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Curved Timoshenko Beam for In-plane 
Vibration Analysis 
 
Curved beams are used so much in the arches and railway bridges and 
equipments for amusement parks.  There are few reports about the curved 
beam with the effects of both the shear deformation and rotary inertias. In 
this paper, a new finite element model investigates to analyze In-Plane 
vibration of a curved Timoshenko beam. The Stiffness and mass matrices of 
the curved beam element was obtained from the force-displacement 
relations and the kinetic energy equations, respectively. Assembly of the 
elemental property matrices is simple and without need to transformation 
matrix because of using the local polar coordinate system. The natural 
frequencies of curved Euler-Bernoulli beam with large thickness are not 
sufficiently accurate. In this case, using the curved Timoshenko beam 
element is necessary. Moreover, the influence of vibration absorber is 
discussed on the natural frequencies of the curved beam. 
 
Keywords: Curved Timoshenko Beam, In-plane response, Finite Element 
Method, Vibration Absorber. 

 
 

1. INTRODUCTION  
 

Static or dynamic analysis of curved structures such as 
arches, rings, shells of rotating machinery, and railway 
bridges is one of the common engineering issues. One 
of the essential structural components are beams, which 
are widely used in both macro-scale like composite 
laminates [1-4] and micro/nano systems as sensors [5–
8] and actuators [9]. One way for modelling these 
structures is by using a finite element numerical met–
hod. However, equations of governing relations on the 
finite element model of curved beams element have not 
been used a lot; maybe the complexity of formulas that 
are available for the curved beam element is one of the 
reasons for this subject [10]. Therefore, one of the aims 
of this research is to offer a simpler formulation for 
analysing the in-plane vibration of the curved beam. 
Some researchers have studied the curved beam that 
some of the important works will be mentioned. 

Lin and Lee [11] analysed the dynamic response of 
circular Timoshenko beams with general elastic boun–
dary conditions based on closed-form solutions. The 
free in-plane vibration analysis of a circular curved 
beam by a systematic approach was investigated by 
Kang et al. [12]. The in-plane vibration of curved beam 
structures was investigated by Chen [13] based on the 
differential transform method. To predict the in-plane 
free vibration of a large deflected pre-stressed cantilever 
curved beam (the Euler-Bernoulli beam) fixed at both 
ends, Ozturk [14] introduced the reversion and finite 
element methods with a straight-beam element 
approach. In this research, the reversion method is used 
to obtain the non-linear deflection curve of the flexible 

beam undergoing large deflection. Eisenberger and 
Efraim [15] presented an exact dynamic stiffness matrix 
for a circular beam with a uniform cross-section and 
two different boundary conditions. The matrix derived 
from the differential equations of motion for the beam 
and was free of membrane and shear locking as the 
shape functions. Huang et al. [16] derived the in-plane 
and the out-of-plane transient response with two diffe–
rent boundary conditions. In this research, the dynamic 
stiffness matrix method and the numerical Laplace tran–
sform were used for the non-circular Timoshenko 
curved beam. Leung and Zhu [17] investigated the in-
plane vibration of thin and thick curved beams with 
classical boundary conditions based on the finite ele–
ment method. Several Fourier p-elements for in-plane 
vibration of thin and thick curved beams having a 
uniform and non-uniform cross-section presented. In 
this research, the elements with enriching shape func–
tions avoided membrane and shear locking. In-plane 
free vibration of circular curved Timoshenko beam 
based on Chebyshev polynomials was investigated by 
Lee [18]. In this research, the pseudospectral method 
and basis function for the boundary conditions was 
used. To determine the natural frequencies, Kim et al. 
[19] developed a thin circular beam based on the finite 
element by considering the effects of shear deformation 
and rotary inertia. The stiffness and mass matrices are 
derived from the strain energy and kinetic energy, res–
pectively. The local polar coordinate system was used 
for developing the matrices and transformed into a 
global Cartesian coordinate system for assembling. 
Yang et al. [20] studied the free in-plane vibration of 
uniform and non-uniform curved beam by considering 
the effects of axis extensibility, rotary inertia, and shear 
deformation. In this research, the differential equations 
are derived by using the extended-Hamilton principle 
and solved numerically using the Galerkin finite 
element method. 
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Wu et al. [21] derived the un-coupled equation of 
motion for the circumferential displacement of an arch 
structure to analyse the free in-plane vibration. In this 
research, they obtained a frequency equation by using 
the compatible equations for the displacements and the 
equilibrium equations for the forces and moments at 
each intermediate node and two ends of the entire 
curved beam. Wu and Chen [22] presented a technique 
to replace all complex coefficients of the eigenvalue 
equation by the real ones for the natural frequencies and 
mode shapes of out-of-plane free vibrations of a 
uniform curved Euler-Bernoulli beam in various 
boundary conditions. Moreover, they compared the 
results with the approximate ones obtained from the 
finite-element method. Caliò et al. [23] investigated the 
natural frequencies and vibration modes of structures 
obtained by an assemblage of circular Timoshenko 
beams.  In this research considered both the in-plane 
and out-of-plane motions. Moreover, a parametric 
analysis of the in-plane and out-of-plane dynamic 
behaviour of the single arch was performed. Talukdar 
and Roy [24] modelled a curved Timoshenko beam and 
analysed in-plane free vibration of the cracked curved 
beam with both ends fixed conditions. Yang et al. [25] 
studied different approaches to solving the developed 
equations of motion of a curved beam. This research 
considered the effect of the shear deformation, rotary 
inertia, and the axial extensity and the differential 
equations of motion for the curved beams discussed. Liu 
and Zhu [26] developed an efficient formulation of a 
circular Timoshenko beam for static, vibration, and 
wave propagation problems based on wavelet-based 
finite element models of in-plane and out-of-plane mo–
tions of circular beams according to Hamilton's prin–
ciple. Lv et al. [27] presented a solution for the in-plane 
vibration of multi-span curved Timoshenko beams with 
general elastic boundary conditions by combining with 
the improved Fourier series method and Rayleigh-Ritz 
technique. Lee and Yan [28] presented a simple method 
for finding the analytical solution for natural frequ–
encies of a curved Timoshenko beam in out-of-plane 
motion with non-linear boundary conditions based on 
the shifting function method. In this research, three 
coupled governing differential equations were derived 
via Hamilton's principle. Liu et al. [29] addressed In-
plane and out-of-plane free vibration analysis of Timo–
shenko curved beams based on the isogeometric met–
hod, and a practical scheme to avoid numerical locking 
in both of the two patterns is proposed in this paper. 

