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Efficient extraction of renewable energy from wind depends on the reliable 
estimation of wind characteristics and optimization of wind farm 
installation and operation conditions. There exists uncertainty in the 
prediction of wind energy tapping potential based on the variability in 
wind behavior. Thus the estimation of wind power density based on 
empirical models demand subsequent data processing to ensure accuracy 
and reliability in energy computations. Present study analyses the 
reliability of the ANN-based machine learning approach in predicting 
wind power density for five stations (Chennai, Coimbatore, Madurai, 
Salem, and Tirunelveli) in the state of Tamil Nadu, India using five 
different non-linear models. The selected models such as Convolutional 
Neural Network (CNN), Dense Neural Network (DNN), Recurrent Neural 
Network (RNN), Bidirectional Long Short Term Memory (LSTM) Network, 
and linear regression are employed for comparing the data for a period 
from Jan 1980 to May 2018. Based on the results, it was found that the 
performance of (1->Conv1D|2->LSTM|1-dense) is better than the other 
models in estimating wind power density with minimum error values 
(based on mean absolute error and root mean squared error). 
 
Keywords:Wind power, Bidirectional LSTM, CNN LSTM, Linear 
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1. INTRODUCTION 
 
The current status of fossil fuel consumption and 
threatening impacts of conventional energy sources on the 
environment have motivated the researchers towards 
focusing on increased extraction of energy from rene–
wable resources. Renewable energy sources like tidal, 
hydropower, wind, solar, geothermal, etc. are being widely 
employed as alternate sources of energy. Among them, 
wind energy promises to be suitable for large-scale appli–
cations due to its ease of availability, instal–lation, envir–
onmental friendliness, and inexhaustibility [1,2]. Explo–
ration of wind energy from offshore and onshore sites has 
attracted the attention of both resea–rchers and capitalists 
as a potential area of investment. This is fuelled by the 
ever-increasing demand for energy in variousproduction 
and service sectors [3]. As a rapidly growing source of 
energy, the current trend in wind energy extraction is 
expected to expand in the near future. Although this is one 
of the cheapest forms of energy, inappropriate placement 
of wind turbines may result in under-utilization of their 
capacity and can lead to huge loss of revenue. Thus, 
scientific evaluation of wind resources plays a vital role in 
providing secure wind energy utilisation and enhancement 
of the effici–ency of wind energy markets [4,5]. Some of 
the resear–chers have adopted novel techniques for 
determining the optimal location of the wind farms [6-8]. 

As a basic pre-requisite, the knowledge of wind 
power density is critical sincethe variation in wind 
frequency distribution can result in varying wind power 
densities for the same wind speed.Although various 
predictive models are available to estimatethe wind 
energy-associated parameters, there are a fewinherent 
limitations from a computational perspective. As an 
obvious response to the recent trends in artificial 
intelligence-basedmodelling techniques, there are 
various attempts to employ themfor simulation, 
estimation and optimisation of wind energy parameters. 
Taylor et al. [9] constructed density forecasts from 
weather ensemble predictions and statistical time series 
models. Weibull distribution-based Particle Swarm 
Optimisation (PSO) was reported as a useful tool in 
assessing the wind energy potential in Taiwan [10]. In 
anotherapproach, Monte Carlo simulation was used by 
Jeon and Taylor [11] to compute conditional kernel 
density for the VARMA-GARCH model. It is to be 
noted that most of thesemodels predict the wind power 
density based on the prediction of wind speed and 
direction functions. Bigdeli et al. [12] developed hybrid 
models to predict the wind power time series by 
combining Neural Network (NN) with Imperialistic 
Competitive Algorithm (ICA), Genetic Algorithm (GA), 
and PSO techniques. Using the PSO, Abductory 
Induction Mechanism (AIM), and the persistence 
(PER), Mohandes and Rehman [13]  predicted the 
distribution of 12 hours wind speed in Saudi Arabia. 

