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   Contact Stress In Helical Bevel Gears 
 
Helical bevel gears have inclined or twisted teeth on a conical surface and the 
common types are skew, spiral, zerol, and hypoid bevel gears. However, this study 
does not include hypoid bevel gears. Due to the geometric complexities of bevel 
gears, commonly used methods in their design are based on the concept of 
equivalent or virtual spur gear. The approach in this paper is based on the 
following assumptions, a) the helix angle of helical bevel gears is equal to mean 
spiral angle, b) the pitch diameter at the backend is defined as that of a helical 
gear, and c) the Tredgold’s approximation is applied to the helical gear. Upon 
these premises, the contact stress capacity of helical bevel gears is formulated in 
explicit design parameters. The new contact stress capacity model is used to 
estimate the contact stress in three gear systems for three application examples 
and compared with previous solutions. Differences between the new estimated 
results and the previous solutions vary from -3% and -11%, with the new estimates 
being consistently but marginally or slightly lower than the previous solution 
values. Though the differences appear to be small, they are significant because the 
durability of gears is strongly influenced by the contact stress. For example, a 5% 
reduction in contact stress may result in almost 50% increase in durability in 
some steel materials. The equations developed do not apply to bevel crown gears. 
 
Keywords: Gears, Contact stress, Fatigue, Helix angle, Equivalent spur gear  

 
 

1. INTRODUCTION 
 
The term “helical bevel gear” is used in this paper to 
describe bevel gears that have inclined or twisted teeth 
on a conical surface. The common types are skew, 
spiral, zerol, and hypoid bevel gears, but hypoid gears 
are excluded from the current study. Fig. 1 shows the 
schematic diagrams of skew, zerol and spiral gears. 
Skew bevel gears (Fig. 1a) have a constant spiral angle 
like helical cylindrical gears. The helix angle of zerol or 
spiral bevel gears is defined as the mean spiral angle at 
the face mid-width of the gears and it is the curvature of 
the tooth at that point as indicated in Fig. 1c. Practically, 
the spiral angle varies from the frontend (toe) to the 
backend (heel) of the gear. Because of the curved shape 
of the tooth length of zerol and spiral bevel gears, 
different points along the face width have different 
spiral angles [1]. Zerol and spiral bevel gears have 
variable spiral angle but the helix angle for zerol bevel 
gears is zero degree. Though spiral bevel gears resemble 
helical gears, they however, do not have a true helical 
spiral [2, 3]. A bevel gear frustum may be construed as a 
series of step disks with cylinder diameters that vary 
from the front end to the back end. The mid-section disk 
is where the forces are acting. The mean spiral angle of 
the bevel gear corresponds to the nominal helix angle of 
the mid-section disk. The International  

Standardization Organization (ISO) recommends a 
pressure angle of 200 for bevel gears, which is the most 
popular pressure angle in North America. However, 
other pressure angles like 14.5o, 22.5o and 25o are in use. 

 
a) Skew          b) Zerol

    
c) Spiral 

Fig. 1: Types of helical bevel gears  

Zerol bevel gears (Fig. 1b) are similar to the straight 
bevel gears and may carry slightly higher load rating. 
They can be used instead of straight bevels without 
mounting changes but can run as fast as spiral bevel 
gears. Zerol bevels are widely employed in the aircraft 
industry, where precision gears are generally required. 
Spiral bevel gears (Fig. 1c) are recommended for use 
where high speed (usually above 5 m/s) are encountered. 
Unground spiral bevel gears can be used up to 11 m/s 
and ground gears up to 61 m/s. Higher speeds need 
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precision-finished gears which may be used up to 125 
m/s [4-7]. 

The gear ratio in helical gearsets is generally more 
than 3. Single stage gear ratio of 10 is about the 
maximum for speed reducers and the maximum gear 
ratio for single stage speed increasers is about 5 [8, 9]. 
The pinion should have a minimum of 12 teeth in the 
gearsets. The helix angle of the pinion and gears is the 
same for spiral bevel gears and the most common helix 
angle is 35o [8] but helix angles of 20o to 45o may be 
used with the same tooth proportions as for 35o [10]. 
The helix angle allows multiple teeth to overlap facially 
if the facewidth is sufficiently large. The face contact 
ratio is the ratio of the face advance to the circular pitch. 
Higher helix angles give higher face contact ratio, 
smoother and quieter operations but increase axial loads 
on shafts, bearings and housing. For smooth spiral tooth 
action, the face contact ratio should be more than 1.25. 
However, maximum smoothness of drive is attained 
when the face contact ratio is between 1.5 and 2.0 [10, 
11]. High speed applications should be designed with a 
face contact ratio of 2 or higher [11]. The hand of the 
helix for spiral bevel gears may be left or right. The 
hand should be chosen so that the gears separate from 
each other during rotation to avoid jamming [12].  

The teeth of helical bevel gears can tolerate small 
amounts of misalignment in the assembly of the gears 
and some displacement of the gears under load without 
concentrating the tooth contact at the ends of the teeth 
[4]. Generally, spiral bevel gears are capable of carrying 
more load than straight-bevel gears because of better 
load sharing from the spiral angle and are used for high 
speed and high power transmission [7].  

According to Feng and Song [13], spiral bevel gears 
have very complex tooth geometries and kinematics. 
Unlike cylindrical gears, the mesh point, mesh force, 
and line-of-action vector for spiral bevel gears are time 
varying quantities in 3D space. They are more difficult 
to design and costly to manufacture because they require 
specialized and sophisticated machinery. Both spiral and 
zerol gears can be cut on the same machines with the 
same circular face-mill cutters or ground on the same 
grinding machines. When cutting zerol bevel gears the 
mean spiral angle is set to zero [2].  

Bevel gears are usually carburized to a surface 
hardness in the range of 700 HVN to 770 HVN (60 to 
63 HRC) with the pinion hardness about 30 HVN (3 
RHC) higher to equalize wear and minimize risk of 
scoring. The core hardness is in the range of 300 HVN 
to 400 HVN (30 to 40 HRC) [1]. Distortion is 
experienced after hardening and hard finishing is done 
to correct this. Face run-out is a problem with bevel ring 
gears. The manufacturing dimensions of a bevel gear are 
based on the bevel gear backend module which is 
largely standardized. When addendum modification is 
used in bevel and hypoid gears, usually the pinion and 
gears have the same shift coefficient values but opposite 
algebraically, so that the residual sum of the coefficients 
is zero [14]. 

For the most part, the geometry of spiral-bevel gears 
is extremely complex and that makes their design 
calculations more complicated and empirical compared 
to cylindrical gears but the underlying concepts are the 

same [15, 6]. ANSI/AGMA 2003-B97 [16] is a popular 
bevel gear design standard in the United States and 
provides a conservative means of estimating the contact 
and bending stresses in straight, zero, and spiral bevel 
gears [8)]. According to Dudley [2], stresses estimated 
using the general practice developed in the U.S. for 
bevel gears predict quick failure but such gears are 
known to be satisfactory in service. According to him 
“This is a serious problem.” In this article we explore 
the possibility of formulating a contact stress capacity 
model for helical bevel gears that is less conservative 
than the AGMA model. The objective of this research 
work was to explore the possibility of formulating a less 
conservative bevel gear contact stress model than 
current available gear standards in the U.S. or 
elsewhere. This will allow more accurate estimation of 
contact stress in bevel gears that can predict longer 
durability. Also, developing relatively accurate simpli–
fied design analysis methods help to shorten design and 
development times and thus reduce design project costs. 
The efforts in such an endeavor resulted in the model 
that is presented in this article. The power loss per mesh 
in bevel gear drives is of the order of 2% [17] which is 
considered negligible in this study. 