Davis et al. [30] obtained the stiffness and mass 
matrices of the Timoshenko curved beam for In-plane 
vibration with the force-displacement relationships and 
kinetic energy equations, respectively. In this paper, all 
matrices that are based on the local Cartesian coordinate 
system are written for a direct beam. In this case, before 
the assembling element, they should convert matrices by 
using transformation matrices from the local Cartesian 
coordinate to the global coordinate even in the case of 
the curved beam curvature is constant. Lebeck and 
Knowlton [31] were obtained stiffness matrix of three-
dimensional curved beam element from the force-
displacement relationships by ignoring the effect of 
shear deformation. In their research, the in-plane beam 

movement is coupled with the out-of-plane movement 
because of the asymmetry of beam cross-section. 
Moreover, the stiffness matrix based on the local polar 
coordinate system was obtained. Therefore, the 
assembling element it is not necessary to convert 
coordinates. 

Palaninathan et al. [32] obtained the stiffness matrix 
of the Timoshenko curved beam in three- dimensional 
state by Castigliano theorem. Moreover, they considered 
the coupling effects between the vertical and lateral 
shear forces. The stiffness matrix was written in this 
paper like [30] based on the local Cartesian coordinate 
system for a direct beam. Jong-Shyong Wu et al. [33] 
investigated the In-plane vibration of a curved Classical 
beam (Euler-Bernoulli beam). In this research, the mass 
matrix of the curved beam was calculated with con–si–
deration of the rotary inertia effect with moving load on 
the curved beam. Petyt et al. [34] extracted the mass and 
stiffness matrices of the curved beam element based on 
the two-displacement function by ignoring rotary inertia 
effects. 

In the present research, by using methods described 
in [30, 31], stiffness and mass matrices of the curved 
beam element will be obtained from the force-displa–
cement relationships and the kinetic energy equations, 
respectively. The method has been used in the present 
study has the following advantages compared to the 
previous articles: 

1-Instead of using the local Cartesian coordinate 
described in [30], in this paper, the local polar 
coordinate system will be used. As a result, for a cir–
cular curved beam with constant curvature, the stiffness 
matrix can be obtained by assembling directly without 
the coordinate transformation matrices. 

2-Although the method presents in this paper for 
obtaining the stiffness matrix somewhat similar to the 
method presented in [31], this paper considers the shear 
deformation effects, and the mass matrix will be 
obtained. It would appear that by composing the met–
hods explained in [30, 31], a third formulation will be 
presented. It is similar to formulation was derived by 
Wu et al. [35] for analysing the out-of-plane vibrations 
of curved beams. 

 
2. FORMULATION AND METHODOLOGY 

 
2.1 The displacement functions of the curved Timo–

shenko beam element for the in-plane vibrations 
 

The curved beam element in Figure 1 is in equilibrium 
under the loads shown, and a force is applied to it in the 
tangential direction. If the tangential forces acting on 
the curved beam are large, the vibrational behavior of 
the beam changes. In this analysis, the effect of tan–
gential force, known as geometric stiffness, is not con–
sidered. The cutting angle or ψ , as shown in Figure 1, 
is measured relative to the line perpendicular to the 
midplane of the beam, and its positive direction is coun–
terclockwise. 

