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Monitoring the condition of rotating machines is essential for the systems' 
safety, reducing maintenance costs, and increasing reliability. In this 
research, a fault detection system for bearings was developed using the 
vibration analysis technique with the statistical control chart approach. A 
test rig was first designed and constructed; then, various bearing faults, 
such as inner race and outer race faults, were simulated and examined in 
the test rig. After capturing the vibration signals at different bearing health 
conditions, the time-domain signal analysis technique was employed for 
extracting different indicative features.The obtained time domain features 
were then analyzed to find out the most fault-significant feature. Then, only 
one feature was selected to design the control chart for bearing health 
condition monitoring. The cumulative sum control chart (CUSUM was 
utilized since it can detect the small changes in bearing health states. The 
results showed the effectiveness of utilizing this method, and it was found 
that the percentage of the out-of-control points in the event of the 
combined cage and ball fault to the number of tested samples is greater 
than the other fault types.  
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1. INTRODUCTION  
 

Rotating machinesare important for different industries, 
such as oil and gas industries, construction, and power 
plant industries.A catastrophic failure of rotating 
machinery would have a huge effect on the manu–
facturing sector. As the malfunction progresses, the 
machine's energy consumption will increase, while its 
performance will decrease.Gradually, followed by a 
sudden failure, will not only decrease production vo–
lume but will also result in increased operating costs for 
the reconstruction, as well as wasting time for the 
employees as they wait.On a larger scale, continued use 
of a defective machine could result in physical injury to 
the person operating the machine, and in the worst-case 
scenario, death [1]. A rolling bearing part is a critical 
com–ponent in engineering machinery, and even minor 
damage can result in unexpected production halts or 
industrial accidents.Bearing faults can occur for various 
reasons, including heavy loads that are unstable and 
inadequate lubrication[2]. As a result, early identifi-
cation and diagnosis of faults will greatly reduce the im-
pact of defective machinery. It is highly cost-effective, 
reducing output losses and increasing productivity while 
also improving human and environmental protection[1]. 
Acoustic analysis, temperature control, oil analysis, 
stator current, and vibration analysis can all be used to 
detect bearing defects[3]. While vibration analysis is 

better for detecting mechanical faults, current analysis 
can also be used to detect mechanical defects because 
induction motor current consumption is changed by 
mechanical efforts and vibrational patterns in rotating 
machines. The use of acoustic emission signals is the 
subject of sound analysis[4]. Analysis of vibrations 
helps track the machine's operating conditions and 
compare them based on the analysis results in normal 
operating conditions to see if there is a problem. This 
will help prevent disasters and identify faults early on. 
The vibration control theory is that all devices generate 
vibration, but the vibration is relatively small when the 
machine/works under normal operating conditions, but 
the vibration amplitude changes when a malfunction 
occurs[5]. 

Vibration analysis is necessary for analyzing 
structures and preventing failure. It contains information 
about the structure'smode shapes and natural 
frequencies, which are widely used for fault detection 
purposes[6-8].Time-domain and frequency-domain 
vibration techniques are used separately or in 
combination for bearing performance analysis. Features 
such as Root Mean Square, Crest Factor, Kurtosis, and 
others are used in the time-domain analysis, whereas the 
Fourier Transform technique is used in the frequency-
domain analysis [9].Also, control charts are a good 
example of a statistical process control system.The 
Shewhart X map is widely used for mean shift detection 
due to its ease of use.The exponentially weighted 
moving average (EWMA) and cumulative sum 
(CUSUM) graphs are commonly used to detect 
relatively minor changes. For detecting divergence 
shifts, the standard deviation (S) and range (R) charts 
are useful[10]. As a result, combining the statistical 
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control chart with artificial intelligence techniques may 
result in a reliable machinery health monitoring system 
that can simultaneously detect and diagnose various 
fault forms[11].  

Therefore, this paper aims to develop a health 
monitoring system to detect and diagnose the most 
common bearing faults using vibration analysis techno-
logy and statistical control diagram approach. To achi-
eve this, a critical review was conducted of recent and 
previous research in bearing health monitoring, desig-
ning, and manufacturing a test platform to conduct the 
required experimental work. After that, a suitable sys-
tem for data acquisition, signal analysis, and feature ext-
raction was developed, and then an appropriate control 
scheme was designed to detect the bearing faults. 