 
2. EQUIVALENT SPUR GEAR FOR HELICAL 

BEVEL GEARS  
 

The forces acting on bevel gears are three dimensional 
and are discussed in the Appendix. The complexities 
[15, 18] of the geometry of bevel gears in general and 
those of helical bevel gears in particular, do not permit 
simple mathematical analysis. Therefore, approxi–ma–
tions are made to allow more simplified analysis which 
gives rise to equivalent spur gears. The development of 
an equivalent or a virtual spur gear for a helical bevel 
gear is based on two assumptions: helical cylindrical 
gear analogy and Tredgold’s approximation. This 
approach results in a bi-equivalent spur gear which is 
explained below. 
 
2.1 Helical Gear Analogy 
 
Cylindrical gears have pitch circles on a cylinder and a 
constant helix angle. The common planes associated 
with them are the axial, transverse and normal planes. 
The transverse plane is the plane of rotation and is 
perpendicular to the axial direction. The gear diameter is 
shown in the transverse or diametral plane while the 
gear width is shown in the axial plane. Spur gears are 
defined only by the axial and transverse plane but 
helical gears have a normal plane in addition to those for 
spur gears because the gear tooth profile is often defined 
in the normal plane. The normal plane intercepts the 
pitch cylinders so that the gear tooth profile generated 
on it has the same properties as the actual helical gear.  
As in spur gears, the driving force for helical gearsets 
lies in the transverse plane but actual contact of gear 
teeth is commonly believed to occur in the normal 
plane. The two parameters which relate a helical gear to 
its equivalent spur gear are the transverse pressure angle 
and the base helix angle [19]. When the normal pressure 
angle is standardized, then: 
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Please observe that there are two (2) sub-equations 
in Eq. (1), which should be referred to as Eq. (1a) and 
Eq. (1b) from left to right. All other equations with 
multiple terms should be interpreted similarly. Refe–
rence should be made to Nomenclature for the definition 
of parameters in equations in Eq. (1) and others. 

According to Maitra [10], the base helix angle gives 
a more accurate estimate of the instantaneous radius of 
curvature of the equivalent spur gear for a helical gear. 
Therefore, the plane defined by the base helix angle will 
be called the virtual plane on which the pitch diameter 
of the virtual spur gear for a helical gear lies. 
Consequently, the base helix angle becomes a 
significant parameter in gear design analysis as it 
defines the plane of contact for the meshing gear teeth. 
Because the difference in values for the nominal and 
base helix angles is small in most cases, a small error is 
incurred when the nominal helix angle is used instead of 
the base helix angle in design analysis. Since the virtual 
and normal planes are different, the gears associated 
with them need to be differentiated. Conceptually, the 
following gears may be distinguished by their pitch 
circle diameters for clarity of discussions. They are the 
nominal spur gear, helical gear, backend spur gear, the 
heli-spur gear, and the bevi-spur gear.     

The pitch diameters of the nominal spur gear and 
that of the helical gear are given by Eq. (2a) and 
Eq.(2b), respectively. 

o nd m z=  
cos

od
d

ψ
=  (2) 

The backend spur gear of a bevel gear is conven–
tionally treated as a spur gear by using Eq. (3a). As can 
be observed, the transverse module of the backend spur 
gear is determined from Eq. (3b) in the present study. 
This makes the approach adopted different from 
conventional practice because the backed spur gear is 
being treated as a helical gear. 
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It is important to note that the backend spur gear has 
no real defined facewidth. In Eq. (3c) and others like it, 
subscript 1 is used for the pinion and subscript 2 is used 
for the gear. 

Heli-spur gear is used to describe the virtual or 
equivalent spur gear for a helical gear and the bevi-spur 
gear is used to describe the virtual or equivalent spur 
gear for a bevel gear. For a straight bevel gear where the 
nominal helix angle is zero and the bevi-spur gear can 
be rightly called the Tredgold’s spur gear.  

Fig. 2 shows the graphical development of the pitch 
circles of the heli-spur gear and the bevi-spur gear. Fig. 
2a shows the nominal spur gear and Fig. 2b shows the 
helical gear. Fig. 2b graphically illustrates how the 
helical gear pitch diameter is developed from the pitch 
diameter of the nominal spur gear. Fig. 2c indicates the 

pitch circle diameters of the heli-spur and bevi-spur 
gears. Also, it graphically demonstrates how the pitch 
circle diameters of these virtual spur gears are 
developed from that of the nominal spur gear.  

The heli-spur gear has an instantaneous pitch dia-
meter that is a function of the base helix angle ( bψ ) 
[10] of the helical gear.  The pitch radius of the heli-spur 
gear is shown in Fig. 2c and is represented by the O/B/ 
which is defined in Eq. (4)[19]. 
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The heli-spur gear is associated with the base helix 
angle, not the nominal helix angle because the plane 
defined by the base helix angle contains the instanta–
neous radius of curvature for the heli-spur gear. There–
fore, the base pitch associated with the heli-spur gear 
should be defined on the plane of the base helix angle, 
not that of the nominal helix angle. Consequently, the 
number of teeth on the instantaneous diameter is appro–
ximately obtained as: 

2cos cos
n

n
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π

π ψ ψ
≈ =   (5) 

It is to be noted that the virtual plane where the heli-
spur gear is defined is clearly different and distinct from 
that of the normal angle. The normal plane is real or 
physical, but the virtual plane is fictitious and is derived 
from analytical calculus. Therefore, the heli-spur gear is 
not real, it is simply a geometrical construct. However, 
the applied load on the helical gear is transferred to the 
heli-spur gear which can be used to estimate the contact 
and root bending stresses on the heli-spur gear and 
thereby simulate the actual contact and root bending 
stresses on the physical helical gear. 

 
2.2 Tredgold’s approximation  
 
Bevel gear teeth are cut on conical surfaces and have a 
spherical geometry; therefore, the involute tooth profile 
should be developed on a spherical surface to ensure 
conjugate action. Since the projection of bevel gear teeth 
on the surface of a sphere would indeed be a difficult 
and time-consuming problem, it is necessary practically, 
to approximate bevel gear tooth profile as accurately as 
possible. The “Tredgold’s approximation” is almost 
universally accepted and it uses the cone tangent to the 
sphere at the pitch point on the backend of the bevel 
gear to define the pitch radius of an equivalent spur 
gear. The basic shape of a bevel gear tooth is almost the 
same as that of this spur gear. The Tredgold’s 
approximation is accurate enough for practical purposes 
as long as the bevel gear has 8 or more teeth, [10, 15, 
20, 21]. The Octoid tooth profile is often used for 
implementing the Tredgold’s approximation. The 
technique allows easy manufacture [15] of bevel gears 
by the method of gear generation. The manufacturing 
dimensions of a bevel gear are based on the backend 
module, which is largely standardized. 
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Figure 2: Graphical development of the pitch circle diameters of helical bevel gear  

Assuming the Tredgold’s approximation, an 
imaginary equivalent or bevi-spur gear may be pre-
scribed whose pitch radius is equal to the backend cone 
radius of the helical gear [10, 15]. From the previous 
discussions in helical gear analogy, the backend dia-
meter of the bevi-spur gear is taken as that of a helical 
cylindrical gear. Therefore, the Tredgold’s spur gear has 
the same module as this helical gear of Fig. 2b. Fig. 2c 
shows the radius of the bevi-spur gear as length O/C/. It 
is to be noted in Fig. 2c that when the pitch angle of a 
bevel gear is large and tends toward 90o, the line B/C/ 
becomes excessively long so that the pitch diameter of 
the bevi-spur gear tends to infinity. This leads to a 
crown gear with a pitch angle of 90o that may be likened 
to a circular rack. From Fig. 2c, the pitch diameter of the 
bevi-spur gear for a helical bevel gear is:  

2
cos

cos cos cos
n

v
b

d dd ψ
φ φ ψ

= =  (6) 

In the present consideration, the Tredgold’s appro-
ximation converts the helical gear into the bevi-spur 
gear for helical bevel gear. Helical bevel gears are then 
analogous to helical cylindrical gears but with the pitch 
cylinder on a cone and a variable helix angle. The base 

helix angle of the helical bevel gear is obtained when 
the mean spiral angle is substituted for the nominal helix 
angle in Eq. (1b).  
 