The cutting angle is calculated from (1). 

 vF
ψ =

kGA
 (1) 
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The rotation of the beam cross-section γ  is obtained 
from (2). 

 
0

1 dvγ = - u +ψ
r dθ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

 (2) 

where 
( )

0 rb
ra

Ar =
b / r dr∫

. It is a radius that there is no 

tension is created under the shear bending load with this 
radius (how to obtain the relation is given in Appendix 
A). 

By considering small displacements for the element, 
it can be shown that the moment in this element is 
obtained from (3) (see Appendix A). 

 
2

v
1 22

dFd v duM = C - + C
dθ dθdθ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

 
Figure 1. Forces and displacements in the curved beam 
element 

The stress-strain relationship in the tangential 
direction of the beam element is calculated by (4). 

 u
0

EA duF = + v
r dθ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

 (4) 

The three static equilibrium relations for this 
element are written as (5) to (7). 

 0 v
dM = r F
dθ

 (5) 

 u
v

dF
= F

dθ
 (6) 

 v
u

dF
= -F

dθ
. (7) 

Equations (3) to (7) are written for a thick beam, 
which means, in these equations, the effect of shear 
deformation is considered. These equations can also be 
used for thin beams by changing the coefficients 1C  

and 2C  in (3), ( 1 22
1

EIC = , C = 0
r

). 

In thin beams, the neutral axis coincides with the 
central axis of the beam cross-section (That is, (4) to 
(7), 0 1r = r ). 

The complete solution of (3) to (7) is in the form of 
(8) to (11) (see Appendix B). 

 i{u} = [H]{G } (9) 

 i{f} = [d]{G } (10) 

u 7 7 1

v 7 7

1 6 6 6

F 0 0 0 0 C cosθ C sinθ G
F = 0 0 0 0 -C sinθ C cosθ
M 0 C 0 0 C cosθ C sinθ G

⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (11) 

where { }T
i 1 6{G } = G … G  are the arbitrary integral 

constants, which are determined by the boundary 
conditions of the curved beam element. In Equation (8), 
γ which is the rotation of the beam cross-section, it is 
given for the simplicity of work along with solving the 
displacements. The definition of all constants of beam 
elements iC is given in Appendix C. 
 
2.2 Shape functions for Timoshenko curved beam 

element at in-plane vibrations 
 
Equations (9) and (10), which are the solution of equ–
ilibrium and stress-strain equations, they can be used to 
obtain the stiffness matrix of the curved beam element. 

The boundary conditions for the displacement of the 
curved beam element shown in Figure 2 are applied to 
(9), and (12) is obtained. 

i{δ} = [B]{G }  (12) 

1

4 4

0 0 5 0 5 0 6

u 1 -θ cosθ -sinθ θcosθ θsinθ G
v = 0 1 sinθ cosθ (θsinθ + C cosθ) (C sinθ -θcosθ)
γ -1/ r θ / r 0 0 C sinθ / r -C cosθ / r G

⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

.                     (8) 

1 1 1 1 1 1 11

1 1 1 1 4 1 4 1 1 11

0 1 0 5 1 0 5 1 01

2 2 2 2 2 2 2 2

2 2 2 2

2

1 -θ cosθ -sinθ θ cosθ θ sinθu
0 1 sinθ cosθ (θ sinθ + C cosθ ) (C sinθ -θ cosθ )v

-1/ r θ / r 0 0 C sinθ / r -C cosθ / rγ
=

u 1 -θ cosθ -sinθ θ cosθ θ sinθ
v 0 1 sinθ cosθ (θ s
γ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

1

2

3

4

52 4 2 4 2 2 2

60 2 0 5 2 0 5 2 0

G
G
G
G
Ginθ + C cosθ ) (C sinθ -θ cosθ )
G-1/ r θ / r 0 0 C sinθ / r -C cosθ / r

⎡ ⎤ ⎧ ⎫⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎩ ⎭⎣ ⎦

.        (13) 



618 ▪ VOL. 49, No 3, 2021 FME Transactions
 

θ2 T T T T T T2
i 8 1 1 8 2 2 9 3 1 1 3 10 3 3 iθ1

T = 0.5ρω {G } (C [R R ] + C [R R ]+ C ([R R ] +[R R ]) + C [R R ]){G }dθ∫             (21) 

T
2 4 4R = {0 1 sinθ cosθ (θsinθ + C cosθ) (C sinθ -θcosθ)}                              (23) 

{ }θ T T T T T2
8 1 1 8 2 2 9 3 1 1 3 10 3 3θ1

[H] = C R R + C R R + C (R R + R R ) + C R R dθ∫                           (26) 

If i{G } is calculated using (12) and substitute in (9), 
the shape functions of the element are obtained as (14). 