This paper isorganized as follows: The second 
section contains the theoretical aspects behind the 
vibration analysis method, such as the time domain and 
frequency signal analysis, and discusses the theory of 
statistical control charts.In the third section, the design 
and development of the proposed test rigareprovided. 
The developed data acquisition system based on the 
LabVIEW software was also discussed. Section four 
shows the obtained results of this study, including a 
discussion of the most important findings. It also 
discusses the method for selecting the appropriate 
feature for designing and testing the control scheme. 
Finally, the paper is wrapped up in the conclusion 
section, which highlights the main obtained findings. 

 
2. THEORETICAL FOUNDATIONS OF THE 

ANALYSIS  
 
2.1 Vibration Measurement Techniques 

 
Since it is accurate and sensitive to fault intensity, vib-
ration monitoring is the most useful technique. Because 
of varying compliance or defects in bearing compo-
nents, bearings serve as a source of vibration and noise. 
These vibration signals will provide us with details on 
the bearing's state [12].Therefore, the most common 
method for diagnosing rolling element bearing faults is 
vibration monitoring. The commonly followed vibration 
signal analysis techniques can mainly be categorized 
into time-domain, frequency-domain, and time-frequ-
ency domain. 

 
2.2 Time domain technique Analysis  

In general, time-domain analysis is used to track the 
condition of bearings. Root mean square, kurtosis, crest 
factor, skewness, and peak-to-peak are some of the 
statistical parameters utilized in time domain analysis to 
monitor the health of bearings[13]. The feature that is 
selected has a significant effect on pattern recognition 
performance. To detect initial bearing damage, the 
above mentioned time-domain statistical parameters are 
calculated as in the following: 

Peak value ( : It denotes the maximum value of the 
amplitude of the information set. Mathematically, it is 
calculated based on the following equation[3]: 

 ( ) ( ) ( )1/ 2 max minv i iP x x⎡ ⎤= −⎣ ⎦  (1) 

where xi (i = 1, ...,N) is the amplitude at a sampling 
pointiand N is the number of sampling points [14]. 
Root Mean Square (RMS):The RMS is a feature that 
measures the power content in the vibration signature. 
This feature is very effective when detecting an 
imbalance in rotating machinery. The most basic 
approach to measuring defects in the time domain is to 
utilize the RMS approach, which is often not sensitive 
enough to detect fault initiation[15]. 

( )2
1

1 N
ii

RMS X
N =

= ∑  (2) 

Standard deviation:The standard deviation display the 
dispersion of a collection of data with respect to the 
mean, and its magnitude equals the variance's arithmetic 
mean value[2] can be calculated by the following 
equation: 

( )21
1 N

ii
SD X X

N =
= −∑  (3) 

Kurtosis value:It is one of the substantial statistical 
indicators for defect detection in rolling bearings. It is 
especially beneficial in detecting bearing failure, which 
compromises measurement between the insensitive lower 
moments and the over-sensitive higher moments [16]. 
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Crest factor:: It is the ratio of peak value to the RMS 
value of the signal. It represents how extreme the peaks 
are in the datasets. The CF near to 1 represents a lower 
spiky signal. The Crf is calculated based on the fol–
lowing equation [3]: 

Crf = Peak value / RMS value                       (5) 

Skewness: It quantifies the asymmetry behavior of vibra-
tion signals through its probability density function 
(PDF). The Sk is calculated using Equation 6 below [17]. 

( )31
1

1
N

ii
Sk X X

N =
= −

− ∑  (6)               

2.3 Frequency domain techniques 
 
Frequency domain or spectral analysis technique is the 
most widely utilized approach for defect diagnosis in 
bearings. The frequency-domain signal analysis tech-
nique converts the time-domain vibration signals into 
separated frequency components utilizing the fast Fou-
rier transform (FFT) [18, 19]. In the frequency spectrum 
plot, the X-axis represents the frequency, and the Y-axis 
represents the amplitude. Therefore, the frequency-
domain technique can easily detect certain frequency 
components, advantageous over the time-domain tech–
nique [20]. 
 
2.4 Time-frequency domain analysis 
 
The signals produced by defective parts are non-stati–
onary. If the Fourier transform is used to measure the 
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frequency variable of non-stationary signals, the results 
will display the frequency composition averaged over 
the durationof the signal.As a result, the Fourier 
transform cannot accurately characterize the charac–
teristics of a transient signal; however, because of its 
ability to represent signals in both the frequency and 
time domains, time-frequency analysis has been inves-
tigated and applied for machinery fault diagnosis. 
Because of this one-of-a-kind feature, time-frequency 
analysis techniques are appropriate for non-stationary 
signals. Furthermore, time-frequency approaches may 
provide useful information about energy distribution 
across frequency bands.A variety of time-frequency 
analysis techniques, such as short-time Fourier trans-
form (STFT), wavelet transform (WT), wavelet packet 
transform (WPT), Hilbert-Huang transform (HHT), etc., 
have been utilized to identify and diagnose faults [21]. 
 