2.3 Virtual Gear Ratio 

Bevel gear meshing must be considered in pairs because 
the pitch cone angles are restricted by the gear ratio. In 
conventional configuration of bevel gearsets, the shaft 
angle is: 

210 ϕϕϕ +=   (7) 

Generally, shaft angles between 30o and 150o are 
usually permissible subject to certain ratio limitations as 
indicated in Eqs. (8) and (9). It should be noted that 
some gear generators require pinion pitch angle above 
5o [40].  

When 090≤oϕ , the cone pitch angles are obtained 
as [22]: 

01
1 2

0 0

sinsin
tan tan

cos 1 cos
μ ϕϕ

ϕ ϕ
μ ϕ μ ϕ

= =
+ +

 (8) 

When 90° < φ0 < 180°, then [23]: 

  a) Nominal spur gear 

b) Helical gear 

c) Virtual gears 
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The virtual or equivalent gear ratio of a helical bevel 
gearset based on Eq. (6) is: 
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2.4 Virtual Contact Ratio 
The number of teeth on the gearset based on Tredgold’s 
approximation is: 
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The contact ratio on the virtual plane is:  
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The contact ratio, vϖ is indicative of the proportions 
of the gear teeth in a mesh that share the transmitted 
load.  

Please note that equations (6) to (13) do not apply to 
bevel crown gears where φ2 = 90°. 

 
3. CONTACT STRESS ESTIMATE 

 
During meshing, contact occurs in an involute gear 
mesh on two convex surfaces. The contact point would 
trace out a line if the gear materials and supporting 
structures were infinitely rigid. Due to material elas–
ticity, the gear teeth deform slightly to form a rectan–
gular contact patch. A gear pair in mesh is analogous to 
that of a pair of two cylinders of some equivalent dia–
meters, rolling without slipping [10]. Buckingham and 
his coworkers were the first researchers to investigate 
surface stresses in gear teeth in a systematic way [9] and 
they modified the Hertz contact stress expressions for 
two frictionless cylinders in contact to study gear pitting 
resistance. They defined the equivalent radii of curva–
ture of the two gears in a mesh as the products of the 
pitch radii of the gearset and the sine of the gear 
pressure angle. In helical gears, contact occurs on the 
virtual plane; therefore, the contact force and design 
geometric parameters should be referred to the virtual 
plane, so it may be expressed as [19]: 

310c c
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The composite elastic modulus is obtained as [19]: 
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The effective instantaneous radius of curvature in the 
virtual plane during contact at the pitch point is [19]: 
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Combining Eqs. (7) and (16): 
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Due to the curvature of the teeth form of spiral bevel 
gears, actual contact is along an arc and this introduces 
an added complexity compared to cylindrical helical 
gears which have constant helix angle. The lengthwise 
curvature of spiral bevel gears gives the teeth a con–si–
derable amount of overlap, providing increased face 
contact ratio, tooth rigidity and adjustability to load in–
duced deflection [25]. This makes the gears transmit 
motion more smoothly and quietly than straight bevel 
gears and the load is better distributed over more tooth 
surface [2]. Based on the mean spiral or helix angle, the 
face contact length may be approximated as: 

cos cos
e e

v
b

b b
b

ψ ψ
= ≈   (18) 

Eq. (18) is accurate only for skew bevel gears but 
conservative for the curved teeth of zerol, and spiral 
bevel gear types. By using a mean spiral angle, a 
straight helical profile is assumed which reduces the 
actual arc of contact to a straight line whose length is 
shorter than the arc length. Hence the approximation in 
Eq. (18), upsets to some degree, the conservative 
estimate by a line contact. 

Substituting Eqs. (A6), (17) and (18) into Eq. (14), 
yields: 
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Eq. (19a) is the theoretical contact stress capacity 
model of a helical bevel gear based on its spur gear 
equivalency. It reflects the principal design parameters 
that determine the Hertz contact stress and explicitly 
shows the influence of the nominal helix angle and the 
base helix angle on the contact stress capacity of helical 
bevel gears. Higher base helix angles lead to lower 
contact stresses, so helical gears would have higher load 
capacity than straight bevel gears of the same size.  

Now, mathematical models are rarely if ever, able to 
depict exactly any physical system due to simplifying 
assumptions incorporated. They are, therefore, appro–
ximations and experiments are required in engineering 
to validate the models. Consequently, the theoretical 
model of Eq. (19a) needs adjustment for a) service load 
influence factors, b) gear tooth profile modification, and 
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c) effective contact width. When these factors are 
incorporated into Eq. (19a), the engineering contact 
stress capacity model for helical bevel gears may be 
rendered as: 

1 23
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2 ( 1) cos
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s g x b v c

H b
e e e v
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b d d

μ φ
σ ψ

λ ϖ ψ

±
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Eq. (20) is the generalized expression for the contact 
stress estimate of helical bevel gears with accom–
modations for tooth profile modifications and service 
load adjustment. Eq. (20) can be applied for straight 
bevel gears by setting the nominal and base helix angles 
to zero. However, it is not applicable to crown gears for 
which o902 =ϕ .  

The service load factor [19] encapsulates several 
load modification factors and takes care of load 
excitations beyond the rated value that are reoccurring 
in nature, not the peak load which occurs only 
occasionally. It is estimated as shown in Eq. (21).  

fprmvas KKKKKKK =   (21) 

The load modification factors Ka, Kv, Km, and Kr are 
as defined in AGMA standards with similar but not 
necessarily identical equivalents in ISO standards. They 
are evaluated using AGMA methods which are 
somewhat simpler than those of ISO. Load modification 
factor Kp [27] accounts for the influence of addendum 
modification or center distance adjustment on the load 
capacity of gears. It is a geometric parameter and is 
included in the service load factor because it affects 
both contact and bending stresses. Load modification 
factor Kf [28] accommodates additional load due to the 
presence of mesh friction. Please refer to Appendix B: 
Service Load Factor Estimate for more information.  
 
3.1 Contact Stress Crowning Factor 

 
The teeth of most bevel gears are crowned in the axial 
direction during manufacturing to accommodate deflec–
tion of mountings [29, 30]. According to Norton [9], 
crowning makes the contact patch more elliptical than 
rectangular and produces increased localized contact 
stresses. The study of Gurumani and Shanmugan [31] 
on crowning of spur gears shows that the contact stress 
for elliptical contact patches is higher than that for line 
contact which produces a rectangular contact patch. The 
contact patch in bevel gears is an elongated ellipse [32] 
which suggests higher contact stress is likely. The 
increase in contact stress due to crowning is captured by 
the crowning factor Kx in Eq. (20). Norton [9], Collins et 
al. [15] and Budynas and Nissbett [30] give a value of 
1.0 for uncrowned teeth and 1.5 for crowned straight 
bevel gears. ANSI/AGMA 2003-A86 [33] and KISSsoft 
[34] recommend a crowning factor of 1.5 for an 
optimized spiral bevel gear, otherwise it is 2.0 or higher. 
According to Schmid et al. [35, p.435]; a crowning 
factor of 1.5 is appropriate for properly crowned spiral 
bevel teeth. Thamos [36] uses a value of 1.5 as the 
lengthwise crowning factor for ISO bevel gear model. 
Therefore, there appears to be a general agreement that 

Kx = 1.5 is acceptable for properly crowned bevel gears 
in both AGMA and ISO bevel gear standards and is 
adopted in this study. For uncrowned bevel gears, Kx = 
1.5. 

