
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2021) 49, 851-858 851

Received: January 2021, Accepted: July 2021
Correspondence to: Prof. Dario Antonelli, Politecnico di
Torino, Department of Management and Production
Engineering, Corso Duca degli Abruzzi, 24 - 10129
Torino, Italy, E-mail: dario.antonelli@polito.it
doi:10.5937/fme2104851A

Dario Antonelli
Associate Professor

Politecnico di Torino – Torino
DIGEP

Italy

Qingfei Zeng
PhD student

Tongji University – Shanghai
School of Mechnical and Engineering

China

Khurshid Aliev
Research Assistant

Politecnico di Torino – Torino
DISEG

Italy

Xuemei Liu
Professor

Tongji University – Shanghai
School of Mechnical and Engineering

China

Robust Assembly Sequence Generation
in a Human-Robot Collaborative
Workcell by Reinforcement Learning

Human-Robot Collaborative (HRC) workcells could enhance the inclusive
employment of human workers regardless their force or skills.
Collaborative robots not only substitute humans in dangerous and heavy
tasks, but also make the related processes within the reach of all workers,
overcoming lack of skills and physical limitations. To enable the full
exploitation of collaborative robots traditional robot programming must
be overcome. Reduction of robot programming time and worker cognitive
effort during the job become compelling requirements to be satisfied.
Reinforcement learning (RL) plays a core role to allow robot to adapt to a
changing and unstructured environment and to human undependable
execution of repetitive tasks. The paper focuses on the utilization of RL to
allow a robust industrial assembly process in a HRC workcell. The result
of the study is a method for the online generation of robot assembly task
sequence that adapts to the unpredictable and inconstant behavior of the
human co-workers. The method is presented with the help of a benchmark
case study.

Keywords: Reinforcement Learning, Machine Learning, Task-based Robot
Programming, Human-Robot Collaboration, Markov Decision Process,
Assembly.

1. INTRODUCTION

Assembly process impacts both the quality of product
and the process efficiency. The challenge is transferring
concepts sedimented in mass production to small
assembly through the introduction of innovative techno–
logies in robot automation [1].

Human-Robot Collaborative workcells (HRC) emp–
loy collaborative robots, light weight, highly flexible,
easy to program and intrinsically safe. They can comply
with small batch productions to meet the challenges of
short-term production [2].

The ISO Technical Standard 15066 defines the
safety requirements for collaborative industrial robot
systems and the work environment. HRC has been clas–
sified as:
• safety-rated monitored stop (temporal and spatial

separation);
• hand-guiding (temporal separation);
• speed and separation monitoring (spatial separa–

tion);
• power and force limiting (workspace sharing).

The last class represents the most complete and
challenging kind of human-robot collaboration and it is
the one addressed in present study (Figure 1).

Despite the advantages of HRC, its full exploitation
in actual industrial workplaces is limited. What hinder
the transition from manual assembly to HRC assembly,

apart from safety concerns, is the cognitive difference
between human and robot. Robot follows rigidly the
assigned task sequence and cannot adjust its operations
to the actions of the human counterpart. While the
human adapts his way of working to the partner, the
robot has no empathy, therefore can execute only the
assembly task in the programmed order.

The rigidity of the robot in following the planned
program hinders the collaboration with the humans that
carry all the burden of cognitive effort in adapting to the
automaton. Therefore, working with a collaborative
robot induce a stress state considerably greater than
working with other human teammates [3].

What is worst, robot has no fault tolerance, therefore
if some assembly operation is incorrect it stops the
process and cannot try to recover to the correct course
of action.

Figure 1. HRC workspace sharing: RW, HW and SW are
respectively robot, human and shared workspace

852 ▪ VOL. 49, No 4, 2021 FME Transactions

Adding flexibility, dependability and even empathy
to a collaborative robot is therefore an objective of
research in HRC. Reinforcement Learning (RL) has
been extensively adopted as an outstanding method to
simplify and empower robot programming, making it
concurrently more flexible and fault tolerant [4].