Towards deriving approapriate strategies for evolving 
hybrid solution systems, an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) was employed to study the 
distribution of probability density functions (PDF) of 
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wind speed and directions by Shamshirband et al. [14]. 
The results were in good comparison with the 
conventional wind distribution approaches such as 
Weibull, Frechet, Gumbel, and joint probability func–
tions. A similar adaptive model was designed by Baskar 
and Singh [15] namely Adaptive Wavelet Neural 
Network (AWNN) and Feed-Forward Neural Network 
(FFNN) to successfully predict the wind speed distribu–
tions. A combination of Support Vector Machine (SVM), 
Artificial Neural Network (ANN), and Genetic 
Programming (GP) was used by Mohammadi et al. [16] 
to predict the monthly values of wind power density 
which is in good comparison with the prediction accuracy 
of Extreme Learning Machine (ELM). In another hybrid 
approach, the Beveridge-Nelson decomposition method 
was used to predict the wind power potential at the 
Xinjian Uygur autonomous region in China [17]. Based 
on the relevance of the SVM in optimization, they also 
employed an ant-lion optimizer for predicting the wind 
power based on the hourly wind speeddata. A combi–
nation of GA and ELM was used to predict the wind po–
wer by Wang et al. [18]. Another recent hybrid approach 
for the ANFIS models such as ANFIS-PSO, ANFIS-GA, 
ANFIS-DE (diffe–rential evolution) was attempted by 
Hossain et al. [19] for four different locations in Malaysia 
using the monthly and weekly wind power density 
values. An improved teaching-learning-based optimisa–
tion (iTLBO) with ELM was proposed by  Xue et al. [20] 
to predict the wind power by incorporating the recursive 
feature elimination (RFE) method for feature selection. 

As far as deep learning methods are concerned, 
manyresearchers are coming up withdeep learning 
techniques for forecasting wind speed [21-27]. How–
ever, only limited studies are available for forecasting 
wind power density using deep learning. Lu et al. [25] 
used encoder-decoder LSTM to predict short-term wind 
power. Xu et al. [28] employed anadaptive LSTM for 
short-term prediction of wind power. Yu et al. [29] 
adopted LSTM-EFG model for wind power prediction 
based on sequential correlation features. However, it is 
understood that studies pertaining to the comparison of 
statistical performance of thedeep learning techniques 
are lacking in the literature. Therefore, in the present 
study, we have attempted to compare five different non-
linear techniques, namely, convolutional neural net–
work, dense neural network, recurrent neural network, 
bidirectional LSTM network, and linear regression to 
compare their accuracy in prediction so as to determine 
the most efficient deep learning method for forecasting 
wind power density. 
 
1.1  Related works 

 
Generally, there are three major types of forecasting 
models used for wind speed calculations, namely 
physical-based models, statistical models, and hybrid 
models. Physical models usually consider several 
parameters such as temperature, pressure, surface 
roughness, obstacles, etc. in the lower atmosphere for 
creating mathematical models of the atmosphere to 
predict the wind speed. Statistical models are based on 
the previously recorded data for forecasting the wind 
speed without the consideration of meteorological 

conditions. Hybrid models consist of both physical and 
statistical approaches in forecasting wind speed. We 
have focused on the statistical approach in our study to 
forecast the wind power density. Non-linear statistical 
models are applied to the dataset to evaluate and 
compare the respective performances. 

 
2. NONLINEAR MODELS 
 
Recently, ANN modelshave been extensively applied 
in the real-time series problem to capture non–
linearities prevailing in the dataset. ANN can handle 
such non-linear temporal correlation and can 
approximate a large class of functions with a high 
degree of accuracy. How–ever, thoughacting as a good 
approximator, ANN has the problem of overfitting and 
may provide misleading results if not properly 
monitored.A single hidden layer feedforward network 
can be mathematically modeled as : 
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where αk(k=0,1,2,3….,m) and βlk(k=0,1,2,3….,m; l=1,2, 
3….,n) are connection weights, n is the number of input 
nodes,m is the number of hidden nodes,εtis the random 
error,ytis the output and input are given by yt-1,yt-

2,…,yt-n. 
 