2.5 Statistical Control Charting Concept 
 
The control chart is the most significant tool that helps to 
know whether a process is in control or not. The design 
of control charts depends firstly on identifying the 
distribution of the process characteristics followed by 
monitoring the stability of its parameters. In general, the 
control chart consists of three important lines: the 
centerline (CL), the upper control limit (UCL), and the 
lower control limit (LCL). These limits are selected such 
that almost all the information will lie between these 
limits as long as the process remains statistically in 
control. The power of a control chart is defined as the 
probability of detecting an out-of-control signal, while the 
ARL represents the average number of samples wanted to 
signal an out-of-control situation in the process. 

There are three major classifications of charts to 
monitor the health conditions, namely, Shewhart-type 
control charts, cumulative sum (CUSUM) charts, and 
the exponentially weighted moving average (EWMA) 
charts [22]. The Shewhart-type control charts are highly 
suitable for detecting large shifts, while CUSUM and 
EWMA charts are effective for smaller shifts in the 
parameters of interest. In addition, the CUSUM charts 
can efficiently address the small shift detection problem 
[22-24]. 
 
2.6 Cumulative Sum (Cusum) Charts 

 
CUSUM chart is a graphical method that depends on 
sequential monitoring of cumulative performance over 
time, where it depends on sequential procedures and lets 
timely identification of deterioration in performance 
[25]. CUSUM control charts were first suggested by 
Page in 1954 and studied by many authors afterward 
[26]. This chart relies on current data as the Shewhart 
control chart and utilizesthe past data to update their 
plotting statistics. This feature assists the control charts 
in detecting continuous small and medium shifts in the 
process parameters [27]. The CUSUM chart plots the 
cumulative sums of deviations of sample values from 
the target value.The target value is user-selected. The 
mean value can be taken for the target value. 

There are two general approaches to devising the 
control limits for the CUSUM control chart. The older 

method is the V-mask procedure, and the other method 
is the tabular procedure. The tabular procedure is 
particularly attractive when the CUSUM is implemented 
on a computer. So, in this research, the tabular approach 
is selected to design the CUSUM chart. To apply this 
method, we need to calculate values SH and SL, which 
arethe upper one-sided CUSUM and the lower one-
sided CUSUM, respectively.These quantities are calcu-
lated from [28]: 

( ) ( ) ( )0 1max 0,H i H iS i x K Sμ −
⎡ ⎤= − + +⎣ ⎦  (7) 

( ) ( ) ( )0 1max 0,L i L iS i x K Sμ −
⎡ ⎤= − − + +⎣ ⎦   (8) 

where ix  is the measured value; the initial values of 
SH(i) and SL(i) are zeros.K is called the reference value, 
which is ordinarily selected about halfway between the 
target  and the value of the mean corresponding to the 
out-of-control state μ1 = μ0 + Δ. This means thatK is 
about one-half the magnitude of the shift that we are 
interested in: 

2
SK δ ×

=   (9) 

where δ = 0.5, and S is the standard deviation. Hence, 
the upper control limit (UCL) and lower control limit 
(LCL) can be calculated using the following equations: 

UCL h S= ×    (10) 

LCL h S= − ×    (11) 

where h is a value usually taken between 4 and 5[29]. 
Notice that SH(i) and SL(i) accumulate the deviations 
from the target value greater than K, with both 
quantities reset to zero upon becoming negative. If 
either SH(i) or SL(i) exceeds the constant UCL or LCL, 
the process is considered out of control. The interval 
betweenthe UCL and LCL is usually called the decision 
interval [29-31]. 
 
3. EXPERIMENTAL WORK 
 
This section details the experimental work carried out in 
this study, including the test rig design, fault simulation, 
data acquisition method, and feature extraction. It 
discusses the different conducted experiments consi-
dering various working conditions on the designed test 
rig when different bearing faults are simulated.  
 