 -1{u} = [H][B] {δ} = [N]{δ}  (14) 

Therefore, according to the definition of shape func–
tions, it can be written. 

 -1[N] = [H][B]  (15) 

For simplicity, shape functions are implicitly 
obtained, and their explicit writing has been avoided. 

 
Figure 2. Definition of in-plane displacements for the 
curved beam element 

2.3 The stiffness matrix of the Timoshenko curved 
beam element 

 
The static equilibrium between the forces shown in 
nodes 1 and 2 for the curved beam element in Figure 1 
can be written as (16). 

 { } { }u1 v1 1 u2 v2 2F F M = - F F M . (16) 

By using (10) about nodes 1 and 2 of Figure 1 and by 
pay attention to (16) can be written as: 

 i{F} = [D]{G } . (17) 

u1 7 1 7 1

v1 7 1 7 1

1 1 6 1 6 1

7 2 7 2u2

7 2 7 2v2

1 6 2 6 22

F 0 0 0 0 -C cosθ -C sinθ
F 0 0 0 0 -C sinθ C cosθ
M 0 -C 0 0 -C cosθ -C sinθ

=
0 0 0 0 C cosθ C sinθF
0 0 0 0 C sinθ -C cosθF
0 C 0 0 C cosθ C sinθM

⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎨ ⎬ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎣ ⎦⎩ ⎭

1

2

3

4

5

6

G
G
G
G
G
G

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 (18) 

It is sufficient to obtain i{G } from (12) and replace it 
in (17) to obtain the stiffness matrix of the curved beam 
element. 

 -1
i{F} = [D]{G } = [D][B] {δ} = [K]{δ} . (19) 

where -1[K] = [D][B] is the stiffness matrix of the 
curved beam element in in-plane vibrations. This matrix 
is symmetric. This property of the stiffness matrix 
accommodates a suitable way of checking the 
correctness of the analysis. 

 
2.4 The mass matrix of the Timoshenko curved 

beam element 
 

A general term for the kinetic energy of a curved beam 
element that vibrates with frequencyω  on its plane is in 
the form of: 

( ){ }2rθ2 2b2
0θ r1 a

T = 0.5ρω br v + u + r - r γ drdθ⎡ ⎤⎢ ⎥⎣ ⎦∫ ∫  (20) 

If (20) is written in matrix form, and the inner 
integral is calculated, (21) is obtained: 

where 

 T
1R = {1 -θ cosθ -sinθ θcosθ θsinθ}  (22) 

T
3 0 0 5 0 5 0R = {-1/ r θ / r 0 0 C sinθ / r -C cosθ / r } (24) 

In order to obtain the kinetic energy relation in thin 
beams, it is sufficient to apply changes C9 = C10 = 0, r0 = 
r1 in (21). By substituting (12) in (21), the vector i{G } is 
removed, and (21) is simplified to: 

 2 T -T -1T = 0.5ρω {δ} [B] [H][B] {δ}  (25) 

where the mass matrix of a curved beam element 
-T -1ρ[B] [H][B] can be easily obtained. 

 
2.5 Vibration absorbing element 

 
If the vibration absorber (Figure 3) is considered an 
element with two nodes, the stiffness, mass, and 
damping matrices of the vibration absorber element are 
in the form of (27) to (29) [36]. 

 
Figure 3. The curved beam with a vibration absorber 

 TMD
TMD

0 01[m ] = ( )
0 mρR

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
 (27) 

 
2

TMD TMD
TMD

TMD TMDx

K -KR[K ] = ( )
-K KEI

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
 (28) 
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 TMD TMD
TMD

TMD TMD

C C
[C ] =

C C

⎡ ⎤−⎢ ⎥⎢ ⎥⎢ ⎥−⎣ ⎦
 (29) 

It should be noted that for obtaining the optimal 
answer, the range of dimensionless parameters of 
vibration absorber must be observed. This range is as 
follows: 

 TMD
TMD TMD

n

ω
f = , 0 f 1

ω
≤ ≤  (30) 

 TMD
TMD TMD

TMD TMD

C
ξ = , 0 ξ 2.5

2 K m
≤ ≤  (31) 

 
3. NUMERICAL EXAMPLES AND DISCUSSIONS 
 
2.6 Example 1: A curved beam with simply 

supported boundary conditions 
 
The first example calculates the natural frequencies of a 
curved beam with and without absorber and simply 
supported boundary conditions (S-S). The dimensions 
and material properties have been selected from the 
reference [34,36] and shown in Table 1. 

The first five frequencies of this beam with S-S 
boundary conditions are given in Table 2. These 
frequencies have been compared with the values given 
in the references [33,34]. 

The natural frequencies in the second column of 
Table 2 are obtained using the exact solution of the 
frequency equations in the reference [34]. In reference 
[33] (fourth column of Table 2), natural frequencies are 
calculated using the straight beam element. It is shown 
that the exact answer was not obtained using 40 
elements. 