2.1  Convolutional Neural Networks 
 
The central idea in a convolutional neural network is a 
mathematical operation called convolution to detect 
specific features such as image pixels inpattern 
recognition problems. A kernel matrix is slid through 
the input image matrix to create feature maps for the 
next layer. If an image is denoted by , kernel by , i 
and j are the relative position, indexes of resultant row 
and column are represented by  and , then: 

( )* [ , ] [ , ]. [ , ]
i j

f h q r h i j f q i r j= − −∑∑         (2) 

where f denotes the object, h denotes the kernel, i and j 
denote the relative positions and q and r represents the 
indexes of resultant row and column.After the convo–
lution operation, certain activation functions are over–
lapped to introduce non-linear transformation fol–lowed 
by the max-pooling layers. Max-pooling layers down-
sample the feature map output to make the representation 
approximately invariant to small transitions. The nodes 
after the pooling layers are flattened into a fully con–
nected layer to make predictions with subsequent layers. 
 
2.2  Dense Neural Networks 
 
Dense neural networks (DNN) have fully connected 
linear layers where the result of each node being passed 
through a non-linear activation function. In other words, 
each node of a layer receives an input from the previous 
layers in a densely connected way. The DNN thus adds 
non-linearity in the operation and can approximate 
complex mathematical functions [30]. 
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2.3  Recurrent Neural Networks 
 
The RNN is a widely used ANN in solving problems 
having temporal correlations and those exhibiting tem–
poral dynamic behavior [31]. They connect the hidden 
layer with the former ones in a circular way. These 
recurrent units have the ability to save the historical 
information from the sequence, thusmaking them fit for 
problems whose output depends on the previous values. 
Unlike conventional ANN, the overfitting issues can be 
prevented by dropping out or randomly ignoring a 
certain proportion of neurons from the neural network 
where corresponding weights are not updated during the 
forward or backward pass of the training phase [32,33]. 
 
2.4  Long Short Term Memory Network 
 
This particular approach was developed to overcome the 
drawbacks of simple RNN like vanishing gradient and 
exploding gradient problems [34, 35]. Here, theset of 
recurrently connected memory blocks are defined inter-
ms of memory cells and other resembling units such as 
multiplicative units like forget, input, and out gates with 
different functionality [34, 36]. Bidirectional LSTM 
emphasizes learning the most out of the input sequence 
by unrolling the network in both forward and backward 
directions. It is commonly used for sequence prediction 
and sequence generation. The CNN-LSTM uses a CNN 
layer where the input sequence helps in feature extrac-
tion and the LSTM layer accounts for interpretation and 
sequence prediction based on time [37]. 
 
3. STUDY AREA 
 
The state of Tamil Nadu (TN) is situated in the sout–
hernmost region of the Indian peninsula. In this study, 
we have considered five stations, namely, Chennai, 
Coimbatore, Madurai, Salem, and Tirunelveli.  

 
Figure 1. Map of Tamil Nadu showing the chosen five cities 
(marked with boxes) 

The geographical location of these stations in the 
state is provided in Figure 1.   

Table 1 provides the geographical details of the 
latitude, longitude, and altitude of the chosen stations. 
The table also provides the mean wind speed data col–
lected from MERRA -2 reanalysis database (NASA) 
over a long-term duration at each site location.Hourly 
mean wind speed data recorded at a height of 50m 
above ground level from Jan 1980 to May 2018 was 
considered in this study. It is to be noted that the hourly 
wind speed data has been averaged to obtain the daily 
wind speed data for the purpose of calculating the wind 
power density values. 

 
4. WIND POWER DENSITY ESTIMATION  
 
While the term wind speed indicates the average velo–
city of movement of the wind, the wind power density 
refers to the capacity of the wind to generate power 
from a given mass of air for a given region [38]. Wind 
power density estimation is essential to assess the reli–
able wind resource potential.The wind power can be 
computed from the measured wind speed values 
usingthe probability distribution function. The following 
expression can be used to calculate the wind power 
density based on the Weibull probability density func–
tion [39]: 

3
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where ρ is the density of air [ML-3] andv is the wind 
speed [LT-1]. The expression forfw(v)is: 
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where v is the wind speed [LT-1], k is theshape factor [-
]and cis the scale factor [LT-1]. The values of k and c are 
further determined using the standard deviation method 
and power density method.  
 