In present study, a model-free RL algorithm is used
to guide the robot operations at high level, allowing the
robot to adapt the assembly sequence if its human par–
tner changes the order of the operations. The robot be–
comes able to plan and follow a new assembly sequence
if it doesn’t prevent the completion of the job, perhaps
at the price of a limited waste of time. Since in small
productions time constraints are not as strict as in mass
productions, provided that product quality and work
safety be assured, a slowdown is preferrable to a
protective stop. The method is explained and applied to
a case study to show its effectiveness.

2. STRUCTURING THE ASSEMBLY SEQUENCE

To assist the transition from manual to HRC assembly,
[5] proposes to exploit a hierarchical model of the
assembly job obtained by decomposing the assembly
sequence. A slightly modified model is used here
(Figure 2). Assembly job is decomposed in tasks, then
in operations that eventually are split down in actions.

Figure 2. Hierarchical model of assembly job, tasks and
operations

Assembly tasks conventionally identify the assembly
of 2 or more parts, in a self-contained, comprehensive
way, independent from other tasks. Individual
operations are generic assembly actions and are used as
a building block in different tasks. Operations must be
further decomposed in specific robot actions, like open
or close the gripper, move from a point to another, etc.

At the task level, the robot and the human are both
involved. At the operation level, it is possible to have
robot or human working in separate working areas
(speed and separation monitoring) or together in
operations that need their collaborative interaction in the
shared workspace (power and force limiting). It must be
stated that some tasks can be executed by the robot
alone without human support. Fully automated tasks are
not present in the experiment of section 5 as they don’t
present interaction issues, i.e., the robot can stick to the
optimal assembly strategy defined at the beginning.

Having the Assembly Structure, it is possible to
build a method to program the assembly robot adopting
force and position control [6]. Note that also high-level
robot programming is called task-level, but the term
‘task’ is used here with a different meaning.

Another outcome of the decomposition of the
Assembly Structure is that now it is possible to

associate an execution time to every action by using the
predetermined time method systems (PTMS) [7].

It is important to remark that tasks, operations and
actions are different concepts. Actions are equivalent to
trajectory-level lines of code. Operations are task-level
sequences of actions and constitute a set of primitives to
be used by all similar tasks. Tasks are specific instances
of the assembly diagram and their sequence is usually
optimized respecting time and functional constraints. In
industrial productions often tasks are further clustered in
in macro-tasks.

In manual assembly every trained worker is able to
execute all the assembly operations in a task and needs
to know only the task sequence and the operation’s
parameters, e.g. position and number of welding points
on a metal sheet. In small productions, when more than
one worker is assigned to the task, the role of everyone
is not defined and can be agreed among the components
of the team. In HRC the role of human and robots are
distinct: robot executes dangerous, heavy operations,
human the ones that require dexterity or movements
outside the robot work-area.

There are several methods to build an assembly task
sequence. In present study the Hierarchical Task
Analysis is adopted, a method developed in the context
of ergonomic studies [8].
It has already been successfully extended to the task
assignment inside a HRC team, using an expert guide
[9] or a Machine Learning classification [10]. In the
next section, starting from a given task assignment to
both robots and humans, the task sequence planning
problem is addressed.

3. FROM THE ASSEMBLY SEQUENCE TO THE

MARKOV DECISION PROCESS

In literature, there are several solutions to the task
planning problem, that is to find the optimal task
sequence that minimize a cost objective, usually
completion time, subject to a number of constraints.
Authors of [11] proposed a simple simulated annealing
(SA) algorithm to generate the optimal assembly
sequence. Several capability variables were considered
to obtain the best assembly sequence. Tseng and others
[12] combined the factory information with the
evaluation of assembly sequence scheme and achieved
the best assembly sequence by genetic algorithm (GA).
Authors [13] further improved the performance of the
GA algorithm.

The above-mentioned algorithms work in a
deterministic assembly workcell where the robot or
even the human follow the planned task sequence. In
manual assembly, a degree of uncertainty is present as it
happens that an operator follows a different task
sequence, either because he knows that it is equivalent
to the one planned, or because of a small fault, often
with negligible consequences on the completion time.