3.1 Test Rig Fabrication 
 
The objective of the fabricated test rig is to create a full-
scale platform test rig to conduct the needed tests on the 
bearings at different health states. The main components 
of this test rig are the steel frame,1 HP (0.75 kW) AC 
motor, pulleys (driver fixed on motor and driven fixed 
on a shaft by key and seal), a belt, and a mild steel shaft 
of 20 mm diameter mounted on two identical deep 
groove ball bearings that are fixed in two housing made 
of cast iron. The details of the used ball bearing are 
presented in Table 1. 

The load was applied using a simple mechanism that 
makes the bearing housing moving on the frame utilizing 
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a steel plate (lever) designed to be placed between the 
bearing housing and the rig's base through a slot on the 
frame. This mechanism can pull the bearing housing and 
the shaft with the pulley and the belt, and thus a force will 
be imposed on the shaft. This force can be changed by 
changing the pulling forces via the tension rod to easily 
pulling the system, as shown in Figure 1. To put more 
flexibility in the developed test rig, a slot was made under 
the motor to make it easy to move linearly to increase or 
decrease the load on the shaft [32]. 
Table 1:  Specification of 6304 ball bearing 

Number of balls (Nb) 7 
Bore diameter 20 (mm) 
Outside diameter 52 (mm) 
Bearing contact angle  0 

 

 
Figure 1. Solidwork model of the proposed test rig 

Keys were used for fixing the pulleys on the motor's 
shaft and the bearings' (driven) shaft. A key is a steel 
part that connects a rotating machine element to its 
shaft. A key keeps the two pieces from rotating relative 
to each other, allowing torque transmission to occur. 
Both the shaft and rotating parts (pulleys) must have a 
keyway and a keyseat for a key to work effectively. In 
most cases, a keyseat refers to a groove or pocket on a 
shaft, while a keyway refers to a slot in a hub where the 
key fits. A keyed joint is the name given to the entire 
configuration.Also, to give the structure stability when 
taking the readings and preventing the generation of 
unwanted vibrations, a U-section channel of (6 mm) 
thickness was chosen because it is heavy and stabilizes 
the structure. In addition, four rubber pieces have been 
placed under the structure to provide stability to the 
system. The used induction motor is of fixed speed type; 
however, to simulate different working speeds on the 
system, a variable frequency drive (VFD) of type 
N700E inverter from Hyundai was employed to control 
the rotation speed.Bearing vibration was measured by 
fixing a MEMS-type accelerometer on the left bearing 
using a rectangular steel adapter. The accelerometer was 
fastened on the adapter using screws. Also, to measure 
the velocity of the shaft, a laser tachometer was utilized. 
 
3.2 Bearing Fault Simulation 
 
Four fault types are simulated in the bearing: inner race 
fault, outer race fault, combined cage and ball fault and 
combined inner and outer race fault. The faults are pro-
duced using the electrical discharge machining (EDM) 
technique [33]. The fault's diameter of the outer and in-

ner races was 3.2 mm. This was done using a copper 
electrode with a diameter of 3.2 mm installed vertically 
in the machine to make the malfunction on the outer 
race, while the fault in the inner race was made by 
turning theelectrode end by an angle of 90, as shown in 
Figure 2. 

 
Figure 2. Inner race fault simulation method 

The purpose of these faults is to investigate the 
vibration behavior of bearings when various faults are 
developed in one of their parts throughout comparing 
the faulty conditions with the health condition. Figure 3. 
shows the four faulty bearings. 

 
Figure 3. Types of the simulated faults (a) Inner race fault 
(b) Outer race fault (c) Combined inner and outer race 
fault(d) Combined cage and ball 

Table 2. The conducted experimental tests on the bearing 

load Healthy 
bearing 

Inner 
race 
fault 

Outer 
race 
fault 

Combined 
cage and 
ball fault 

Combined 
inner and 
outer race 
fault 

25Kg 
1000 RPM 
1500 RPM 
2000 RPM 

50Kg 
1000 RPM 
1500 RPM 
2000 RPM 

 
An increase in vibration amplitude occurs when the 

rolling element (ball) strikes the induced fault leading 
toa discontinuity in the emitted vibration signals. To 
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study the effect of these faults utilizing vibration ana-
lysis, the results from 30 conducted experiments on the 
developed test rig, considering various rotating speeds 
and different loading conditions, were investigated. The 
performed 30 test scenarios are shown in Table 2. 