By comparing the results obtained from the In-plane 
computer program and the results are given in the 
references [33,34], it can be seen that by using the same 

number of curved elements, the numerical values of the 
frequencies obtained from this program are less than the 
frequencies given in the reference [33]. 
Table 1. Geometrical and physical data of the curved beam 

Parameter value 
Radial thickness of the beam [cm] 0.0327
Axial thickness of the beam [cm] 2.560
Radius of curvature [cm] R = 76.200  
Beam cross-sectional area [cm2] 0.0839
shear correction factor k = 0.800
The central angle of the curved beam [rad] α = 1

3
kgρ[ ]
m

 2764 

2
NE [ ]

m
 6.89×1010 

[-]υ 0.300 

TMDM [kg] 100000

TMDK [N / m] 475000.320 

TC [N.s / m] 63547.970
This is due to the fact that in the reference [33], only 

the rotational inertia of the curved beam is considered 
while in this program, in addition to the rotational 
inertia, the effects of shear deformation are also 
considered. As a result, the overall stiffness, and its 
natural frequencies will be reduced.  

By comparing the second and 11th columns in Table 
2, it can be seen that using 20 elements, the answers 
obtained from the computer program have been reduced 
from the reference answers [34]. 

It should be noted that the reference [34] does not 
take into account the rotational inertia of the beam, and 
therefore at high frequencies the answers obtained from 
the computer program are less than the values given in 
the reference [34]. 

Table 2. Natural frequencies of curved beams (Hz) with S-S boundary conditions ( Left Rightv = v = 0 ). 

M
od

e 
nu

m
be

r 

ex
ac

t s
ol

ut
io

n 
[3

4]
 

Reference [33] In-plane code without 
absorber 

In-plane code 
with absorber 

With straight 
beam 

elements 

With curved beam 
elements With curved beam elements With curved beam elements 

20 
ELE 

40 
ELE 

2 
ELE 

4 
ELE 

6 
ELE 

2 
ELE 

4 
ELE 

6 
ELE 

20 
ELE 

2 
ELE 

4 
ELE 

6 
ELE 

8 
ELE 

1 

0.
34

9 

0.
56

5 

0.
56

4 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

0.
34

9 

2 

1.
57

1 

1.
95

2 

1.
95

2 

1.
57

2 

1.
57

2 

1.
57

2 

1.
57

2 

1.
57

1 

1.
57

1 

1.
57

1 

1.
53

4 

1.
53

4 

1.
53

4 

1.
53

4 

3 

3.
61

2 

4.
22

8 

4.
22

6 

3.
72

5 

3.
61

5 

3.
61

3 

3.
72

3 

3.
61

4 

3.
61

1 

3.
61

1 

3.
72

3 

3.
61

4 

3.
61

1 

3.
61

0 

4 

6.
47

0 

7.
23

0 

7.
23

0 

8.
21

2 

6.
47

4 

6.
47

4 

8.
20

7 

6.
47

1 

6.
47

1 

6.
46

8 

8.
15

1 

6.
43

2 

6.
43

2 

6.
42

4 

5 

10
.1

44
 

11
.1

61
 

11
.1

56
 

14
.3

07
 

10
.2

74
 

10
.1

62
 

14
.2

99
 

10
.2

68
 

10
.1

57
 

10
.1

23
 

14
.2

99
 

10
.2

68
 

10
.1

57
 

10
.1

42
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2.7 Example 2 
 
The second example is considered a curved beam with 
two different boundary conditions: clamped-clamped 
(C-C) and simply supported (S-S) conditions. The 
material properties and dimensions of the beam are 
selected from reference [33,36] and shown in Table 3. 
Table 3. Geometrical and physical data of the curved beam.  

Parameter value 
Radial thickness of the beam [m] 0.8 
Axial thickness of the beam [m] 1.5 
Radius of curvature [m] R = 20  
shear correction factor k = 0.800  
The central angle of the curved beam α = 120  

3
kgρ[ ]
m

 2700 

2
NE [ ]

m
 12×1010 

[-]υ  0.300 

TMDM [kg]   100000 
TMDK [N / m]   475000.320 
TC [N.s / m]   63547.970 

 
The first five frequencies of the curved beam are 

calculated with C-C and S-S boundary conditions and 
have been shown in Table 4. In the computer program 
40 elements have been used to calculate the natural 
frequencies of a curved beam. By comparing the 
numbers in Table 4, it can be seen that the frequencies 
calculated by the computer program are still slightly 
lower than the values given in the reference [33] (the 
reason mentioned). 

There is a small difference between the frequencies of 
Timoshenko (In-plane program) and Euler-Bernoulli 
(reference). The reason for this slight difference can be 
explained by calculating the slenderness coefficient of the 

example. 
2 2

r 2 2
b 1.5S = = = 0.00269

R α 20 (2π / 3)
 As can be 

seen, the slenderness coefficient of the beam is less than 
0.01. Therefore, the effects of shear forces can be igno–red. 