3.2  Effective Facewidth Factor 
 
Manufacturing and installation deficiencies combined 
with deflection under loads prevent gears from mating 
over the whole tooth width. Therefore, only a fraction of 
the nominal tooth width makes actual contact, which 
affects load sharing among the teeth in a mesh. The 
effective facewidth of a gear in contact during trans-
mission may be expressed as: 

e eb bλ=  1 2min( , )b b b=   (22) 

The expected range of values for eλ is 0.80 to 0.90 
for bevel gears [37, 38]. The approximation of the arc of 
face contact for helical bevel gears with a straight line 
(see Eq. (17)), makes the facewidth contact length 
estimate conservative. Hence an overly conservative 
value of the effective facewidth factor may not be 
necessary. Therefore, 9.0=eλ is adopted for helical 
bevel gears in this study.  
 
4. ACCEPTABLE DESIGN 

 
Acceptability of a design is usually assessed by the 
value of a design or safety factor. For contact stresses, 
the estimated (apparent) contact stress design factor 
should be at least equal to the allowable minimum 
design factor. That is: 

H

c
H

Sn
σ

=  cH nn ≥  (23) 

The pitting load limit is defined as the maximum 
load that gives 1% pitting of the contact area on a gear 
pair for 107 load cycles [2, p. 3.8]. The pitting strength 
is the contact stress produced by the pitting limit load 
and is improved by increasing the surface hardness and 
surface finish of the gearset. The nominal pitting 
strength is adjusted with conditional modification 
factors to obtain cS . Note that cS is the same as is used 
for cylindrical (spur and helical) gears and can be 
obtained using AGMA methods. The parameter cn is a 
minimum number that may be prescribed by standards, 
codes or agreed on with a client. Generally, it is in the 
range of 1.0 to 1.3, but preferably greater than unity. 
 
5. APPLICATION EXAMPLES  
 
In this section, the contact stresses of three design cases 
taken from [8, 24, 35], are estimated using the new 
model described above. The problem statements in the 
application examples have been paraphrased and the 
design parameters have been converted to metric units 
where necessary by the authors. 

Example 1 

A right-angle spiral bevel gearset with crowned teeth 
made of steel transmits 0.9 kW with the pinion running 
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at 14,000 rpm. The pinion has 15 teeth and is cantilever 
mounted while the gear has 32 teeth and is straddle 
mounted. The gearset has a transverse module of 1.5 
mm, facewidth of 8.84 mm and made to ISO quality 
number 9. The load application factor may be assumed 
as 1.5 [8, p. 431 - 435]. What is the expected contact 
stress in the mesh if the helix angle is 350? 

Example 2  

A right-angle spiral bevel gearset with crowned teeth 
made of steel transmits 10.25 kW with the pinion 
running at 1450 rpm. The pinion has 13 teeth and is 
cantilever mounted while the gear has 42 teeth and is 
straddle mounted. The gearset has a transverse module 
of 4.29 mm, facewidth of 26 mm. [24, p. 298 - 303]. 
What is the expected contact stress in the mesh if the 
helix angle is 350? 

Example 3 

A right-angle spiral bevel gearset with crowned teeth 
made of steel transmits 30 kW with the pinion running 
at 1750 rpm. The pinion has 14 teeth and is cantilever 
mounted while the gear has 40 teeth and is straddle 
mounted. The gearset has a transverse module of 4.45 
mm, facewidth of 25.4 mm and made to ISO quality 
number 6. The load application factor may be assumed 
as 1.0 [35, p. 434 - 435]. What is the expected contact 
stress in the mesh if the helix angle is 250? 

 
5.1 Solutions  
 
Three gear standards are used in estimating the contact 
stresses in the application examples considered above. 
These standards are labeled A, B, and C. Gear standard 
A is that of helical cylindrical gears where the adden-
dum radius is obtained by adding one normal module to 
the pitch radius. Therefore, this standard uses an 
addendum factor of 1.0. Gear standard A is used by 
ISO, AGMA, JIS (Japanese Industrial Standards] and 
other national standards for cylindrical gears. It is also 
the ISO standard for straight bevel gears. Gear standards 
B and C are based on Gleason bevel gear system which 
is essentially a stub gear standard. Gear standard B uses 
a constant addendum factor of 0.85, while gear standard 
C uses a variable or custom addendum factor that is 
related to the virtual gear ratio (Eq. (10)) [4]. The ad-
dendum factor is applied at the backend diametral plane 
of the bevel gear for standards B and C. Previous 
solutions for examples 1 and 3 are based on AGMA 
bevel gear standards and that of example 2 is based on a 
defunct USSR (Union of Soviet Socialist Republic) 
GOST standard. 

The formulas for contact stress estimates for the new 
models were coded into Microsoft Excel. This allows 
easy computational changes to be made in design para-
meters. Table 1 summarizes the basic gearset and load 
data for the design cases. Table 2 shows the contact 
stress values estimated using the current model and the 
previous solutions. The contact stress values in row 2 of 
Table 2 are those based on gear standard A, row 3 
values are based on gear standard B, and row 4 values 
are based on gear standard C. The last row of Table 2 
show the contact stress values of the previous solutions. 

Table 3 shows the percentage variances between the 
current model solutions and the previous solutions. 

 

Table 1: Input Parameters for Design Cases  

Parameter Example 
1 

Example 
2 

Example 
3 

Input Power (kW) 0.9 10.25 30 
Input speed (rpm) 14000 1450 1750 
Output speed (rpm) 6562.5 448 612.5 
Pressure angle  (deg.) 20 20 20 
Helix angle  (deg.) 35 35 25 
Shaft angle  (deg.) 90 90 90 
Normal module (mm) 1.23 3.51 4.11 
Pinion teeth number 15 13 14 
Gear teeth number 32 42 40 
Gear face width (mm) 8.84 26 25.4 
Pinion face width 
(mm) 

8.84 26 25.4 

Pinion pitch diameter 
(mm) 

22.5 55.7 63.5 

Gear pitch diameter 
(mm) 

48.0 180.0 181.4 

Service load factor 2.448 1.306 1.197 
 

Table 2: Contact Stress Estimates in MPa  

Gear 
Standard Example 1 Example 2 Example 3 

A 410.0 708.0 983.0 
B 404.0 696.0 1012.4 
C 413.7 722.9 1049.7 

Previous 
solution  422.9 763.0 1103.2 

 

Table 3: Contact Stress Deviations (%)  