 
3.3  The Developed Data AcquisitionSystem 
 
In order to monitor the working condition of the under 
investigation bearing, the vibration signals have to be 
captured and analyzed to find out if there is something 
abnormal in its health or not. Figure 4. shows the deve-
loped data acquisition system for vibration signal captu-
ring using an accelerometer type ADXL335, which is a 
MEMS type sensor [34]. 

 
Figure 4. A schematic diagram for the developed data 
acquisition system 

The obtained signals are then transferred to a computer 
that contains a developed LabView program, which ana-
lyses these signals and extracts the vital features from 
them. Finally, the applied load on the system can be 
measured using a load cell sensor connected directly to 
a Digital Panel Meter to display the amount of force. 
 
3.4 Test rig operation 
 
After installing the acceleration sensor on the monitored 
bearing, it is interfaced to the data acquisition system 
connected to the computer connected to the data 
acquisition. Next, the load cell is installed in its place, 
as shown in Figure 5. and connected to the digital panel 
meter that shows the tension readings directly and after 
running the electrical motor.  

 
Figure 5. Test rig final set-up 

The motor is connected to the AC drive, connected 
to the electrical socket, for speed variation. Finally, the 

device is started at the specified speed with fixed 
tension on the specified shaft. These steps are repeated 
when changing the simulated ball-bearing fault. The 
accelerometer readings are taken continuously using the 
developed LabVIEW program. 

 
4. RESULTS AND DISCUSSION 
 
Vibration signal analysis represents an effective 
technique that can be used for load variation and fault 
detection. However, in this study, five different bearing 
health states (healthy, inner race fault, outer race fault, 
combined inner and outer fault, and combined cage and 
ball fault) have been considered. Vibration signal cap-
turing was conducted utilizing the developed data acqui-
sition. Nevertheless, before data capturing when bearing 
fault was presented, the test rig was run for a short time 
to permit the rotating system to settle dynamically. Dif-
ferent time domain features were then calculated based 
on the theoretical equations that were discussed in 
section two. In the experimental work, the developed 
test rig was run at different operation/health conditions. 
The sampling frequency was taken equal to 1500 Hz, 
and the acquired number of samples was 500 samples. 
Two thousand five hundred thousand samples of the 
time-domain signal were taken at each experiment.  
After that, the captured time-domain signals are ana-
lyzed, then different features were extracted, and the 
important ones were selected. Based on the most signi-
ficant selected features, the control charts are designed 
and then tested.Figure 6.shows the followed main steps 
in this research for bearing fault detection. 

 
Figure 6. Flowchart depicting the proposed stage of fault 
detection 

4.1  Captured vibration signals 
 

To investigate the effect of loading conditions on the 
vibration signal variation when the bearing is healthy 
and then faulty (inner, outer race, combined inner and 
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outer, and ball and cage faults), the test rig was operated 
at a fixed rotating speed while the applied load is 
increased gradually. The captured signals are presented 
in Figure 7, which shows a slight increase in the 
vibration amplitude when increasing the applied load. 

 
Figure 7. Time-domain signals of the five bearing's health 
states at 1500 rpm with different applied loads 

The reason is that the increase in applied load puts a 
load on the system, causing load on the bearing, which 
leads to an increase in vibration amplitude. As a result, 
the combined fault (ball and cage) is highly affected 
than the other types of faults. It may be because the ball 
and cage fault leads to a higher vibration amplitude, and 
thus this type of damages is more dangerous than the 
other types. 
 
4.2  Feature extraction 
 
This section will analyze and discuss the effect of 
different loading conditions and extract statistical 
feature sets from the captured time-domain signals 
previously obtained from the experimental work. 
However, in order to choose the most fault-sensitive 
feature and use it later in designing the control chart, the 
root mean square (RMS), standard deviation (SD), 
kurtosis (Kv), skewness (Sk), and crest factor (Crf)  were 
extracted for each loading condition and in the healthy 
state and compared with the features of the faulty state, 
as shown in the following figures. 

Figure 8. to Figure 12.show the values of RMS, SD, 
Crf, Kv and Sk for the captured current signal after being 
divided into sub-signals. In these figures, the X-axis 
represents the order of the data sample (sample no.), and 
Y-axis represents their values. However, these figures 
can be noted that the calculated time domain features 
are altered as the difference occurred in the operation 
condition, such as changing the speed or the load. 

Furthermore, the amplitudes of the features are less 
when the bearing is healthy, while when the faults are 
simulated, the amplitudes get greater. This is because, in 
the presence of a fault, the vibration level becomes 
significant as when the inner race is rotated with the 
shaft, the ball collides with the simulated damage and 
thus produces high vibration amplitudes. It is also 
observed that the combined fault case (ball and cage) is 
more sensitive than other defects. 

