 hours, 5 hours and 7 hours ahead of time. 
 

i. Case 1 
In this case, the training for the LSTM model is made of 
only one feature set of historical HWS data measured at 
height 50m for training and target. 
 

ii. Case 2 
This is the first case with exogenous inputs. The input 
includes HWS in addition to temperatures measured at 
10m and 2m. The target  is the HWS used in Case 1.   

iii. Case 3 
This case utilizes the wind speed and the atmospheric 
pressure as input. The target sample corresponds to the 
hourly measured wind speed data. 
 

iv. Case 4 
In this case, the LSTM model utilizes wind speed, 
temperatures at 10m and 2m, and atmospheric pressure 
as input. It includes all features being considered in this 
study and the target is HWS. 
 

v. Case 5 
The input in this case include the temperature at two le–
vels and pressure only. The target is the measured 
HWS. 

 
Figure 8. Description of the training parameters and input 
features 

4.2 Forecast Error Matrix 
 

The forecast error for wind speed defined as the 
difference between the measured and the predicted wind 
speed values. The metrics for the evaluation of the 
forecast error include mean absolute error (MAE), root-
mean-squared error (RMSE), mean squared error 
(MSE), and symmetric mean absolute error. In this 
paper, only MAE and MSE are used as the error metrics 
and defined in equations (15,16). 
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where et is the absolute difference between the fore–
casted and the measured values of the wind speed for 
the testing period. The MSE computed to measure the 
level of deviation between the forecasted and the 
measured wind speed recorded. The forecast errors are 
desired to be less than 0.5m/s, otherwise the training is 
repeated until a better model is achieved and then the 
final testing is done. Throughout the rest of this article, 
measured wind speed is used interchangeably with real 
speed or actual wind speed and predicted value is 
interchangeably used as forecasted value. 

 
5. RESULTS 

 
The results of all the cases arepresented in this section. 
The training MSE and prediction scatter plots for all 
cases are shown in Fig. 9 to Fig. 11. The MSE values 
decrease as the Epochs number increases and becomes 
constant (~0.0005) after 40 Epochs. Fig. 9 shows the 
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training MSE plot recorded in Case 1 while Fig. 10 
depicts the scatter plots between the actual and the 
predicted wind speed values. The scatter plots show that 
both values are closely matched confirming the 
effectiveness of the model. Also, Fig. 11 shows the 
training MSE of Cases 2 to 4. It is evident that the MSE 
values for Cases 2, 3 and 4 are approximately equal but 
are far different from that for Case 5. Moreover, the 
MSE becomes constant at the 15th epoch for the first 
four Cases. However, the MSE in Case 5 attained the 
40th epoch before approaching a constant value and are 
larger than the values in the previous Cases (Cases 1-4).  

Also, Fig. 12 (a-d) show the correlation scatter 
diagrams of each model in all Cases. The scatter plots 
tell at a glance the performance of each model. 
Accuracy of the forecast could be interpreted from the 
correlation and regression of each plot. Furthermore, 
correlation coefficients of all Cases and Scenarios are 
given in Tables 1 to 5. Also, Table 6 summarizes all 
training parameters, network algorithms and 
assumptions for all Cases and Scenarios discussed in 
this article. Each Case is further analyzed separately in 
Sections 5.1 to 5.6. 

 
Figure 9. Training MSE, Case 1 

i. Case 1 
In Case 1, the model is trained with hourly mean wind 
speed only, made of 100, 000 data points for one hour 
ahead predictions. The training performance of this case 
is shown in Figs. 9 and 10. The predictions are obtained 
for four different scenarios including 1, 2, 5 and 7 hours 
ahead of time. The error metrics obtained from the 
testing of this model is presented Table 1, where MSE 
has higher magnitudes compared to MAE values. 
However, these values tend to decrease as the prediction 
duration increases from 1 hour to 7 hours ahead.  

 
Figure 10. Correlation plots between measured and 
predicted wind speeds, Case 1 

Table 1. Errors and correlation coefficients in case 1 for all 
scenarios. 