4.1  Standard deviation method 
 
The values of k and c are estimated using the following 
equations. 

1.086
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where  v  and σ are the mean wind speed and standard 
deviation of the wind speed. The Γ(x) is the gamma 
function which is commonly used in various calculus 
models including in probability distribution integrals as 
defined by the following equation. 
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Table 1. Topographical details of the chosen stations 

S.No Location Latitude 
(°N) 

Longitude 
(°E) 

Altitude 
(m) 

 
Average 

wind speed 
(m/s) 

Average wind 
power density 

(W/m2) by standard 
deviation method 

Average wind 
power density 

(W/m2) by 
power density 

method 
1 Chennai 13.08 80.27 13 5.40 383.85 390.42 
2 Coimbatore 11.01 76.95 420 4.70 231.16 230.15 
3 Madurai 9.92 78.11 137 4.53 241.31 240.09 
4 Salem 11.66 78.14 286 4.73 246.12 244.70 
5 Tirunelveli 8.71 77.75 41 5.60 377.37 375.54 

 
4.2  Power density method 
 
To estimate the shape and scale factors via the power 
density method, the energy pattern factor(Epf) has to be 
calculated. The Epf is a parameter defined by Akdag and 
Dinler [40]:  

3

3

3(1 )
 

1(1 )
pf

v kE
v

k

Γ +
= =

Γ +
  (8) 

where 3v  is the mean of the cube of wind speed and 3v  
is the cube of mean speed. The scale factor is computed 
using Eqn. (4) and the shape factor is computed as per 
the equation given below [39]: 

2
3.691

pf
k

E
= +   (9) 

The wind power density values thus calculated based on 
the above methods for the chosen five cities has been 
presented in Table 1. 
 
5. EXPERIMENTAL SETUP 

 

The experiments were performed on Google Cola–
boratory which included the following specifica–tions: 

• Intel Xeon @2.20GHz with two cores. 
• Nvidia Tesla P100 GPU 
• 13 GB RAM 

For training and inferencing of the proposed appro–
ach,the popular software library, Tensorflow is used 
along with the Keras framework. For preprocessing and 
normalization of the dataset, functions from the Scikit 
learn are used. All the codes are written in Python3. 

 
6.  PROPOSED MODELLING APPROACH 
 
In this study, five different models are evaluated 
involving four kinds of ANNs: Convolutional Neural 
Network, Dense Neural Network, Recurrent Neural 
Network, Bidirectional LSTM network, and the other 
model is linear regression (ARIMA). We have compa–
red the performance of the traditional statistical model 
against the neural networks and linear regression for the 
prediction of wind power density for the selected 
stations. The schematic diagram of our proposed met–
hodology is present in Figure 2 with systematic steps 
required for the analysis. 

 
Figure 2. Schematic representation of the proposed methodology for the prediction of wind power density 
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The modeling framework consists of loading the data–
set, pre-processing, splitting the dataset into training and 
test, windowed dataset, building model, train model, 
forecast, and error calculation. The structure of our 
proposed methodology may be described as: 
• Loading the dataset: We have considered five stations, 

namely, Chennai, Coimbatore, Madurai, Salem, and 
Tirunelveli from the time period of January 1980 to 
May 2018 (more than 39 years) with hourly data.            

• Data cleaning and Pre-processing: Data cleaning is 
performed to remove noise from the input dataset after 
which it is converted from hourly data to daily data. 

• Splitting the dataset: The given datasets were split 
into training data (from January 1980 to December 
2009, i.e. about 78.097%) and test data (from January 
2010 to May 2018, i.e. 21.903%). 

• Preparation of windowed dataset: By windowing, the 
sequence of time series data was restructured into a 
supervised learning problem. In this context, we have 
used 30 previous time step (window size) entries as an 
input vector (X) and the next entry (i.e. 31st time step) 
as the output (Y). Thus, the windowed dataset is defi–
ned using the parameters window size as 30 and batch 
size as 32. 