Gear 
Standard Example 1 Example 2 Example 3 

A -3.05 -7.21 -10.90 
B -4.46 -8.78 -8.23 
C -2.17 -5.25 -4.85 

 
6. DISCUSSIONS  
 

Current international and national bevel gear design 
standards share three fundamental concepts of Hertz 
contact stress, spur gear equivalency based on 
Tredgold’s geometric approximation and contact load 
and contact strength influence modification factors. The 
Tredgold’s approximation of a bevel gear is near 
universal acceptance. It allows bevel gears to be 
designed with the geometric parameters defined at the 
backend of the bevel gear. However, differences exist in 
the application of Tredgold’s approximation. For 
instance, AGMA 2003-B97 [16] applies the Tredgold’s 
approximation at the backend plane of the bevel gear 
while ISO applies it at the mid-facewidth plane. 
Modification factors are separately applied to the 
contact load (stress) and contact strength in these 
standards. The modification factors are based on similar 
gear design philosophies and procedures, but the 
evaluation of specific parameters in the load and 
strength factors varies in the standards. These three 
fundamental concepts are assumed and applied in the 
current helical gear contact stress model.  
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The current model differs from AGMA and ISO 
models by referring the gear forces to the backend of the 
bevel gear through the bevel load factor ( bK ) in Eq. 
(20). This means the forces acting at the backend are the 
same as those at the mid-width of the gear tooth. This 
allows the Tredgold’s approximation and the transmitted 
load to be applied on the same plane, ensuring 
consistency of design analysis for bevel gears. Please 
refer to Eq. (A2) and Eq. (A5) in Appendix A, for a 
proof of the transmitted load transfer from the mid-
facewidth to the backend of the bevel gear. 

The contact plane is based on the base helix angle in 
the new model, not on the nominal helix angle which is 
used in current standards of AGMA, but is incorporated 
in the zone factor parameter of ISO standards and JIS. 
The pitch radius of the virtual spur gear is smaller 
because it is based on the base helix angle which is 
always smaller than the nominal helix angle. This 
represents a major difference between the current 
models and existing gear standards.  

In the current model, the virtual number of gear teeth 
is estimated using the base-helix angle, not the nominal 
helix angle used by current standards. Since the base 
helix angle is slightly smaller than the nominal helix 
angle, fewer numbers of virtual teeth are obtained for the 
bevi-spur gear in the current model. At low values of the 
nominal helix angles, there is not much difference 
between the virtual number of teeth obtained using the 
nominal or base helix angle, but at high nominal helix 
angles, the difference can become more relevant. At very 
high nominal helix angle, the difference in the number of 
virtual teeth from the two angles can become significant. 
In spiral bevel gears, the nominal helix angle can be high. 
Now, the virtual number of gear teeth has influence on 
the virtual contact ratio, which affects load sharing and 
the contact stress. Higher number of virtual teeth gives 
higher contact ratio, which leads to lower contact stress in 
Eq. (20). Therefore, the virtual contact ratio of a gearset 
based on the base helix angle will predict higher contact 
stress than those based on the nominal helix angle.    

In bevel gears, the diametral pitch is conveniently 
measured at the backend of the tooth, while both the 
pressure angle and spiral angle are measured at mid-face 
on the tooth [40]. Since the mean spiral angle and 
pressure angle are measure on the same plane, it is 
logical to assume the mean spiral angle as the nominal 
helix angle. Eq. (19b) captures the role of the gear 
pressure angle in determining the magnitude of the 
contact stress through the gear contact stress form 
factor. This factor is simpler than the zone factor in ISO 
and JIS standards, being a function of only the pressure 
angle. It has a direct influence on contact stress, and 
thus may be used to compare the influence of pressure 
angle on contact stress by different gear systems. 

Fig. 4 shows a plot of the gear contact stress form 
factor. As can be seen in Fig. 4, pressure angles above 
20o have a value lower than unity and continue to 
decrease till about 45o. Beyond 45o, its value begins to 
increase. Therefore, designing gears with pressure angle 
above 45o appears not be to be beneficial. From Fig. 4, 
pressure angles may be differentiated into two 
categories: low and high values. Pressure angle less than 

20o may be considered low and those between 20o and 
45o may be considered high. 

 
Fig. 4: Gear contact stress form factor  

Eq. (20) is the expression for the contact stress of 
helical bevel gears which are considered similar to 
cylindrical helical gears having a nominal helix angle 
equal to the mean spiral angle for helical bevel gears. It 
does not require any chart for application and most of 
the parameters in the expression can be easily estimated. 
For instance, most of the components of the service load 
factor (Eq. (21)), in the new model are the same as in 
AGMA standards and are estimated using AGMA 
methods. The load application factor component is 
generally selected from appropriate tables in AGMA, 
JIS, and ISO gear standards. The non-AGMA compo–
nent parameters in the service load factor are estimated 
using expressions provided elsewhere [27, 28]. 

It should be noted that AGMA bevel contact stress 
model has a size factor which is not incorporated in the 
current model. The size factor is often applied to the 
nominal strength instead of the expected stress. For 
instance, AGMA applies a size factor to the nominal 
beam strength in cylindrical gears. In the current model, 
the size factor is assumed applied to the nominal contact 
strength. Therefore, the same nominal contact strength 
of gear materials can then be used for both cylindrical 
and bevel gear types with appropriate size factors.   

The current model differs conceptually from AGMA 
spiral bevel standards which treat the helical bevel gears as 
spur gear rather than a helical gear as indicated in Eq. (2b). 
This implies that the module of helical bevel gear may be 
selected based on the normal module as in helical cylin-
drical gears. Consequently, both cylindrical and bevel gears 
can be treated on a consistent basis. Also, this should allow 
smaller module to be used to achieve the same backend 
pitch diameter as it is done in current cylindrical helical 
gear standards. Smaller module size reduces manufacturing 
cost and enhances cutting tooth strength because lesser 
material is removed during machining operations, which 
lowers deformation during cutting operations, and hence 
increases manufacturing accuracy [39, p. 283]. 

Eq. (20) may be used for cylindrical helical gears by 
setting the bevel gear pitch angles to zero degree and the 
bevel load factor to unity. For spur gears it is necessary 
to additionally set the nominal and base helix angles to 
zero degree. However, for cylindrical gears, the effect-
tive facewidth factor eλ is set to 0.95 instead of 0.90 in 
bevel gears. Therefore, for cylindrical gears: 
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The virtual contact ratio vϖ for cylindrical gears is 
now based on the virtual number of teeth on the pinion 
and gear which is then obtained from Eq. (5). The 
crowning factor Kx in cylindrical gears does not need to 
be 1.5, but standard value(s) seem to be lacking at this 
time. The difference between Eq. (24) and that in [19] 
for cylindrical gears is that the latter can be interpreted 
as an approximation of the former. This is because in 
the cited reference an approximation is made in the 
estimation of vϖ , but no such approximation is made in 
Eqs. (12) and (13) here. 

An unsolved problem in gear design modeling is 
how to realistically or practically combine transverse 
contact ratio with axial contact ratio when the latter is 
greater than unity in helical gears. It is known that axial 
contact ratio greater than unity improves load sharing 
and reduction in noise during operation. In fact, for 
maximum smoothness of drive, the face contact ratio 
should be between 1.5 and 2.0 and high speed 
applications should be designed with a face contact ratio 
of 2 or higher [10, 11] for spiral bevel gears. However, 
there is currently no definitive method of combining 
axial contact ratio greater than unity with the transverse 
contact ratio when estimating gear stresses. Therefore, 
Eqs. (20) and (24) make use of only the virtual 
transverse contact ratio of Eq. (12). If axial contact ratio 
greater than unity is properly incorporated in Eqs. (20) 
and (24), the estimated stress values will be lower.  

The contact stresses obtained using Eq. (20) for three 
application examples are shown in Table 2 and 
comparisons with the previous solutions are presented in 
Table 3.  From Table 2, solutions based on gear standard 
A appear to be the least conservative compared to the 
previous solutions. The most conservative results are 
from gear standard C, while those of standard B are 
between the results for standards A and C. 