Figure 8 shows that when the applied load is inc-
reased for the same rotation speed, the RMS amplitude 
increases due to the existence of the faults. This can be 
attributed to the fact that as the fault severity increases, 
the vibration amplitude increases. This increase beco-
mes higher as the applied load increases; this leads to an 
increase in the signal's energy content, indicated by the 
RMS values. However, the significant increase in the 
RMS values is in the case of combined fault. 

 
Figure 8. Variation of RMS with the applied load 

Figure 9 indicates an increase in the values of the 
standard deviation feature for both healthy and faulty 
bearings as the applied load increases with the fixed 
rotation speed. Also, the combined fault case shows the 
highest standard deviation values than others. 

In Figure 10, it can be observed that the kurtosis 
values give a clear indication of the fault intensity. The 
highest kurtosis values can be noticed for the combined 
fault cases in both loading conditions while the other 
fault cases come after. However, the kurtosis values for 
the healthy case are about three, which correctly 
indicating the system is healthy, as reported in many 
references [17]. 

Skewness is a statistical indicator of asymmetry in 
which the curve develops in a skewed manner. The 
graph can be skewed on one hand or the other. The 
value of skewness can be both positive and negative [1]. 
In terms of the skewness values that are depicted in 
Figure 11, it can be observed that the skewness patterns 
for the five bearing health states are overlapping, and 
there is not any useful information that can be gained 
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from them. Therefore, it can be concluded that the 
skewness feature is not highly affected by fault; thus, it 
can be ignored. 

Figure 9. Variation of standard deviation with the applied 
load 

 

 
Figure 10. Variation of kurtosis with applied load 

Figure 12 shows fast changes in the crest factor 
values for the different bearing health conditions. 
Hence, it decreases when the applied load increases. 
This can be attributed to an increase in the RMS values 
and a decrease in the peak values used to calculate the 
crest factor where the peak is in the numerator, and 
RMS is in the denominator, as mentioned previouslyin 
Equation 5.As a result, the crest factor is the highest in 
the combined fault cases in both loading conditions. 

 
Figure 11. Variation of skewness with applied load 

 
Figure 12. Variation of Crest Factor with Applied Load 

In general, time-domain statistical features can 
represent mechanical health conditions from various 
perspectives since they can compensate for each other. 
On the other hand, each indicator can contain fault 
information in various fault harshness levels even though 
many features will mimic the changes in faults to some 
degree. As a result, it is recommended that more features 
be computed to diagnose rotating machinery faults 
effectively.However, time-domain signal analysis of 
vibration signals has limitations in terms of sensitivity 
and fault prediction accuracy. Therefore, combining the 
time domain features with the statistical control chart will 
improve the accuracy of monitoring and detecting faults 
at their early stages [3]. 
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4.3 Feature selection 
 
To design an appropriate control chart, a suitable feature 
that easily clarifies the machine's health condition must 
be selected. However, after analyzing the five obtained 
features from the time-domain signals, it was observed 
that the standard deviation feature is the most sensitive 
one. It clearly signifies the occurrence of faults at the 
different loading conditions. Thus, it is chosen to design 
the control chart and then analyze and test its capability 
for bearing fault detection. 
 
4.4 Control chart design using CUSUM tabular 

method 
 
The control chart is designed based on the standard 
deviation feature of the health-bearing case using 
Minitab software. For each of the previously considered 
operation speeds, a control chart has been designed. The 
obtained standard deviation data set is taken to the 
Minitab program to calculate their standard deviation 
and the target value, equal to the mean of the standard 
deviation values. In order to design the limits of the 
control chart, the constant of Equation 10 was chosen 
equal to 5 multiplied by the value of the standard 
deviation [29-31]. 

 
Figure 13. CUSUM control chart for healthy bearing: (A) 
1500 rpm with 25 Kg applied load (B) 1500 rpm with 50 Kg 
applied load 

The software draws the chart after taking the 
required information, as shown in Figure 13. First, it 
draws upper one-sided CUSUM represented by the blue 
color and lower one-sided CUSUM represented by the 
green color. Then, another three important lines are 
drawn, represented by two dashed red lines, which 
indicate the control chart's limits, and a central black 

line indicating the target line. In Figure 13, it can be 
noticed that all points of the healthy state are lying 
between the upper control limit (UCL) and lower 
control limit (LCL), indicating that the bearing is 
healthy and not out of control. However, it can be 
noticed that the control limits are increased as the 
rotating speed increased when the applied load is 
constant. Also, the same happens when the applied load 
increases at a constant rotating speed. This is because 
the amplitude of the standard deviation increases when 
the load conditions are increased. Hence, this chart can 
help technicians in charge of machine health monitoring 
easily identify if the bearing is under control or not at 
different operating conditions. 
 