It is observed that the frequencies of the curved 
beam with the absorber are lower than without the 
absorber. The reason is the changes in the stiffness and 
total mass matrices. 

The mode shape of the C-C beam is plotted without 
and with absorber in Figure 4 and Figure 5, respectively. 

Figure 6 shows the displacement of the nodal points 
of a curved beam with C-C boundary conditions, and 
without absorber, for the first four modes of this beam. 

Figure 7 shows the displacement of the nodal points 
of a curved beam with C-C boundary conditions and 
with absorber for the first four modes of this beam. 

According to Figure 6, it can be seen that v  has 
more values than u and γ in all modes. That is, the 
displacement values related to the y direction are greater 
than the rotation values of the cross-section and the 
displacement in the x  direction (Figure 7). 

The mode shape of the S-S beam is plotted without 
and with absorber in Figure 8 and 9, respectively. 

Figure 10 and 11 shows the displacement of the 
nodal points of a curved beam with S-S boundary 
conditions, and without and with absorber, for the first 
four modes of this beam, respectively. 

According to Figure 10 and 11, it can be seen that v  
has more values than u and γ in all modes. That is, the 
displacement values related to the y direction are greater 
than the rotation values of the cross-section and the 
displacement in the x  direction. 

 
2.8 Example 3 
 
In the third example, the beam radius has been altered 
between 2 to 10 m, and the first three frequencies of the 
curved beam are calculated. The rest of the parameters 
are the same as in the second example. 

In Figure 12, the frequency calculated by a 
computer program (Timoshenko beam theory) has 
been compared by the results of ref. [33] (Euler-
Bernoulli beam theory). For calculating the natural 
frequencies in the computer program, the curved beam 
is modeled with 20 elements. 

It can be seen in Figure 12, the frequencies of the 
Timoshenko curved beam less than the frequencies of 
the Euler-Bernoulli beam. The reason is that the 
effects of shear deformation, which reduces the 
stiffness and the natural frequencies of the curved 
Timoshenko beam. 

Moreover, it is observed that with the increasing curved 
beam slender coefficient, the difference between the 
frequencies calculated of the two theories has increased 
and cannot be ignored. In this case, the more accurate 
theory or the Timoshenko beam theory must be used. 

It is also observed that in the second mode, there is 
not much difference between the frequencies of the 
curved beam in the theory of Timoshenko and Euler 
Bernoulli. This ignorable difference is because the 
second mode shape, which is called the breathing mode, 
has a more radial displacement, and the angular 
displacement is almost zero, and therefore the shear 
angle is equal to zero in this mode shape. 

Table 4. Natural frequencies of curved beams (Hz) with C-C and S-S boundary conditions.  

Mode 
number 

C-C S-S 
Reference 

[33] 
In-plane code 

without absorber 
In-plane code 
with absorber 

Reference 
[33] 

In-plane code 
without absorber 

In-plane code 
with absorber 

1 27.892 27.746 0.1007 16.316 16.284 0.10066 
2 54.993 54.507 27.7460 41.069 40.893 16.2844 
3 100.710 99.418 54.5071 79.357 78.790 40.8933 
4 143.866 141.721 99.4179 124.036 122.730 78.7902 
5 198.849 198.392 141.7208 187.173 181.474 122.7296 
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Figure 4. The mode shape of the curved beam without absorber for the first four modes (C-C) 

 
Figure 5. The mode shape of the curved beam with absorber for the first four modes (C-C) 

 
Figure 6. Displacement of nodal points of the curved beam without absorber for the first four modes (C-C) 

 
Figure 7. Displacement of nodal points of the curved beam with absorber for the first four modes (C-C) 
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Figure 8. The mode shape of the curved beam without absorber for the first four modes (S-S) 

 
Figure 9. The mode shape of the curved beam with absorber for the first four modes (S-S) 

 
Figure 10. Displacement of nodal points of the curved beam without absorber for the first four modes (S-S) 

 
Figure 11. Displacement of nodal points of the curved beam with absorber for the first four modes (S-S) 
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Figure 12. Natural frequencies of Timoshenko and Euler-Bernoulli curved beam with the S-S condition versus the slender 
coefficient 