What in manual workcell would be just a source of
variability in the cycle time, in an HRC workcell would
cause the halt of the process as the robot could not be
able to adapt to the change. To allow a greater degree of
flexibility, the robot should be enabled to find an
alternative assembly sequence with respect to the

FME Transactions VOL. 49, No 4, 2021 ▪ 853

original optimal sequence. The new sequence can be
equivalent or worse than the original one, but it would
guarantee the achievement of the assembly goal [14-16].

To be able to adopt an alternative sequence, it is
necessary to have a representation of the set of all the
feasible assembly tasks. This set is formalized as a
Markov Decision Process (MDP) and is used to train a
RL algorithm that, for every considered task, will
suggest a completion task sequence, hopefully the best
one. The robot therefore will no more chose a
predetermined task but will adapt its behaviour to the
human partner.

Assembly process is a collection of a set of states
(S), events (V) and relations (R). Here, S defines the
individual tasks, V drives the progress of the assembly
process from one step to another. R specifies the effect
of a given event Sm on a given state Vt progressing the
assembly process [17].

A state St has the Markov property if and only if
respect (1):

1 1 1, ,t t t tP S S P S S S+ +⎡ ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦… (1)

P is the state transition matrix, which can describe
the transition probability of two states and reflect the
uncertainty of the system. A MDP is a 5-tuple (S, A, P,
R, γ), where: S is a finite set of states, A is a finite set of
actions, P is the state transition matrix (2), R is the
reward function (3) and γ is the discount rate.

'
'

1 ,a
t t tSS

P P S s S s A a+⎡ ⎤= = = =⎣ ⎦ (2)

'
'

1 1, ,a
t t t tSS

R E R S s A a S s+ +
⎡ ⎤= = = =⎣ ⎦ (3)

For any MDP, there is an optimal policy π* better
than or equal to other policies. In present study MDP
represents the set of all feasible tasks and the optimal
policy corresponds to the solution of the task planning
problem.

4. Q-LEARNING OF THE ASSEMBLY SEQUENCE

RL is a behavioural decision-making method, which is
widely used in the field of artificial intelligence. RL
does the training by maximizing the value function of
the rewards obtained in the crossed states. It constantly
adjusts the agent’s behaviour to gather the maximum
cumulative reward. The action sequence is called policy
and it is updated through a continuous interaction with
the environment. Because the agent optimizes the policy
by trial and error exploration, it can learn from unknown
environment. Policy is the mapping relationship
between state space s and agent action space a of the
system. If the policy is stochastic, a probability
distribution of action selection for agents is provided.

The task sequence in an assembly problem is
defined and deterministic, therefore a model-free
algorithm appears unnecessary. The basic assumption of
present study is that the human worker could decide to
execute an unplanned state. From the viewpoint of the
robot it is the same as a stochastic policy, with a small,
but not null, probability that some actions lead to
unexpected states.

The state-value function for a policy π is used to
estimate the cumulative future rewards (4).

() 1
0

s k
t k t

k
V R S sπ π γ

∞

+ +
=

⎡ ⎤
= Ε =⎢ ⎥

⎣ ⎦
∑ (4)

The action-value (Q) function for a π is similarly
used to estimate the cumulative future rewards (5).

() 1
0

s,a ,k
t k t t

k
Q R S s A aπ π γ

∞

+ +
=

⎡ ⎤
= Ε = =⎢ ⎥

⎣ ⎦
∑ (5)

The optimal state-value function is (6):

() ()maxV s V sππ∗ = (6)

The optimal policy π* is estimated by the optimal
value function *v as (7):

() ()()' '

'
s arg max 'a a

SS SS
a A s S

P R V sπ γ∗ ∗
∈ ∈

= + ∑ (7)

Formula (7) requires the knowledge of the optimal
state value function. When the system is model-free, the
optimal policy cannot be obtained. When the action
value function Q(s,a) is known, the optimal policy
derives from (8):

() ()s arg max *
a A

Q s,aπ∗
∈

= (8)

Where Q* is the optimal action value function (9):

() ()maxQ s,a Q s,aππ∗ = (9)

Q-learning is a model-free RL family of algorithms
that learns an approximator for the optimal action-value
function based on the Bellman equation. Optimization is
performed off-policy, therefore uses data collected at
any point during training. The first proposal of a Q-
learning algorithm is due to [18].