Hours 
ahead 

MSE MAE Correlation 
Coefficient 

1 0.2140 0.2992 0.9571 
2 0.2013 0.2967 0.9704 
5 0.1689 0.2850 0.9752 
7 0.2042 0.2972 0.9650 

 
Fig. 13(a) compares the measured and the predicted 

wind speed values for one hour ahead. The predicted 
values are in close agreement with the measured values 
with few exceptions. Overall, the predicted values 
follow the trend of the measured wind speed values 
which is a strong justification of the accuracy of the 
model. The same model used to predict wind speed 
values 2, 5, and 7 hours’ head (Figs. 13(b), 13(c), and 
13(d)). It is observed from these Figures that the model 
is capable of predicting the wind speed values 
accurately up to 7 hours ahead of time. In all of these 
cases, except few exceptions, the predicted values 
followed the trends of measured wind speed values. 
This demonstrates robustness of the LSTM model in 
short term predictions. Furthermore, the results 
demonstrate that model realized by training input data 
sample for an hour ahead using LSTM method could be 
used to predict wind speed values up to 7 hours ahead 
without compromising the accuracy as long as the input 
is correctly fed into the model. 
 

ii. Case 2 
      In this case, the model is trained with a combination 
of wind speed and exogenous (temperatures at 10m and 
2m) inputs. The resulting MSE and MAE values are 
summarized in Table 2. Comparing to Case 1, MSE and 
MAE values are lower in this Case 2. This can be 
attributed to the effect of temperature on wind speed 
variations because the uneven heating of the earth 
surface with time causes the wind flow. Again, like in 
Case 1, MSE values are lower compared to MAE 
magnitudes and are seen to be decreasing with 
increasing prediction duration from 1 hour to 7 hours. 
The MSE value decreases from 0.1961 to 0.1824 (~7%) 
corresponding to prediction duration of 1 and 7 hours. 
Table 2. Errors and correlation coefficients in Case 2 for all 
scenarios 

Hours 
ahead 

MSE MAE Correlation 
Coefficient 

1 0.1961 0.2798 0.9650 
2 0.1849 0.2755 0.9480 
5 0.1614 0.2738 0.9717 
7 0.1824 0.2751 0.9471 

 
One hour ahead prediction of wind speed compared 

with the measured values in Fig. 14(a). The predicted 
values have an excellent match with the measured ones 
and more importantly follow the trend of measured 
values with time. Furthermore, these results seem to be 
a bit better than those in Case 1 (Fig. 13(a)). Also, Figs. 
14(c-d) which are obtained using the same model to 
predict the wind speeds at 2, 5 and 7 hours ahead show 
that the model performed a little better than that in Case 
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1. Moreover, the error metrics, summarized in Table 2, 
also indicated that forecast with exogenous parameters, 
temperatures at 10m and 2m in this, as inputs can 
perform better in LSTM networks. Additionally, the 
observation shows that the model realized for an hour 
ahead prediction can be used predict wind speed for of 
up to 7 hours ahead accurately. 
 

iii. Case 3 
In this Case, the model is trained with wind speed and 
pressure measured 50m and near ground surface as the 
inputs. Table 3 summarizes the magnitudes of MSE and 
MAE obtained in this Case. The values recorded are 
also below 0.5m/s and thus indicative of high per–for–
mance. Fig. 11(c) shows that the MSE plot assume 
similar pattern with those obtained for Case 1 and Case 
2. The comparison between the predicted and measured 
wind speed values (Fig, 15(a)) show very close agre–
ement with each other. Furthermore, a close look at 
Figs. 13(a) and 14(a) and comparison with Fig. 15(a) 
confirms better performance in Case 3 compared to 
Case 1 and Case 2. The predicted values, for other 
Scenarios for 2, 5, and 7 hours ahead predictions, are 
also in close agreement with the measured wind speed 
values (Figs, 15(b), 15(c), and 15(d)). It is observed 
across all of these plots that this model performed 
comparatively good like Cases 1 and 2. 
Table 3. Errors and correlation coefficients in Case 3 for all 
scenarios. 