In Table 3, the variances between the contact stress 
estimates from the new helical gear contact stress model 
and the AGMA/GOST standards are in the range of -3% 
to -11%. These variances are negative because the 
estimated contact stresses from the new model are lower 
than the previous solutions. Though the differences 
appear to be small, they can be quite significant, 
because the durability service life of gears is strongly 
dependent on contact stress.  For instance, Feng and 
Song [13] found that a 4.76% decrease in the contact 
stress of a steel spiral bevel gearset increased the pitting 
service life by 44%. Consequently, there is a need to 
determine the maximum contact stress in gear meshes 
with reasonable accuracy because a small decrease in 
contact stress can significantly increase the pitting 
service life of a gearset. Similarly, a small increase in 
contact stress can dramatically reduce the pitting service 
life of a gearset. 

 
7. CONCLUSIONS  

 
A contact stress expression (Eq. (20)) for helical bevel 
gears is derived based on several simplifying but 

realistic assumptions. These assumptions include trans–
mitted load acting at the gear mid-facewidth plane, 
nominal helix angle equal to the value at mid-facewidth 
plane of helical bevel gears, spur gear equivalency of 
helical gear in base helix angle plane, and the 
Tredgold’s approximation of bevel gears. The 
assumptions of the transmitted load being at the mid-
plane of gear facewidth and straight helix angles are 
conservative. The assumption of spur gear equivalency 
of helical gear on the base helix plane is more accurate 
than that at the normal plane defined by the nominal 
helix angle [10]. The base helix plane essentially defines 
the plane of the contact force on which a more accurate 
analysis can be based. The Tredgold’s approximation 
assumption of spur gear equivalency of bevel gear in 
transverse plane is approximate. It provides a geometric 
link between a physical bevel gear and the equivalent or 
virtual spur gear. The assumption of forces acting on the 
mid-facewidth of the physical bevel gear allows for the 
definition of a bevel load factor which transfers the 
forces to the Tredgold’s spur gear defined at the 
backend plane of the bevel gear. The bevel load factor, 
therefore, provides a kinetic link between a physical 
bevel gear and the virtual spur gear. The expression of 
Eq. (20) was easily modified for helical cylindrical 
gears, which is given by Eq. (24). 

Eq. (20) is applied in estimating the contact stress 
in three gear systems with three application examples 
and compared with previous solutions based on 
AGMA/GOST standards. The contact stresses obtained 
are shown in Table 2 and comparisons with the previous 
solutions are shown in Table 3. Differences in estimated 
results vary between -3% and -11%, with the new model 
estimates consistently being marginally or slightly lower 
than the previous solution values. Though the 
differences appear to be small, however, they are 
significant because the durability of gears is strongly 
influenced by the contact stress. For example, a 5% 
reduction in contact stress may result in almost 50% 
increase in durability, which underscores the need for a 
more accurate estimate of contact stresses. The 
differences in the contact stress value estimates may be 
attributed to the difference in the application of the 
Tredgold’s geometric approximation and the use of the 
base helix angle in this study. 

The variances in Table 3 indicate that the new model 
developed predicts contact stress values that are less 
conservative than AGMA or GOST values. Though 
more design examples and comparisons are necessary 
for further verification, the results presented provide 
some encouragements. ISO 10300 [37] examples are not 
considered in this presentation but previous studies [27, 
29] suggest that some ISO 10300 model contact stress 
estimates can be more conservative than AGMA model 
values, especially when loads are high.  
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APPENDIX A: BEVEL GEAR LOADS  

In the design analysis of bevel gears, the load is 
commonly assumed to be applied at the mid-facewidth 
plane. The resultant forces actually act somewhere 
between the midpoint and the backend of the tooth 
width [10]. This means the force components used in 
design analysis are slightly over-rated. It should be 
noted that the complexities of the tooth profile of bevel 
gears make precise analysis rather very complicated and 
such a conservative approach is justified. Fig. A1 shows 
the forces that are generated at the mid-width pitch 
circle of a bevel gear. Fig. A2 is the axial plane of the 
helical bevel gear. 

 
Fig. A1: Forces in bevel gear  

  
Fig. A2: Axial plane of bevel gear Gear  

 The torque load on the pinion is: 
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In bevel gears, the radial distance to a point on the 
cone from the shaft axis in the transverse plane is a 
linear function of the distance of that point from the 
apex of the cone.  Therefore, by similar triangles in Fig. 
2a: 
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Substitute Eq. (A4a) in Eq. (A2): 
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Eqs. (A2) and (A5) provide the same estimate for the 
tangential force. This shows that the factor Kb in Eq. 
(A5) effectively transfers the tangential force acting at 
the bevel gear mid-facewidth to the backend of the gear. 
This allows the Tredgold’s approximation and the 
transmitted load to be applied on the same plane, 
providing consistency of design analysis for bevel gears.  

The normal contact force is: 

cos cos
t

n
n

F
F

ψ φ
=   (A6) 

The radial and axial forces in spiral bevel gear mes–
hes are more complicated than for cylindrical helical 
gears. Both the helix hand and shaft rotation direction 
must be known to be able to correctly identify the 
magnitude and direction of axial forces. When viewing 
the gear from the large end; two cases: Case I and Case 
II may be distinguished. 
  
Case I: Right-hand helix and CW rotation or Left-hand 
helix and CW rotation: 

[ ]tan sin tan cosa t tF F φ ϕ ψ ϕ= −  (A7a) 

[ ]tan cos tan sinr t tF F φ ϕ ψ ϕ= +   (A7b) 

Case II: Right-hand helix and CCW rotation or Left-
hand helix and CW rotation: 

[ ]tan sin tan cosa t tF F φ ϕ ψ ϕ= +   (A8a) 

[ ]tan cos tan sinr t tF F φ ϕ ψ ϕ= −  (A8b) 

The equations above give the forces on the gear. The 
corresponding forces on the pinion are obtained by 
noting that the axial force on the gear is equal to the 
radial force on the pinion and radial force on the gear is 
equal to the axial force on the pinion. Helix hands 
should be chosen so that the axial points away from 
cone center for the pinion and the radial force of the 
gear presses down on the pinion to maintain contact. 
 
APPENDIX B: SERVICE LOAD FACTOR ESTIMATE  

The service load factor accounts for the fact that the 
forces acting on gear drive meshes in service are 
generally higher than the rated or nominal values. It is 
used to capture the combined influence of several load 
modification factors that can best the estimated 
experimentally and or are informed by experience. 
Human experience, knowledge and skills, test facilities 
and accuracy of test equipment are obvious factors that 
can ultimately affect the numerical values of some of 
these load modification factors. But good engineering 
practice and tireless efforts of innumerable researchers 
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have resulted in values that are trustworthy. Therefore, 
realistic operating force values in gear meshes can be 
estimated with good confidence when the modification 
factors are used. The service load factor as defined here, 
does not account for short-time or momentary overload. 
It is only used to account for overloads that are of 
reoccurring nature during normal operating conditions. 
It is expressed as: 

s a v m r p fK K K K K K K=  (B1) 

B1: Application (External Overload) Factor, Ka 

The external overload factor accounts for probable load 
variations arising from the accelerations and or dece–
lerations of connected masses of power source equip–
ment and the driven or load equipment. It is used to 
adjust the rated load value in order to accommodate 
overloads that are reoccurring in nature during normal 
operating conditions. It does not account for resonance 
induced overload which may occur if an excitation has a 
frequency near one of the geared system’s natural 
frequencies. The external overload factor can only be 
established after considerable field experience in a 
particular field [38]. Many industries have established 
suitable values based on experience [41] and AGMA 
has recommended external overload for the design of 
gear reducers. The values of Ka recommended by 
AGMA and ISO standards are basically the same. 