An initial estimate of Q value is updated iteratively
in (10) with a learning rate α:

() () () ()
'

max ' '
a

Q s,a Q s,a r Q s ,a Q s,aα γ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

 (10)

When Q-learning updates Q-value, it directly uses
the ()

'
max ' '

a
Q s ,a , with a difference between behaviour

and target policy (off-policy). The agent uses ε-greedy
strategy to select the action. In this way it is possible to
balance the exploration of the solution space with the
exploitation of the best strategy.

5. EXPERIMENTAL SETUP

The experimental setup consists of UR3 robot equipped
with an OnRobot 2-finger gripper and is shown in Fig 3.
Several different and complementary human-robot
interaction interfaces have been implemented and are
present in the work area, ranging from Optirack motion
capture in combination with a pointer equipped with
markers, a gesture communication device based on Leap
Motion hand tracking or a task selection menu accessed
through a touch display. The strengths and weaknesses

854 ▪ VOL. 49, No 4, 2021 FME Transactions

of the interfaces are outside the scope of present study
and since now they will be generally referred as
Human-Robot Interface (HRI).

The case study is composed of human operator, light
weight collaborative robot and a desk corresponding to
the shared workspace. On the table both robot and human
worker can access all necessary components for
assembly, such as base, flanges, bolts and nuts (Figure 3).
The experiment is similar to the one described in [19],
with the difference that in their work the focus was on the
robust execution of operations despite the presence of
disturbances. In present work the focus is moved to
higher abstraction level, regarding the sequence of tasks
and assuming the neat execution of the single operations.

 Figure 3. Experimental setup

The case study is made of two flanges mounted on a
base. One flange is a sub-assemble of a square and an
oval flange. In Figure 4 the components are presented in
exploded and in assembled view. Figure 5 shows the
assembly diagram. The two flanges named F1 and F2 in
figure are identical. Possible positions for the flanges on
the base are 1, 2, 3, corresponding to the 3 rows of
holes, starting from the left edge.

Figure 4. Case study in a) exploded and b) assembled view

Figure 5. Assembly tree of the case study

Figure 6. Robot mounts the square flange on the base by
executing a task-oriented program after receiving the
indication of the target position by the operator

The case study, despite its simplicity, allows to
structure the assembly sequence by introducing sub-
assembled groups. The symmetry of the base allows
more configurations that are equivalent, in view of the
final objective. This remark is apparent to humans but
not to robots. Therefore, the human can start putting
flanges starting from the right or from the left,
indifferently. In addition to this fact, human has two
choices for the position of flange F2, on the first or the
second row of holes on the square. Only one position is
correct as the other is a mistake, although it doesn’t
violate any assembly constraint.

The collaborative mechanism has been devised as
follows: the robot picks a flange, move it to a position
indicated by the operator and hold it while the human
fasten the flange to the base by screwing the hexagonal
bolts. The robot actions have been programmed on a
Universal Robots UR3 as task-oriented programs: the
target position of the flange is indicated by the human
through HRI during the execution of the job (see Figure
6). A snapshot of a collaborative situation is taken in
Figure 7, during the flange joining.

Figure 7. Collaboration during flange joining to the base

MDP states in present research correspond to the
assembly tasks. The feasible assembly tasks can be

FME Transactions VOL. 49, No 4, 2021 ▪ 855

automatically generated using the assembly sequence
generation formalism [20].