Hours 
ahead 

MSE MAE Correlation 
Coefficient 

1 0.2065 0.2938 0.9938 
2 0.2003 0.2940 0.9662 
5 0.1649 0.2804 0.9859 
7 0.1791 0.2797 0.9749 

 

 
Figure 11. Training MSE plots for Cases 2, 3,4 and 5. 

 
Figure 12. Correlation plots between measured and 
predicted wind speeds for 1 hour ahead prediction for 
Cases 2-5.  (a) Case 2 (b) Case 3, (c) Case 4, (d) Case 5 

iv. Case 4 
Under this case, the model is trained with combination 
of all features in Cases 1, 2, and 3 (wind speed, 
temperatures at 2m and 10m, and atmospheric pressure) 
and is tested for all Scenarios, as in previous cases. 
Table 4 provides the model performance in terms of 
MSE and MAE values. It is evident from the data in 
Table 4 that for Scenario 1, (one hour ahead predictions) 
and Scenario 2, (two hours ahead predictions), this 
model (Case 4) performed better than the Cases 1 and 3. 
For 5 hours ahead predictions (Scenario 3), the model in 
Case 4 performed equally well compared to models for 
Cases 1 to 3. However, MAE values remained almost in 
the same range as in Cases 1, 2, and 3 for all Scenarios. 
Table 4. Errors and correlation coefficients in Case 4 for all 
scenarios. 

Hours 
ahead 

MSE MAE Correlation 
Coefficient 

1 0.2005 0.2975 0.9334 
2 0.1921 0.2946 0.9211 
5 0.1659 0.2869 0.9415 
7 0.1900 0.2919 0.9214 

 
 To further strengthen the predictability of this 

model, the predicted values under all scenarios are 
compared with measured hourly mean wind speed 
values in Figs. 16(a-d). The patterns recorded in all 
Scenarios showed that the predicted values have an 
outstanding match with measured values. It is further 
noted that the predicted values follow the changing 
trends of measured wind speed values with time for all 
Scenarios. As a visual observation, trend following 
nature in the present Case 4 seems to be even better than 
those in Case 1 (Fig. 13), Case 2 (Fig. 14), and Case 3 
(Fig. 15). Hence it can be said that addition of 
temperature and pressure as input parameters along with 
the wind speed enhance the model predictability and can 
be used if measurements are available. 

 
Figure 13. Wind speed prediction in Case 1. (a) 1 hour 
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours 
ahead. 

v. Case 5 
This a special case, for the sake of completion, where 
exogenous features, excluding the wind speed, are used 
as input to train the model while the target remains the 
wind speed. The error metrics, summarized in Table 5 
for this Case 5, show outrageously high values of MSE 
and MAE compared to all the previous Cases discussed 
earlier.  Also, the plots of the measured wind speed 
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versus predicted show a poor match but still follows the 
trend of the measured values (Figs. 17(a-d)). It is 
observed that, this model’s predictive accuracy is poor 
relative to other models presented in sub-sections 5.1 to 
5.4. Therefore, for a short-term wind speed prediction 
using an LSTM, the model should not be trained based 
on exogenous parameters only as input. 
Table 5. Errors and correlation coefficients in Case 5 for all 
scenarios. 

Hours 
ahead 

MSE MAE Correlation 
Coefficient 

1 3.5318 1.4736 0.5540 
2 3.5540 1.4737 0.5436 
5 3.6738 1.4900 0.4088 
7 3.3094 1.4451 0.4499 

 

 
Figure 14. Wind speed prediction in Case 2, (a) 1 hour 
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours 
ahead. 

 
Figure 15. Wind speed prediction in Case 3, (a) 1 hour 
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours 
ahead. 

 
Figure 16. Wind speed prediction in Case 4, (a) 1 hour 
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours 
ahead. 

 
Figure 17. Wind speed prediction in Case 5, (a) 1 hour 
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours 
ahead. 