4.5 Control Chart Testing 
 
As discussed previously, to detect the faults at their early 
stages to avoid catastrophic damages and verify if the 
designed control chart works properly or not, the same 
feature used in designing the control chart is used to test 
it. The standard deviation features extracted from the 
vibration signals of bearing with different fault types are 
utilized in this step. The faults include the inner race 
fault, outer race fault, and combined faults. The standard 
deviation features for each fault condition are transferred 
to the Minitab program, enter the target that which equals 
the mean for the readings taken and enter the standard 
deviation of the total readings of the healthy status state 
that were designed for the same rotation speed and load 
applied on the faulty. This step is repeated every time to 
test all defective health conditions taken in proven 
conditions.It is considered that the system is under 
control if all the taken and drawn standard deviation 
features are within the control limits. However, it was 
noted that all the considered readings were lying within 
the control limits for healthy bearing. 

Figures 14 and 15show that the process is out of 
control due to the appearance of some points that cross 
the allowed control limits, which are expressed by the 
red color. However, in the case of inner race defect and 
combined cage and ball defect, the out-of-control points' 
values decrease as the rotation speed increases with 
constant applied load and vice versa. This is due to 
when the speed increases, the value of control limits 
increases too. On the other hand, in the case of the outer 
race defect and the combined inner and outer race 
defect, the number of points emerging from the control 
limits increased as the rotation speed increased with 
constant applied load and vise versa. 

Figures 14 and 15 for the combined cage and ball 
fault show that this fault is one of the most out-of-control 
cases, and the defect can be easily detected. Where it was 
found that the ratio of the peaks that were calculated at 
rotation speed 1500 rpm and applied load 25 kg between 
the cumulative sum control chart for the combined defect 
of the ball and the cage from the peak of the fault in the 
case of the inner race is equal to 72.6% and its ratio to the 
peak of the outer race fault is equal to 85.6% and also its 
ratio for the inner and outer compound defect is equal to 
80.1%.  The reason can be attributed to that if the inner or 
outer race fault (or both are faulty), the ball will hit the 
made defect every time it passes over it. However, when 
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the ball itself is defected and also the cage, this means a 
complete bearing failure because the defect in the ball 
during the entire rotation period is hitting the inner and 
outer races of the bearing, leading to increasing the 
feature amplitude and hence significantly increasing the 
upper and lower cumulative sum in the control chart. 
Thus, the bearing damage is considered very severe; 
therefore, it can be easily identified. 

 

 

 
Figure 14. CUSUM control chart for faulty bearing at 1500 
rpm and 25 Kg applied load: (A) inner race faulty (B) outer 
race faulty (C) inner and outer race faulty (D) cage and ball 
faulty. 

 

 

 
Figure 15. CUSUM control chart for faulty bearing at 1500 
rpm and 50 Kg applied load: (A) inner race faulty (B) outer 
race faulty (C) inner and outer race faulty (D) cage and ball 
faulty 

It can be noticed in Figure 15 that the out-of-control 
points due to the inner race defect (A) are having higher 
amplitudes than the points that are related to the outer 
race defect. The reason for this is that although the size of 
the inner raceis smaller than the size of the outer race, the 



FME Transactions VOL. 49, No 3, 2021 ▪ 693
 

inner race always rotates with the shaft meaning that the 
defect is continuously hitting the balls. Thus, its vibration 
amplitude will be higher, so the feature's amplitudes 
increase, increasing the upper cumulative sum. Never-
theless, when the combined inner and outer race fault 
happens, the number of points that are out of control will 
be more because it contains two faults at the same time. 