The formalism is composed of a set of operations
and of topological, functional and stability constraints.
Constraints are represented as matrices with assembly
pairs in the rows and contact and translation functions in
the column. In [21] the method has been already applied
to this case study. The generation of tasks and
corresponding MDP states can be automated, removing
from the list of tasks the unfeasible ones by applying in
sequence the constraints. The list of Table 1 contains the
resulting feasible assembly tasks.
Table 1. State list: feasible assembly tasks

State Task Slot n. Action

1 B - Ass F, ass S

2 B U F1 1 Ass F, ass S, disass

3 B U F2 2 Ass F, ass S, disass

4 B U F3 3 Ass F, ass S, disass

5 B U S12 1,2 Ass F, ass S, disass

6 B U S23 2,3 Ass F, ass S, disass

7 B+F1 U S23 2,3 Ass F, ass S, disass

8 B+F3 U S12 1,2 Ass F, ass S, disass

9 B+F1+(S23 U F02) 2 Wrong state

10 B+F1+(S23 U F03) 3 Terminal

11 B+F3 + (S12 U F01) 1 Terminal

12 B+F3 + (S12 U F02) 2 Wrong state

13 B+ (S12 U F01) 1 Ass F, ass S, disass

14 B+ (S12 U F02) 2 Ass F, ass S, disass

15 B+ (S23 U F02) 2 Ass F, ass S, disass

16 B+ (S23 U F03) 3 Ass F, ass S, disass

17
B+ (S12 + F01) U
F3 3 Terminal

18
B+ (S12 + F02) U
F3 3 Wrong state

19
B+ (S23 + F02) U
F1 1 Wrong state

20
B+ (S23 + F03) U
F1 1 Terminal

The state is represented as a tuple made by the task,

the slot position where the two parts are assembled and
the actions that can be executed from this state. The
possible actions are: assemble F, assemble S,
disassemble. Some tasks are terminal, corresponding to
the completion of the assembly, while some tasks are
dead ends: feasible assembly but with a part in a wrong
position, due to human mistake.

To understand the logic behind task generation it is
important to remind that every value of a Markov state
is determined only by the preceding state and action.
Therefore, every Markov state must keep memory of the
whole assembly sequence so far. As an example, states
S11 and S17 are different, despite representing the same
assembled configuration because their assembly
sequence was different.

The structure of MDP is best understood by the
graph of Figure 8. For sake of simplicity rewards and

actions have been omitted. Actual rewards have been
put equals to -1 for every couple (action, state), except
for the terminal states that are bestowed a +2 reward.

Figure 8. MDP with initial state in green and terminal states
in red

Actions are either assemble oval or squared flange if
the arrow points to the right. If the arrow points to the
left, disassembly action is selected. Sometime the same
action could lead to different solutions. The ‘assemble
flange’ from S7 leads to S10 corresponding to the cor–
rect mount in slot 3 and to S9 corresponding to a wrong
position (slot 2). In this case a small statistical pro–
bability has been introduced in the transition function to
take into account the possibility of a human mistake.
From S9 the only allowed action is disassembly.

The optimal sequence was found in [21] using a
standard optimization method. It corresponds to the
policy {S1, S2, S7, S10}.

Rewards should reflect to the task execution time
with a minus sign. Longer the assembly time, less the
value. By assigning the same reward -1, to all the tasks
we made the system much more adaptable. Now there is
a complete equivalence among the optimal sequence
and other alternative sequences, namely {S1,S4,S8,S11}
{S1,S5,S13,S17} {S1,S6,S16,S20}. These sequences
are not completely equivalent as some of them require a
slight amount of additional time to complete.

Anyway, this is knowledge from experience that
purposely was not provided to the machine. The
learning phase starts without any clue of which could be
the best sequence.

6. RESULTS

The learning phase was conducted by privileging
exploration for a long time in order to build alternative
strategies for every possible solution. This result has
been obtained by using the ε–greedy strategy with an
initial value of ε equal to 0.9 and a decay factor equal to
0.005 after each episodes.

1

5

9

10

6

7

84

3

2

11

12

13

14

15

16

17

18

19

20

856 ▪ VOL. 49, No 4, 2021 FME Transactions

Therefore, the graph of reward (Figure 9) displays a
purposely long number of episodes before convergence,
even if the overall optimal policy could have been found
way faster with a greedy strategy.