 
6.1 Feeding inputs to the models 
 
A sequential modeling approach is applied to the given 
data in which the hyper-parameters required to train the 
model were identified as stochastic gradient descent as 
an optimizer with a momentum value of 0.9. The CNN-
LSTM Conv1D has used32 filters with kernel size as 3 
and number of strides as 1. The details of the remaining 
parameters are provided in Table 2. 

The next stage consists of training the model for a 
fixed number of epochs until the loss saturates to a 
minimum value. Here we have used 100 epochs for 
Bidirectional LSTM and simple regression, whereas in 
simple RNN, Dense Neural network, and CNN-LSTM, 
we have used 200 epochs to train the model. 

During the final stage of data processing, the daily 
expected results of wind power density were forecasted 
for th period January 2010 to May 2018 using the 

trained model. Further, the accuracy of model predic-
tions were compared using the available data with the 
predicted data using statistical error estimates. 
 
7. RESULTS AND DISCUSSION 
 
The different network architecture and structures are used 
in this research to compare the forecasting accuracy based 
on the calculated error. Statistically, there are various exp–
ressions for representing the error values depending on the 
condition of the data type and required data analysis. The 
Mean Square Error (MSE), Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), Index of Agre–
ement (IA), Root Mean Square Error (RMSE), and Sym–
metric Mean Absolute Percentage Error (SMAPE) were 
used in this studyto evaluate the prediction accuracy of 
wind power density. Mathematically, they are defined as: 
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where K represents the number of samples, actual
mX  

denotes actual wind power density, predicted
mX  repre–

sents forecasted wind power density, predicted
mX  refers 

to the average of forecast values and actual
mX  refers to 

the average of original values and  0≤IA≤ 1. 

Table 2. Details of the parameter used by the different NN models 
NN Models Neuron Loss Function Learning rate 

2->Bidirectional LSTM  | 1->Dense 64+64+1 Mean Square Error        0.000001 
Simple linear regression -- Mean Square Error               0.000001 

2->SimpleRNN | 1->dense  40+40+1 Huber loss       0.00001 
2->Dense   10+10+1 Mean Square Error 0.000008  

1->Conv1D|2->LSTM|1->dense 32+32+32+1 Huber loss 0.00001 

Table 3. Performance evaluation measures for different models on Chennai station 

Measures 
/Models  

Simple Linear 
Regression 

2-Dense 
network 

1-Conv-2-
LSTM 

2-Simple-
RNN 

2-Bidirectional –
LSTM 

IA 0.7962 0.768 0.8141 0.7958 0.8139 
MAE 1.1201 1.0808 1.0661 1.1491 1.0301 

MAPE 36.0432 36.7967 31.2511 30.9505 36.0493 
MSE 2.0809 1.8847 1.883 2.16 1.7858 

RMSE 1.4425 1.3728 1.3722 1.4697 1.3364 
SMAPE 0.2722 0.2633 0.2641 0.2881 0.2507 
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Table 4. Performance evaluation measures for different models on Coimbatore station 