In this study, the LSTM method is used for short 
term (1 hour, 2, 5, and 7 hours ahead) prediction of 
wind speed. Five models are developed depending on 
the training input parameters (Case 1: wind speed only; 
Case 2: wind speed and ambient temperatures at 10m 
and 2m; Case 3: wind speed and atmospheric pressure; 
Case 4: wind speed, temperatures and pressure; and 
lastly Case 5: temperatures and pressure values only). 
The model performance is evaluated for four scenarios 
(Scenario 1: 1 hour ahead of time, Scenario 2: 2 hours 
ahead of time, Scenario 3: 5 hours ahead of time, and 
Scenario 4: 7 hours ahead of time) using MSE and MAE 
values. Furthermore, the predicted values are compared 
with measured wind speed values with time to confirm 
the trend predictability of proposed models. 

Table 6. Training parameters for all cases. 

P Case 1 Case 2 Case 3 Case 4 Case 5 
Hidden layer 1     
Nodes 100     
Time step (hour) 60     
Inputs Wind speed Wind speed and 

temperatures at 
10m and 2m 

Wind speed and 
pressure 

Wind Speed, 
temperatures at 
10m and 2m, and 
pressure 

Temperatures at 
10m and 2m and 
pressure 

Output Wind speed     
Training 
Optimizer 

Adam     

Training metrics MSE     
Training epochs 40     
Batch size 128     
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6. CONCLUDING REMARKS 
 

The study found that LSTM is a powerful tool (based on 
MSE and MAE values and trend produce-ability) for 
short term wind speed prediction. Furthermore, it is 
observed that the accuracy of LSTM improves as the 
number of training exogenous features increases. How–
ever, the algorithm requires that wind speed should be 
part of the input training parameters in order to enhance 
its accuracy. Moreover, the accuracy of prediction by 
LSTM network may be compromised if the prediction 
time ahead differs from the actual time step used for 
training the network. The accuracy of prediction 
deteriorates when only exogenous parameters are used 
as inputs for training the model. 

Finally, the study recommends that LSTM may be 
used for short term prediction of wind speed with trai–
ning input parameters as used in Cases 1 to 4. In further 
studies, an algorithm like the transformer can be chosen 
to replace the LSTM. Also, ensembling of sequence 
models may be considered to improve overall learning 
performance of the model. 
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КРАТКОРОЧНО ПРЕДВИЂАЊЕ БРЗИНЕ 
ВЕТРА БАЗИРАНО НА МРЕЖАМА ЗА 

ДУГОТРАЈНЕ-КРАТКОРОЧНЕ МЕМОРИЈЕ 
(LSTM) 

 
У.Т. Салман, Ш. Рехман, Б. Алаводе,  

Л.М. Алхемс. 
 

Електропривредне компаније, програмери и 
инвеститори се залажу за већи продор производње 
енергије ветра и соларне енергије у постојећи 
енергетски микс. Рад је посебно окренут коришћењу 
енергије ветра у Саудијској Арабији. Профитабилан 
развој коришћења енергије ветра подразумева 
прецизно познавање брзине ветра како у 
временском тако и у просторном домену. Брзина 
ветра је параметар са највише прекида и 
флуктуација у поређењу са свим метеоролошким 
променљивим. Неизвесна природа брзине ветра 
отежава временско предвиђање снаге ветра. Брзина 
ветра зависи од метеоролошких фактора као што су 
притисак, температура и релативна влажност. 
Предвиђање брзине ветра је од значаја за управљање 
мрежом, ценом енергије, квалитетом снабдевања 
енергијом. У раду се даје предлог за краткорочно, 
вишедимензионално предвиђање брзине ветра 
коришћењем LSTM. Аутори су развили пет модела 
обуком мрежа на основу измерених вредности 
брзине ветра на час у периоду 1980-2019. 
укључујући егзогене инпуте (температуру и 
притисак). Утврђено је да је LSТM моћан алат за 
краткорочно предвиђање брзине ветра. Међутим, 
LSTM може бити и недовољно прецизан метод када 
се у обуку мрежа укључе егзогени фактори и 
предвиђања дужине трајања унапред.   