 
5. CONCLUSION  
 
In this research, a fault detection system for bearings 
was developed based on features extracted from the 
time-domain vibration signals and the statistical control 
chart approach. An experimental test rig was designed 
and fabricated to accomplish the experimental part of 
this work. Different experiments were carried out to 
investigate the effect of different bearings' health states 
on the machines' vibration severity. The simulated 
bearing faults included inner race fault, outer race fault, 
combined inner and outer race fault, and combine ball 
and cage fault. Vibration signals were captured utilizing 
a data acquisition system developed based on National 
Instrument hardware (NI 6215 DQA) and software 
(LabVIEW). The vibration signals were captured at 
different applied loads when different faults were 
embedded in the bearing. However, based on the 
experimental findings, the following conclusions can be 
drawn: 

1. Vibration-based condition monitoring and statistic 
control chart can effectively detect the bearing faults by 
monitoring the extracted time-domain features from the 
captured vibration signals.  

2. The influence of a bearing fault is varying depen-
ding on the applied load. 

3. When the bearing is healthy, the amplitudes of the 
features are small, while when faults are simulated, the 
amplitudes increase. When the inner race rotates with 
the shaft, the ball will always hit the simulated damage 
and causes high vibration amplitudes; the vibration level 
becomes more significant as the fault gets severer. 

4. It can be inferred that the combined defects (inner 
and outer race fault and cage and ball fault) are more 
severe, more sensitive to applied load and rotation speed, 
and have a greater impact on the overall vibration level of 
the rotating system. This can be attributed to the fact that 
the combined fault case involves two faults simul–tane–
ously, which produces the highest vibration amplitudes. 
As a result, the induced vibration level increases and 
becomes extreme with increasing applied load. 

5. The combined ball and cage fault was often found 
to be more sensitive than other fault types, which means 
that the ball or cage defect refers to faster bearing 
damage than other faults. 

6.  The extracted time domain features from vibration 
signals, such as root mean square, kurtosis, and Crest 
factor, clearly indicate the bearing's health condition. 

7. The CUSUM control chart is an effective technique 
for detecting various small sizes bearing faults using 
features selected from time-domain vibration signals. 

8. Signal analysis using the time-domain signal ana–
lysis technique can extract features related to simulated 
faults. It is often considered a simple signal analysis 
technique and can be more effective when combined 
with the control chart. 
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NOMENCLATURE 

Pv Peak value 
RMS Root Mean Square 
SD Standard Deviation 
Kv Kurtois Value 
Crf Crest Factor 
Sk Skewness 
SH(i) Upper One-Sided Cusum 
SL(i) Lower One-Sided Cusum 
K    Reference Value 
UCL Upper Control Limit  
LCL Lower Control Limit  

Superscripts 

EWMA Exponentially Weighted Moving Average 
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CUSUM Cumulative Sum 
S Standard Deviation Chart 
R Range Chart 
FFT Fast Fourier Transform 
STFT    Short-Time Fourier Transform 
WT   Wavelet Transform 
WPT Wavelet Packet Transform   
HHT   Hilbert-Huang Transform 
EMD Electrical Discharge Machining 

 
                 

ДЕТЕКЦИЈА ОТКАЗА КОТРЉАЈНИХ 
ЛЕЖАЈЕВА ПРИМЕНОМ АНАЛИЗЕ 

СИГНАЛА ВИБРАЦИЈА И КОНТРОЛНЕ 
КАРТЕ КУМУЛАТИВНИХ СУМА 

 
С.М. Џавад, А.А. Џабер 

 
Праћење стања ротационих машина је од значаја за 
безбедност система, смањење трошкова одржавања 
и повећање поузданости. У раду је развијен систем 

за детекцију отказа лежајева применом технике 
анализе вибрација са CUSUM дијаграмом. Прво је 
дизајнирана и израђена тест опрема а потом је 
извршена симулација и испитивање различитих 
отказа лежајева као нпр. отказа унутрашњег и 
спољашњег жлебног прстена. После снимања 
сигнала вибрација у различитим условима испра–
вности лежајева, издвојене су различите индика–
тивне карактеристике помоћу анализе сигнала у 
временском домену. Добијене карактеристике су 
анализиране да би се добила најзначајнија 
карактеристика – отказ. Затим је одабрана само 
једна карактеристика на основу које је дизајнирана 
контролна карта за праћење стања исправности 
лежаја. CUSUM дијаграм је коришћен, јер може да 
детектује мале промене стања исправног рада 
лежајева. Резултати су показали ефикасност метода 
и утврђено је да је проценат грешке ван контроле у 
случају комбинованог отказа кавеза и куглице у 
односу на број испитаних узорака већи него код 
осталих типова отказа.   

 
 
      
 
                     
 
                   
 
                    