Measures 
/Models  

Simple Linear 
Regression 

2-Dense 
network 

1-Conv-
2-LSTM 

2-Simple-
RNN 

2-Bidirectional –
LSTM 

IA 0.8271 0.8819 0.8834 0.7713 0.8838 
MAE 0.9515 0.7661 0.7558 1.1583 0.7665 

MAPE 34.0429 28.7142 27.759 49.4754 28.5666 
MSE 1.5218 1.0002 0.9836 1.9736 0.9921 

RMSE 1.2336 1.0001 0.9917 1.4048 0.9961 
SMAPE 0.2756 0.2228 0.2199 0.3104 0.222 

Table 5. Performance evaluation measures for different models on Madurai station 

Measures 
/Models  

Simple Linear 
Regression 

2-Dense 
network 

1-Conv-2-
LSTM 

2-Simple-
RNN 

2-Bidirectional -
LSTM 

IA 0.7163 0.6264 0.7836 0.7157 0.7863 
MAE 1.0455 1.5436 0.8945 1.0343 0.8840 

MAPE 45.653 68.577 36.8507 47.606 41.6159 
MSE 1.8207 3.6575 1.3417 1.8886 1.3201 

RMSE 1.3493 1.9125 1.1583 1.3743 1.1489 
SMAPE 0.3154 0.3955 0.2773 0.3238 0.2705 

Table 6. Performance evaluation measures for different models on Salem station 

Measures 
/Models  

Simple Linear 
Regression 

2-Dense 
network 

1-Conv-2-
LSTM 

2-Simple-
RNN 

2-Bidirectional -
LSTM 

IA 0.7547 0.8106 0.8186 0.6042 0.8150 
MAE 0.8999 0.7478 0.7475 1.0530 0.7483 

MAPE 37.4874 33.0435 31.5056 48.2932 32.4613 
MSE 1.3479 0.9642 0.9634 1.8318 0.9643 

RMSE 1.1610 0.9820 0.9816 1.3534 0.9820 
SMAPE 0.2873 0.2398 0.2422 0.3225 0.2402 

Table 7. Performance evaluation measures for different models on Tirunelveli station 

Measures 
/Models  

Simple Linear 
Regression 

2-Dense 
network 

1-Conv-2-
LSTM 

2-Simple-
RNN 

2-Bidirectional -
LSTM 

IA 0.8244 0.8668 0.8718 0.8405 0.8591 
MAE 1.0621 0.8758 0.8665 1.0365 0.8968 

MAPE 33.254 29.6367 29.1285 36.2961 28.3281 
MSE 1.9082 1.3371 1.3019 1.8678 1.3697 

RMSE 1.3814 1.1563 1.1410 1.3667 1.1704 
SMAPE 0.2509 0.2071 0.2054 0.2562 0.2116 

Table 8. Average rank based on performance evaluation measures for all models on all five stations 

Measures 
/Models 

Simple Linear 
Regression 

2-Dense 
network 

1-Conv-
2-LSTM 

2-Simple-
RNN 

2-Bidirectional -
LSTM 

IA 3.8 3.6 1.4 4.4 1.8 
MAE 4.2 2.8 1.4 4.4 2.2 

MAPE 3.6 3.8 1.4 4 2.2 
MSE 4 3 1.4 4.6 2 

RMSE 4 3.1 1.4 4.6 1.9 
SMAPE 3.8 2.6 2 4.8 1.8 

 
The performance evaluation measures for different 

models for the selected stations are shown in tables 
(Tables 3-7). It is evolved to identify two significant 
metrics namely, Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) for measuring the deviation 
of the predicted value from the actual value. This 
highlights the overall accuracy in the prediction of wind 
power density based on the acquired training experience 
imparted by the selected algorithms. The highest error 
in prediction was, however, observed with MAPE for all 
the stations due to the fact that MAPE values can reach 
extremes if the unsigned actual values are small. 
Further, an overall comparison of the performance eva–
luation measures for all models applied for all stations is 
comprehended in Table 8. From the results, we can 
clearly observe the robustness of the 1->Conv|2->LSTM 
network model in all the time-series data considered. It 

is inferred that restructuring the time-series problem to a 
supervised learning problem using a sliding window 
concept has facilitated the application of many 
supervised neural network algorithms and comparisons 
between them. The 1->Conv|2->LSTM outperformed all 
other models on a 6/7 ratio for themetrics considered. 
The specific advantages of this model are attributed to 
the robustness in addressing multiple issues simul–
taneously due to the hybrid configuration. 

Next to 1->Conv|2->LSTM, Bidirectional LSTM 
performed satisfactorily in the prediction of the time-
series data forthe selectedlocations. We hypothesize 
about the robustness of the 1->Conv|2->LSTM that 
convolutional layers cause a denoising effect in the time 
series and the LSTM layer, being one of the superior 
variants of RNN, provides better sequence-dependent 
handling and thus achieves promising results. This also 
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supports the notion that the performance of hybrid 
models are superior to the basic NN models, thus 
signifying their flexibility and adaptability in capturing 
different forms of relationships in time series data. 