4. CONCLUSION  
 

In order to analyze the in-plane vibrations of the curved 
Timoshenko beam, the mass and stiffness matrices of 
the curved beam were obtained using finite element 
methods for in-plane vibration mode. The stiffness and 
mass matrices of the curved beam were obtained from 
the force-displacement relationships and the kinetic 
energy equations, respectively. Due to the use of the 
local polar coordinate system, the elements were 
assembled easily without the need for coordinate 
conversion matrices. Curved beam frequencies with 
different boundary conditions were calculated using the 
Timoshenko theory, and the effect of the slender 
coefficient on the difference between Timoshenko and 
Euler-Bernoulli theory was investigated. Therefore, as 
the curvature of the curved beam increases, the 
difference between the frequencies calculated from the 
two theories of Timoshenko and Euler-Bernoulli 
increases, and this difference cannot be ignored. In these 
cases, a more accurate theory, namely the theory of the 
Timoshenko beam, must be used. The natural 
frequencies for the state with the vibration absorber are 
lower than without the vibration absorber, and the 
convergence of the finite element method was well after 
using 20 elements. Moreover, the maximum 
displacement value with the vibration absorber on the 
curved beam is less than without one, and this shows the 
efficiency of the vibration absorber in reducing the 
displacement value. 

APPENDIX A: OBTAINING THE RADIUS OF THE 
NEUTRAL LINE AND THE STRESS-STRAIN 
RELATIONSHIP IN THE ELEMENT UNDER BENDING 

This appendix describes how to obtain two 
relationships. First, the radius at which pure bending in 
the thick curved beam element does not create any 
stress is obtained, and then the stress-strain interface in 
the bending element is calculated. 

The thick curved beam element, under pure bending 
moment, is shown in Figure A-1. The initial plate length 
of the beam that is in radius r relative to the center of 
the beam is equal to rδθ . In the deformed state from the 

shape geometry, increasing the length of this element is 
equal to (A-1). 

 0

0

R(r - r)
δθ

R + r
. (A-1) 

 
Figure A-1. Thick curved beam element, under a pure 
bending moment. 

The tensile force δF at the end of this plate is 
obtained from (A-2). 

 0

0

r - rRδF = bδr E
r R + r

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (A-2) 

The net tangential force is equal to the sum of the 
tensile forces on the cross-section of the beam. 

 r r 0b b
r ra a 0

r - rb RδF = E dr
r R + r

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ . (A-3) 

For small displacements 0 1R << r , r , and therefore 
(A-4) is obtained. 

 r rb b
0r ra a0 0

ER b Rb (r / r -1)dr = ER dr - AE
r r r∫ ∫ .(A-4) 

In the case of pure bending, the net tangential force must 
be zero, so (A-5) is obtained for the neutral axis radius. 

 0 rb
ra

Ar =
(b / r)dr∫

. (A-5) 

The bending moment around the center of curvature 
of the curved beam element (point o in Figure A-1) is 
equal to: 
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 r r 0b b
r ra a 0

r - r
M = - r δF = - b R E dr

R + r

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ . (A-6) 

Assuming small displacements, (A-6) takes the form 
(A-7). 

 rb
0ra0

ERM = - b (r - r)dr
r ∫ . (A-7) 

Now with respect to the two (A-8) and (A-9). 

 
rb

1ra
b r dr = r A∫ . (A-8) 

 
rb

0 0ra
b r dr = r A∫ . (A-9) 

A simplified (A-10) is obtained. 

 1 0

0

r - r
M = ERA

r

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (A-10) 

On the other hand, due to the shape geometry. 

 0
dγR = r
dθ

. (A-11) 

where γ is the angle of rotation of the beam cross-
section, therefore: 

 0
0 0

d 1 dv uR = r - +ψ
dθ r dθ r

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (A-12) 

According to (A-11) and (A-12) are. 

 
2

1 0
02

0

r - r d v du dψM = EA - + r
r dθ dθdθ

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. (A-13) 

 
2

v
1 22

dFd v duM = C - + C
dθ dθdθ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (A-14) 

Equation (A-14) is the stress-strain relationship in 
which the thick curved beam element is subjected to 
pure bending load on its plane. 

APPENDIX B: SOLVING DIFFERENTIAL EQUATIONS 
(3) TO (7) 

This appendix describes how to solve differential (3) to 
(7). 

 
2

v
1 22

dFd v duM = C - + C
dθ dθdθ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (B-1) 

 u 3
duF = C + v
dθ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (B-2) 

 0 v
dM = r F
dθ

. (B-3) 

 u
v

dF
= F

dθ
. (B-4) 

 v
u

dF
= -F

dθ
. (B-5) 

It is obtained (B-6) by using (B-1), (B-2) and (B-5). 

1 2 3

1 2 3

M = C [v - u - C C (u + v)]

M = C [v - u - C C (u + v )]

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′→
. (B-6) 

(B-7) is obtained from (B-2) to (B-4). 

 0 3M = r C (u + v )′ ′ ′ ′ . (B-7) 

According to (B-6) and (B-7) are: 

 1 1 2 3 0 3

1 1 2 3 0 3

-C u - C C C u - r C u
= -C v + C C C v + r C v

′′ ′′ ′′

′′′ ′ ′
. (B-8) 

Then by using (B-2) and (B-4). 

der.&6
3 v

(4)
3 3

C (u + v ) = F

C (u + v ) = -C (u + v) u + u = -v - v

′′ ′ ⎯⎯⎯⎯→

′′′ ′′ ′ ′′ ′′′ ′→
. (B-9) 

By removing v between (B-8) and (B-9), (B-10) is 
obtained. 