B2: Internal Dynamic Overload Factor, (Kv) 

The usual noise from rotating pairs of gears results from 
collision between gear teeth during operation. Such 
collisions raise the load on the gear more than the rated 
load and that increase is accounted for by the internal 
dynamic overload factor. The collisions are caused by 
non-conjugate meshing action of gear teeth during 
engagement, dynamic imbalance, and shaft misalignn–
ment. Conjugate action is possible only if gear teeth 
have perfect involute geometry, hence manufacturing 
inaccuracy of any kind makes conjugate action impo–
ssible. Excitations from manufacturing inaccuracies are 
usually pronounced in spur gears without profile 
modification. Profile modified spur and regular helical 
gears (axial contact ratio more than unity) have lower 
excitations from theses inaccuracies. In addition to non-
conjugate action, shaft misalignment and the relative 
speed between gear teeth when they come into contact 
lead to internal acceleration and deceleration of the 
gears and connected parts during tooth engagement. The 
internal dynamic overload factor is determined experi–
mentally by loading a gearset of a designated quality 
number to failure at zero velocity and at a specified 
pitch line velocity. The ratio of the static failure load to 
the dynamic failure load is taken as the internal dynamic 
factor [41]. It is defined as: 
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AGMA [38] has developed approximate empirical 
expressions for the internal dynamic overload factor 
based on gear profile manufacturing quality and pitch 
velocity. AGMA gear profile manufacturing quality 

numbers range from 0 to 12 [42], and are similar to ISO 
quality numbers. In the numbering scheme, lower 
numbers represent higher gear profile manufacturing 
quality. Based on AGMA recommendations and for 
AGMA/ISO gear quality numbers in the range 
of 126 ≤≤ nq , a general internal dynamic load factor 
may be obtained using Eqs. (B3) and (B4). 
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Helical gears with at least unity axial contact ratio 
run more quietly than spur gears [30]. Spiral bevel gears 
generally exhibit lower noise and vibration level than 
spur gears in operation, allowing their applications for 
higher velocity than spur gears [24]. Maitra [10, p. 2.90] 
states that the dynamic load for helical gears can be 
taken as 75% that of spur gears. Since by definition (Eq. 
(B2)), the internal dynamic factor is at least unity, it was 
suggested that internal dynamic overload factor may be 
estimated using Eq. (B5a) for spur gears and Eq. (B5b) 
for helical gears [43].  

v voK K=      1 0.75( 1)v voK K= + −   (B5) 

The maximum recommended pitch point velocity for 
a gear profile quality number is: 

[ ]2max 20.005 14t nV a q= + −   (B6) 

It should be noted that higher pitch point velocity 
requires higher profile manufacturing quality number. 
For high-speed applications, especially those above 20 
m/s, methods that account for gear material properties, 
mass and inertia of the gears, and actual tooth profile 
errors should be used to estimate vK [41]. 

B3: Mesh Overload Factor, (Km) 

The mesh overload factor takes care of non-uniform 
load distribution along the tooth contact length which is 
caused by misalignment of gears and shafts due to 
dynamic twisting and bending. This results from the 
rigidity of and clearances in gear supporting members 
(like bearings, shafts, and housing), manufacturing 
inaccuracy, tooth width and spacing, and geometric 
characteristics of gear tooth. Variation in contact stress 
occurs in both axial and radial directions of the gear 
mesh [2] and the problem becomes more pronounced 
with larger facewidth [9]. Accurate determination of the 
mesh overload factor is one of the most difficult tasks in 
gear design. The mesh overload factor is defined as the 
ratio of the maximum load intensity to the average load 
intensity. That is: 
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For bevel gears, values of mesh overload factor are 
highly dependent on the mounting configuration of both 
pinion and gear. Preferred mounting configuration is for 
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both gears to be straddle mounted, but this may not 
always be possible. Hence, one-straddled gear and one-
cantilevered gear configuration is common in practice. 
Both gears may be cantilevered but this is a rare 
configuration in practice and is not recommended. 
Based on AGMA standard 2003-A86 [33] and for 
crowned bevel gears of facewidth up to 356 mm, a 
general mesh overload factor may be approximated by 
Eq. (B8) [15, 30]. Experience indicates that helical gears 
are slightly less sensitive to mounting conditions [44, p. 
551] and AGMA allows a reduced value of spur gears 
mesh overload factor for helical cylindrical gears, 
therefore it was suggested [19, 43] that Eq, (B9a) and 
Eq. (B9b) may be used for crowned straight bevel gear 
teeth and crowned helical bevel gear teeth, respectively. 

2 65.6 10mc moK K b −= + ×   (B8) 

( )1 0.85 1m mc m mcK K K K= = + −   (B9) 

Table A1 gives suggested values of moK . 

 

Table A1: Basic Mounting Factor [16, p667] 

 
Gear Mounting Type 

Basic Mesh Overload 

Factor  ( moK )* 
Both gears straddled 1.00 
One gear straddled 1.10 
Both gears cantilevered 1.25 
*For crowned bevel gearsets only 

 
AGMA is yet to provide specific guidance on the 
variation of contact stress in the radial direction. 
However, ISO 6336 defines what may be called a 
“radial mesh overload factor” and suggests a value of 
1.1 for shaved teeth and 1.0 for ground teeth [45]. This 
factor seems negligible, especially for bevel gears used 
in high speed applications. 

B4: Rim Rigidity Factor, (Kr) 

The Lewis bending stress formula assumes a gear tooth 
attached to a perfectly rigid base support. This is true 
only if the gear rim is sufficiently rigid or thick enough. 
Large diameter gears of cast or fabricated construction 
having relatively thin rim are more flexible and may be 
subjected to low frequency vibration modes [46] that 
can cause gear failure. Traditionally, the rim rigidity 
factor is applied to the bending load only. Since during 
contact, the load on the tooth causes both bending and 
contact stresses at the same time, some authors believe 
the rim rigidity factor should apply to contact stress also 
[27, 29]. Gear tooth base support rigidity is assessed by 
the rim backup ratio which is defined as the rim 
thickness divided by the whole depth of gear tooth. 
AGMA experimental data suggest that when the rim 
backup ratio is greater than 1.2, the rim rigidity factor is 
unity, otherwise it is above unity. Based on AGMA [38] 
recommendation, the gear rim rigidity factor may be 
obtained from Eqs. (B10) and (B11). 
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r
r h
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=λ 0.1=rK  for 2.1≥rλ  (B10) 
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242.2ln6.1  for 0.5 1.2rλ≤ ≤   (B11) 

For standard ISO cylindrical and bevel gears, ht = 
2.25mt. A rim back up ratio of 2.1=rλ  suggests a rim 
thickness, tr of 2.70 times the gear transverse module for 
spur and straight bevel gears of ISO standard propor–
tions.  For a Gleason bevel gear system, the rim thick–
ness, tr is about 2.63 times the gear transverse module. 

B5: Mesh Frictional Load factor 

It has been established that the presence of mesh friction 
slightly increases the load on gears [28]. Mesh friction 
describes the frictional behavior occurring on the 
surfaces of a pair of gears in contact during operation. 
Frictional traction can arise from an oil film viscosity or 
from metal-to-metal contact during the steady-state or 
transient-state operation of gearsets. Gear mesh friction 
is complicated with contributions from sliding and 
rolling motions. However, pure rolling motion occurs 
only in the vicinity of the pitch point and a mixture of 
sliding and rolling motions predominate elsewhere 
[30)]. Sliding friction is more significant in power loss 
than the rolling friction component. The frictional load 
factor for closed gear drives may be evaluated from Eq. 
(B12) [28]. 