Figure 9. Rewards vs. training episodes. Expected return
for every episode (light grey). 20 episodes-averaged reward
(dark grey) is considered for terminating the training
sequence

The optimal assembly sequence was found correctly
as the states {S1, S2, S7, S10} with corresponding
actions {assF, assS, assF}.

It is necessary to remark that in this simple case study,
every optimization method would have found the same
result with smaller computational effort. Thus, the objec-
tive of the work was to find all the alternative suboptimal
sequences, to face unpredicted human interventions.

To test the robustness of the RL training, simulations
were executed by having sometime the operator opting
for states different from the ones belonging to the
optimal sequence. This corresponds to an unexpected
action by the human. If the chosen state belonged to an
equivalent ‘good’ sequence (e.g. S5), the RL algorithm
was able to accept the proposed alternative sequence. If
the chosen state was a wrong one (e.g. S14 or S12), the
algorithm proposes to disassemble the last part in such a
way to come back to the ‘good’ path.

The robot initially trys to run the optimal sequence
{S1, S2, S7, S10}. Due to the relatively small number
of states, after every correct task, all the feasible
alternative tasks were tested, to see the reaction of the
RL trained agent.

Results are shown in Table 2. It is apparent that the
agent makes always a ‘minimum effort’ move. If the
human forced a state belonging to an acceptable task
sequence, though not the optimal one, the RL agent
switches on the new task sequence. It is equivalent to
say that the robot tries to adapt its way of work to the
human partner. On the contrary, if the human forces a
state belonging to a wrong sequence, the robot
disassemble last part (undo the task) and from this point
proposes the nearest task sequence that allows to
complete the assembly.

It is noteworthy that, with this approach, the robot
never halts during the collaborative work, even if the
human makes a ‘small’ mistake, as mounting the flange
in a wrong slot.

Table 2. Assembly sequences described by the list of
states, corresponding to assembly tasks. Every row in the
table corresponds to the activation of a non-expected task
(the modified states in underlined bold)

Assembly sequences proposed by RL agent
Decision Steps 1 2 3 4 5 6

Optimal
Sequence

S1 S2 S7 S10

Human -> S2 S1 S2 S7 S10
Human -> S3 S1 S3 S1 S2 S7 S10
Human –> S4 S1 S4 S1 S2 S7 S10
Human –> S5 S1 S5 S13 S17
Human -> S6 S1 S6 S16 S20
Human -> S9 S1 S2 S7 S9 S7 S10

Human -> S4&S8 S1 S4 S8 S4 S1,2,7,10
Human->S5&S14 S1 S5 S14 S5 S13 S17

Unfortunately, there is also some inefficient choices

by the RL agent. In some observations, the operator
forces the execution of task4, the robot proposes the
sequence {S1, S2, S7, S10}, but the human again forces
S8, leading to both good and wrong terminal states. This
state is equivalent to S7 but was not explored during
training. Therefore, the agent is not able to propose the
termination in S11 but insists in returning to the base
sequence by disassembling all the work done.

This is due to uncomplete exploration of the solution
state. In this simple case study, it would have been
possible to further fine tune the exploration parameters
in order to correct even this mistake. Although, in an
industrial assembly, the number of parts to be
assembled in a workcell could be far greater than this
case and full exploration of the solution space would be
computationally unfeasible.

This means that in an industrial assembly, if the
human operator will deviate too much from the
sequence proposed by the robot (completion-time
optimal), it is possible that the robot won’t be able to
cope with the changes and will refuse to follow its
human partner.

To be fair, even in manual production, if the
operators make a too big mistake, or many small ones,
during the job, the only viable solution is to stop
everything and restart the job from the beginning.

7. CONCLUSIONS

The paper addresses the problem of improving HRC
through the introduction of a further degree of flexibility
in the robot directives. In the case of a collaborative
assembly job executed by human and robot in a shared
workspace, flexibility at operation level means trying to
obtain robust movements, insensitive to disturbances
and, at a task management level, trying to adapt the task
sequence to the actual situation, at the price of giving up
optimality.