 (6) (4)u + 2u + u = 0′ ′ . (B-10) 

which is a 6th order differential equation, and its 
solution is in the form of (B-11). 

 1 2 3 4

5 6

u = G - G θ + G cosθ - G sinθ
 + G θcosθ + G θsinθ

. (B-11) 

v can also be obtained by replacing u in (B-8). 

2 3 4

5 4 6 4

v = G + G sinθ + G cosθ
+ G (θsinθ + C cosθ) + G (C sinθ -θcosθ)

.(B-12) 

By obtaining u , v and with the given relations, other 
unknowns can be easily obtained. By replacing u and v 
in (B-2), (B-13) is obtained. 

u 3 2 3 4 5

6 2 3 4

5 4 6 4

3 5 4 6 4

7 5 7 6

F = C [-G - G sinθ - G cosθ + G (cosθ -θsinθ)
  + G (sinθ + θcosθ) + G + G sinθ + G cosθ

+ G (θsinθ + C cosθ) + G (C sinθ -θcosθ)]
= C [G (1+ C )cosθ + G (1+ C )sinθ]

  = C cosθG + C sinθG

. (B-13) 

With the help of (B-4), (B-14) is obtained. 

 v 7 5 7 6F = -C sinθG + C cosθG . (B-14) 

Substituting u , v and vF  in (B-1) and simplification, 
M is also obtained. 

APPENDIX C: DEFINITION OF CONSTANTS 1 10-C C  

Mass and stiffness matrices are defined by (C-1) and 
(C-2) relations. 

 -1[K] = [D][B] . (C-1) 

 -T -1[M] = ρ[B] [H][B] . (C-2) 

Constants C1 to C10 are defined as (C-3) to (C-12) in 
the curved beam element. 

 1 0
1

0

r - r
C = EA

r

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (C-3) 
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 0
2

r
C =

k GA
. (C-4) 

 3
0

EAC =
r

. (C-5) 

 0 3 1 2 3
4

0 3 1 2 3

r C - C (1- C C )
C =

-r C - C (1+ C C )
. (C-6) 

 5 4 2 3 4C = 1- C - C C (1+ C ) . (C-7) 

 6 1 5C = C C . (C-8) 

 7 3 4C = C (1+ C ) . (C-9) 

 rb
8 ra

C = b r dr∫ . (C-10) 

 rb
9 0ra

C = (r - r) b r dr∫ . (C-11) 

 r 2b
10 0ra

C = (r - r) b r dr∫ . (C-12) 

where 

 0 rb
ra

Ar =
(b / r)dr∫

. (C-13) 

For a beam with a rectangular cross-section, the 
relations are calculated as (C-14) to (C-17). 

 1
0

1

1+ h / 2rr = h log
1- h / 2r

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠

. (C-14) 

 8 1C = Ar . (C-15) 

 9 1 0 1 1C = Ar ( r - r - I / Ar ) . (C-16) 

2 2 2
10 1 0 1 0 1 1C = Ar r + r + h / 4 - 2r (I / Ar + r )⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

. (C-17) 

In order to rewrite (C-14) to (C-17) for thin curved 
beams, in which there are no rotational shear angle and 
inertia effects. The constants must be defined as (C-18) 
to (C-20). 

 2
1 1C = EI / r . (C-18) 

 2 9 10C = C = C = 0 . (C-19) 
 0 1r = r . (C-20) 
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МОДЕЛ КОНАЧНИХ ЕЛЕМЕНАТА КРУЖНО 
ЗАКРИВЉЕНЕ ТИМОШЕНКОВЕ ГРЕДЕ  
ЗА АНАЛИЗУ ВИБРАЦИЈА У РАВНИ 

 
А. Нади, М. Рагхеби 

 
Закривљене греде се највише користе код лукова и 
железничких мостова као и код опреме за забавне 
паркове. Има мало радова о утицају закривљене 
греде на деформацију смицања и ротациону инер–
цију. Рад истражује примену новог модела коначних 
елемената за анализу вибрација у равни код Тимо-
шенкове закривљене греде. Матрице крутости и 
масе елемената греде добијене су из односа сила-
померај односно једначина за кинетику енергију. 
Склоп матрица елементарних својстава је једнос-
таван без потребе за матрицом трансформације јер 
се користи локални поларни координатни систем. 
Природне фреквенције закривљене Ојлер-Бернули-
јеве греде велике дебљине нису довољно прецизне. 
У овом случају, потребно је користити Тимошен-
кову греду. Разматра се утицај апсорбера вибрација 
на природне фреквенције закривљене греде.  

 