0.25
0.101f
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K
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≈ + 10.1≤   (B12a) 
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⎡ ⎤
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⎣ ⎦
   (B12b) 

Higher peripheral speed facilitates the formation of 
an oil wedge in the contact area, resulting in lower 
frictional losses, [5].  

B6: Profile Modification Factor, (Kp)  

The standard or basic tooth profile of involute gears 
defined by the pressure angle is accommodated in the 
mesh contact stress expression by the gear contact form 
factor defined in Eq. (19b) in the article. Sometimes, the 
basic tooth profile is modified by changing the 
proportion of the addendum. Also, the center distance of 
gearsets may be adjusted during assembly which could 
alter the standard pressure angle during service. When 
the addendum is modified or center distance is adjusted, 
the working pressure angle of the gearset may be 
different from the standard value. The influence of 
addendum modification or center distance adjustment on 
the load capacity of gears is captured by the parameter: 

wn

t
pK

φ
φ

tan
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=    (B13) 

B6.1: Addendum Modified Gears  

The working pressure angle for addendum modified 
gearset is [Maitra (2014)]: 
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  (B14) 
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Generally, sx may be zero or non-zero in value after a 
gearset addendum is modified. When sx is zero, the 
working pressure angle of the gearset is un-affected by 
profile modification. If sx is non-zero and positive, the 
working pressure angle is increased and Kp is less than 
unity so that the contact stress is reduced. If sx is non-
zero and negative, the working pressure angle is 
decreased, Kp is greater than unity, resulting in increased 
contact stress. 

B6.2: Center Distance Adjusted Gears  

Sometimes the center distance of a gearset may be 
adjusted for proper backlash or a preferred value may be 
prescribed for a design. The working center distance is 
then not the same as the standard value based on the 
pitch radii of the gears in the mesh. The working 
pressure angle is obtained as: 

1cos coss
wn n

w

C
C

φ φ− ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  (B15) 

NOMENCLATURE  

1 subscript for pinion 
2 subscript for gear 
a1 AGMA velocity exponent 
a2 AGMA velocity coefficient 
b nominal facewidth of a gear (mm) 
be  effective facewidth of gear (mm) 
bn facewidth on normal plane (mm) 
bv gear facewidth on virtual plane (mm) 
Cs standard center distance 
Cw working center distance 
d helical gear pitch diameter (mm) 
d0 nominal spur gear pitch diameter (mm) 
de bevel gear backend pitch diameter (mm) 
de backend pitch diameter of pinion or gear (mm) 
da backend addendum (outside) diameter (mm) 
df backend dedendum (root) diameter (mm) 
dn pitch diameter of heli-spur gear in virtual plane 
dv pitch diameter of bevi-spur gear (mm) 
E elastic modulus of pinion or gear material (GPa) 
Ec composite or effective elastic modulus (GPa) 
Fa axial force (N) 
Fc normal contact force (N) 
Fd incremental internal dynamic load (N) 
Ft transmitted or tangential force (N) 
Fr radial force (N) 
ht gear tooth whole depth (mm) 
k1 access path length factor 
k2 reccess path length factor 
Ka application or external overload factor 
Kb bevel load factor 
Kf frictional load factor 
Kg contact stress form factor 
Km mounting or mesh overload factor 
km incremental specific load factor 
Kmc general mesh overload factor 
Kmo basic mounting or mesh overload factor 
kv incremental internal dynamic factor 
Kv0 general internal dynamic overload factor 

Kv internal overload or dynamic factor 
Kr rim flexibility load factor 
Kp profile modification load factor 
Ks service load factor 
Kx tooth lengthwise crowning factor 
Lm mid facewidth cone distance (mm) 
Le backend cone distance (mm) 
m mid facewidth module (mm) 
me backend transverse module (mm) 
mn normal module (mm) 
mt transverse module (mm) 
nc allowable contact stress design factor 
nH apparent contact stress design factor 
N1 rotational speed of pinion or gear (rpm) 
P1 transmitted power by pinion or gear (kW) 
qa average specific load (N/mm) 
qi incremental specific load (N/mm) 
qmax maximum specific load (N/mm) 
qn gear tooth profile manufacturing quality number 
re backend pitch radius of pinion or gear (mm) 
rm mid facewidth pitch radius of pinion or gear 

(mm) 
rv virtual pitch radius of pinion or gear (mm) 
SH allowable or design contact stress (MPa) 
Sc adjusted or service contact strength (MPa) 
sx residual profile shift factor on normal plane 
tr rim thickness (mm) 
T transmitted torque (Nm) 
T1 transmitted torque by pinion or gear (Nm) 
Vt Pitch point tangential velocity (m/s) 
Vtmax maximum pitch point tangential velocity (m/s) 
xn addendum correction or profile shift factor on 

normal plane 
z physical number of teeth on gear or pinion 
zn virtual number of teeth for helical gear 
zv virtual number of gear teeth for helical bevel 

gear 
λe effective facewidth factor 
μ gear ratio 
μv equivalent or virtual gear ratio 

n normal pressure angle (deg.) 
t transverse pressure angle (deg.) 
wt working transverse pressure angle (deg.) 
wn working normal plane pressure angle (deg) 

ψ nominal helix angle (deg.) 
ψb base helix angle (deg.) 
φ pitch angle of bevel gear (deg.) 
φ0 shaft angle (deg.) 
φ1 pitch angle of pinion (deg.) 
φ2 pitch angle of gear (deg.) 
ρv instantaneous radius of curvature on virtual 

plane at pitch point (mm) 
v contact ratio on virtual plane 

υ Poisson’s ratio of pinion or gear material 
m mesh friction coefficient 
λr rim backup ratio 
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КОНТАКТНИ НАПОН КОД ХЕЛИКОИДНИХ 
КОНУСНИХ ЗУПЧАНИКА 

 
Е.Е. Осакуе, Л. Анетор, К. Харис 

 
Хеликоидни конусни зупчаници имају нагнуте или 
закривљене зупце на конусној површини и најчешћи 
типови су коси, спирални, зерол и хипоидни ко–
нусни зупчаници. Због сложене геометрије конусних 
зупчаника, у пројектовању се највише користи 
концепт еквивалентних или виртуелних цилинд–
ричних зупчаника. У раду се приступ базира на 
следећим претпоставкама: угао хеликоиде код хели–
коидних конусних зупчаника једнак је средњем углу 
спирале, пречник корака на позадини је одређен као 
пречник хеликоидног зупчаника, примењена је 
Тредголдова апроксимација код хеликоидног зуп–
чаника. На основу ових претпоставки интензитет 
контактног напона хеликоидних конусних зупча–
ника је формулисан преко три параметра дизајна. 
Нови модел интензитета контактног напона се 
користи за прорачун контактног напона код три 
система зупчаника на три примера и поређењем са 
претходним решењима. Разлике између нових 
прорачуна и вредности код претходних решења 
варирају од -3% до -11%, при чему су нове процене 
доследне, али незнатно или нешто ниже од 
претходно добијених вредности. Иако су разлике 
наизглед мале, оне су од значаја јер контактни напон 
у великој мери утиче на трајност зупчаника. На 
пример, смањење контактног напона за 5% може да 
повећа трајност неких челичних материјала за 
готово 50%. Развијене једначине не односе се на 
конусне зупчанике са круном.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