While RL has been extensively exploited to improve
robot flexibility at the trajectory level, it has not been
considered until now as a way for optimizing the task
sequence in presence of disturbances caused by
unpredictable human behaviour. In this paper RL allows
the collaborative robot to reach its goal by updating
online the assembly tasks to meet the human counterpart
choices. RL not only finds the best assembly sequence,

FME Transactions VOL. 49, No 4, 2021 ▪ 857

but also explores the solutions space for viable
alternatives. The robot becomes able to choose not only
the best solution, but also an acceptable one by adapting
to human moves.

The scientific contribution of present study is to
highlight the importance of exploiting RL in robotic, not
only for the optimization of continuous trajectory
control, but also to support decision strategies in order
to reduce the cognitive effort on the human worker.

Despite the overall good performances of the
method, results have also shown that it is difficult to
match the flexibility of human thinking and excessive
changes of program could hinder the collaborative
work.

Next research step will be using RL algorithms
devised for the solution of adversarial games. The
human operator, instead of a collaborator, will be
considered as an opponent and the goal of the RL agent
will be to complete the assembly job whichever
interference the human will carry forward. This is a
more correct strategy to maximize robustness of robot
operations.

Another essential research step will be extending
present method to a full complexity assembly derived
by an industrial case study. MDP will consistently
increase the number of states and the challenge will be
to guarantee an adequate exploration of the solution
state.

ACKNOWLEDGMENT

This work is supported by International Exchange
Program for Graduate Students, Tongji University (No.
201902042).

REFERENCES

[1] Pereira, A. C., Dinis-Carvalho, J., Alves, A. C., &
Arezes, P.: How Industry 4.0 can enhance lean
practices. FME Transactions, 47(4), 810-822, 2019.

[2] Liu, Z., Liu, Q., Xu, W., et al.: Human-Robot
Collaborative Manufacturing using Cooperative
Game: Framework and Implementation, in: 51th
CIRP Conference on manufacturing systems, 72:
87-92, 2018.

[3] Hinds, P. J., Roberts, T. L., and Jones, H.: Whose
job is it anyway? A study of human-robot
interaction in a collaborative task. Human–
Computer Interaction - J, 19(1-2), 151-181, 2004.

[4] Kober, J., Bagnell, J. A., and Peters, J.:
Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research - J,
32(11), 1238-1274, 2013.

[5] Mateus, J., E.C., Aghezzaf, E.H., Claeys, D.,
Limère, V., & Cottyn, J.: Method for transition
from manual assembly to human-robot
collaborative assembly, in: IFAC-PapersOnLine,
51(11), 405-410, 2018.

[6] Nagai, Tatsuichiro, Shigeto Aramaki, and Isao
Nagasawa. "Representation and programming for a
robotic assembly task using an assembly structure."
7th IEEE international conference on computer and
information technology, 2007.

[7] Ore, F., Hanson, L., Wiktorsson, M., and Eriksson,
Y.: Automation constraints in human industrial
robot collaborative workstation design, in: Swedish
Production Symposium SPS 2016, 25 Oct 2016,
Lund, Sweden, 2016.

[8] Stanton, N.A.: Hierarchical task analysis:
Developments, applications, and extensions.
Applied ergonomics - J, 37(1), 55-79, 2006.

[9] Tan, J. T. C., Duan, F., Zhang, Y., Watanabe, K.,
Kato, R., and Arai, T.: Human-robot collaboration
in cellular manufacturing: Design and development,
in: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 29-34, IEEE,
2009.

[10] Bruno, G., Antonelli, D.: Dynamic task
classification and assignment for the management
of human-robot collaborative teams in workcells.
The International Journal of Advanced
Manufacturing Technology - J, 98(9-12), 2415-
2427, 2018.

[11] Milner, J. M., Graves, S.C. and Whitney, D.E.:
Using simulated annealing to select least-cost
assembly sequences, in: IEEE International
Conference on Robotics & Automation, IEEE,
2058-2063, 1994.