From the prediction plots (Figures 3-7), it is evident 
that the applied NN variants are sophistically capturing 
the non-linearities present in the given time series data. 
There is an overall similarity in capturing the generic 
trend of variation in average wind power density values 
duringthe selected testing period in all five stations. It is 
also observed that windowing of the dataset has reduced 
the complexity of the model and caused the model to 
better capture the non-linearities. On a rank-wise 
comparison, the two poor-performing models are 
Simple RNN and Simple LR as shown in Table 8. This 
may be because Simple RNNs and their variants have 
loops in their recurrent layers to maintain memory over 
time. Hence it is to be understood that Simple RNNs are 
less powerful in solving problems that require learning 
of long-term temporal dependencies as opposed to the 
LSTMs which have special units for memory in addition 
to standard units therebypreserving long-term 
information. On a similar comparison, the suboptimal 
performance of DNN in the time series dataset come 
from the fact that they cannot detect repetition in time 
series and may produce different results on the same 
input. 

Another important aspect causing the deviation in 
the accuracy of predictions in various modelling app–
roaches is the difference in selectedwindow size. It is 
concomitantly established from the results that the 
window size plays an important role in model 
performance. We have observed that using a window 
size of 30 gives a superior performance instead ofusing 
10 or 20. This can be explained by the monthly perio–
dicity of dataset distribution. It is also important to note 
that the commonly used linear models such as ARIMA 
are incapable of capturing non-linearity in long-term 
time series. Similarly, the results obtained fromARIMA 
and AR models were also not significant and promising 
towards efficient prediction. 

The empirical results obtained for the selected stations 
namely, Chennai, Coimbatore, Madurai, Salem, and 
Tirunelveli in the state of Tamil Nadu emphasizes the 
poor performance of ARIMA and the five models that 
have been presented in this study. A comparison of the 
performance of those five models undoubtedly 
establishes the need to have a comprehensive approach in 
attempting any long-time data for predictive simulation 
studies. The performancesof the Simple RNN and LR 
models arethe least significant among the attempted 
models. The next in the ranking sequence aredense 
network and CNN-LSTM. Hence it can be inferred from 
the present study that the LSTM performance is better for 
the prediction of wind power density among the five 
different ANN-based predictive models. 

 
8. CONCLUSION 

In this study, a prediction model framework is proposed 
using five different neural network models to present and 
compare different forms of relationships in estimating 
wind power density based on 39 years of data from five 
different stations in Tamil Nadu, India. Among the five 
non-linear models used for the forecas–ting, it was found 
that the 1->Conv1D|2->|LSTM->1 dense model 
performed better than other models. The performance of 
simple RNN and linear regression models is poor 
compared to other models considered in this study. The 
accuracy of the prediction was confirmed with the 
ranking of various statistical error measures employed to 
express the estimated error values as an average of the 
individual stations. The pre–sent model is capable of 
forecasting wind speed and power density for other 
offshore locations as well based on the availability of 
climatological and meteorological datasets. Similar 
studies may be performed to forecast the wind power 
density of other stations. In future studies, other models 
like wavelet threshold denoising (WTD), adaptive neuro-
fuzzy inference system (ANFIS), and WTD-RNN-ANFIS 
model can be used for probabilistic wind power 
forecasting. Such studies will ensure the efficiency and 
reliability of different models for wind power forecasting. 

 
Figure 3.  Prediction plot of wind speed data of  considered model in Chennai Dataset from Jan 2018 to June 2018. 
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Figure 4. Prediction plot of wind speed data of  considered model in Coimbatore dataset from Jan 2018 to June 2018. 

 
Figure 5.  Prediction plot of wind speed data of various  model in Madurai Dataset from Jan 2018 to June 2018. 