[12] Tseng, Y. J., Chen, J.Y. and Huang, F.Y.: A multi-
plant assembly sequence planning model with
integrated assembly sequence planning and plant
assignment using GA, International Journal of
Advanced Manufacturing Technology - J, 48(1-4),
pp. 333-345, 2010.

[13] Lu, C., Yang, Z.: Integrated assembly sequence
planning and assembly line balancing with ant
colony optimization approach, International Journal
of Advanced Manufacturing Technology - J, 83(1-
4), 243-256, 2016.

[14] Antonelli, D., Astanin, S., Bruno, G.: Applicability
of Human-Robot Collaboration to Small Batch
Production, in: Working Conference on Virtual
Enterprises, Springer, Cham, 24-32, 2016.

[15] Assembly Task Using an Assembly Structure, 7th
IEEE International Conference on Computer and
Information Technology (CIT 2007), Aizu-
Wakamatsu, Fukushima, pp. 909-914, doi:
10.1109/CIT.2007.173, 2007.

[16] Stanton, N.A.: Hierarchical task analysis:
Developments, applications, and extensions.
Applied ergonomics - J, 37(1), 55-79, 2006.

[17] Akkaladevi, S., Plasch, M., Pichler, A., Rinner, B.:
Human Robot Collaboration to Reach a Common
Goal in an Assembly Process, in: ECAI The Eight
Starting Artificial Intelligence research symposium,
The Hague, Netherlands, 2016.

[18] Watkins, C., Dayan, P.: Q-learning. Machine
Learning - J, 8(3-4):279-292, 1992.

[19] Akkaladevi, S. C., Plasch, M., Pichler, A., and
Ikeda, M.: Towards Reinforcement based Learning
of an Assembly Process for Human Robot
Collaboration, in: Procedia Manufacturing, 38,
1491-1498, 2019.

858 ▪ VOL. 49, No 4, 2021 FME Transactions

[20] Gottipolu, R.B. and Ghosh, K.: A simplified and
efficient representation for evaluation and selection
of assembly sequences. Computers in Industry -
J, 50(3), pp.251-264, 2003.

[21] Antonelli, D., & Bruno, G.: Dynamic distribution
of assembly tasks in a collaborative workcell of
humans and robots. FME Transactions, 47(4), 723-
730, 2019

[22] Mandić, P., Lazarević, M.: An Application Exam–
ple of Webots in Solving Control Tasks of Robotic
System, FME Transactions, 41, 153-162, 2013.

РОБУСТНА ГЕНЕРАЦИЈА СЕКВЕНЦИ
МОНТАЖЕ У ЧОВЕК-РОБОТ КОЛАБО–
РАТИВНОЈ РАДНОЈ ЋЕЛИЈИ ПОМОЋУ
УЧЕЊА ПОЈАЧАЊЕМ (REINFORCEMENT

LEARNING)

Д. Антонели, К. Зенг, Х. Алиев, К. Лиу

Човек-робот колаборативне (ЧРК) производне ће–
лије могле би повећати инклузивно запошљавање

људске радне снаге без обзира на њихову снагу или
вештине. Колаборативни роботи не само да
замењују човека у опасним и тешким задацима, већ
и чине све повезане процесе приступачним свим
радницима, превазилазећи недостатак вештина и
физичка ограничења.
Да би се омогућило потпуно искоришћавање
колаборативних робота, потребно је превазићи
традиционално програмирање робота. Смањење
времена програмирања робота и когнитивног напора
радника током посла постају „јаки“ захтеви које
треба задовољити. Учење појачањем (РЛ) игра
кључну улогу која омогућава роботу да се
прилагоди променљивом и нест–руктурираном
окружењу и људском независном извршавању
понављајућих задатака. Овај рад се фокусира на
употребу РЛ -а како би се омогућио робустан
процес индустријске монтаже у ЧРК производној
ћелији. Резултат студије је метода за оn-line
генерисање секвенце монтажних пеоцеса робота
која се прилагођава непредвидивом и непостојаном
понашању људских ко-радника. Метода је
представљена уз помоћ референтне студије случаја.