 
Figure 6. Prediction plot of wind speed data of  considered model in Salem Dataset from Jan 2018 to June 2018. 
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Figure 7.  Prediction plot of wind speed data of various model in Tirunelveli Dataset from Jan 2018 to June 2018. 

NOMENCLATURE 

αk Connection weights (k=0,1,2,3….,m) 

βlk 
Connection weights (k=0,1,2,3….,m, 
l=0,1,2,3,…,n) 

n Number of input nodes 
m Number of hidden nodes 

yt-1 
Input for single hidden layer feedforward 
network 

yt 
Output for single hidden layer 
feedforward network 

f animage 
h kernel 
q Inices of resultant row 

r Indices of resultant column i,j – relative 
positions 

P 
Wind power density based on Weibull 
probability density function ρ – density of 
air in kg/m3 

v Wind speed in ms-1 

fw(v) Expression as per Arslank – shape factor 
c – scale factor (ms-1) 

v  Mean wind speed 
σ Standard deviaiton of the wind speed 
Γ(x) Gamma function 
EPF Parameter defined by Akdag and Dinler 

3v  Mean cube of wind speed 
3v  Cube of mean speed 

K Number of samples 
actual
mX  Actual wind power density 
pred
m

ictedX  Forecast wind power density 

pred
m

ictedX  Average of forecast values 

actual
mX  Average of original values 

ACRONYMS 

PSO Particle Swarm Optimisation                           
NN Neural network 
ICA Imperialistic Competitive Algorithm                

GA Generic algorithm 
AIM Abductory Induction Mechanism                     
PER Persistence 
ANFIS Adaptive Neuro-Fuzzy Inference System   
AWNN Adaptive Wavelet Neural Network           
FFNN Feed-Forward Neural Network                    
SVM Support Vector Machine 
ANN Artificial Neural Network                                 
GP Genetic Programming 
ELM Extreme Learning Machine                            

iTLBO Improved Teaching-Learning-Based 
Optimisation                                                      

RFE Recursive Feature Elimination  
LSTM Long Short Term Memory Network 
TN Tamil Nadu 

NASA National Aeronautics and Space 
Administration                                                  

EFG Enhanced Forget Gate 

MERRA Modern-era Retrospective Analysis for 
Research and Application                                

ARIMA Autoregressive Integrated Moving Average 
DNN Dense Neural network 
RNN Recurrent Neural Network                              
CNN Convolutional Neural Network                         
LR Linear Regression 
DE Differential Evolution 
MSE Mean Square Error 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
IA Index of agreement 
RMSE Root Mean Square Error 
SMAPE Symmetric Mean Absolute Percentage Error 
WTD Wavelet Threshold Denoising 
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КРАТКОРОЧНО ПРЕДВИЂАЊЕ ГУСТИНЕ 

СНАГЕ ВЕТРА КОРИШЋЕЊЕМ  
КОНВОЛУЦИОНЕ LSTM МРЕЖЕ 

 
Д. Гупта, В. Кумар, И. Ајус, М. Васудеван, Н. 

Натараџан 
 

Ефикасно добијање обновљиве енергије из ветра 
зависи од поузданости прорачуна карактеристика 
ветра, оптимизације инсталирања ветропарка и 
радних услова. Предвиђање искоришћавања потен–
цијала енергије ветра није извесно на основу 
варијабилности понашања ветра. Прорачун густине 
снаге ветра на основу емпиријских модела захтева 
накнадну обраду података како би се обезбедила 
тачност и поузданост ирачунавања потенцијала 
ветра. Анализира се поузданост машинског учења 
базираног на вештачким неуронским мрежама у 
предвиђању густине снаге ветра за пет станица у 
држави Тамил Наду у Индији коришћењем пет 
различитих нелинеарних модела. Модели CNN, 
DNN, RNN, LSTM мрежа и линеарна регресија су 
примењени за поређење података за период јан. 
1980 – мај 2018. Резултати показују да је 
перформанса (1->Conv1D\2->LSTM) боља од других 
модела за израчунавање густине снаге ветра са 
минималном грешком (средња апсолутна грешка и 
средња квадратна грешка).      

 

 

 


