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This paper develops an empirical damage-equivalent stress function for 
fatigue. Classical analysis methods are used to 'fit' an equation to a 
number of S-N curves for various grades of carbon steel. The resulting 
equivalent-damage stress function is applicable to steels subjected to a 
wide range of heat treatments, from normalised up to hardened and 
tempered to 1900MPa. It is also applicable to a wide range of stress 
concentrations, unnotched up to Kt = 5.0 and typical of screw threads. A 
range of stress ratios and mean stresses are also considered. The function 
overcomes some of the limitations of existing methods of 'correcting' for 
mean stress. Existing methods are limited in that, while they may give good 
results over a range of conditions, there are some circumstances where the 
results are highly inaccurate. The damage-equivalent stress function is 
suitable for use in automated calculation procedures such as spreadsheets, 
MathCAD ©, and SMathStudio ©. 
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1. INTRODUCTION 
 

Central to any fatigue analysis is the S-N curve, a plot 
of characteristic stress (S) against the number of life 
cycles (N). Ideally a stress engineer would like a 
multitude of S-N curves applicable to a range of 
geometries and local configurations for each material. 
However, the experimental procedures to produce S-N 
curves are complex, require specialist tensile test equip–
ment capable of applying cyclic loading at controlled 
strain rates, and are time-consuming. Hence, there is a 
limited amount of fatigue data for materials readily 
available in real life. 

Typically, available data will comprise one S-N 
curve for alternating stress with zero mean stress, 
produced using unnotched, polished specimens. S-N 
curves may supplement this for a small selection of 
stress concentration factors obtained from notched spe–
cimens and/or S-N curves for alternating stress with a 
given mean stress or stress ratio R = minimum stress 
/maximum stress. In some instances, curve fitting tech–
niques are applied to the data for each S-N curve, or a 
group of S-N curves, enabling them to be expressed as 
an equation. 

Fatigue is predominantly dominated by the alter–
nating stress range but is also influenced by other 
factors such as the mean stress, surface finish, porosity, 
and the geometry of the mechanical components that 
can result in an elastic stress concentration. It is known 
that positive mean stress acts to reduce the number of 
life cycles a component can achieve, whereas negative 
mean stress acts to increase its life. However, obtaining 

S-N curves for a wide range of mean stresses or stress 
ratios is not practical or economical. Hence, several 
methods of 'correcting' for mean stress by determining a 
'damage-equivalent stress' for fatigue have been 
developed. The damage-equivalent stress is the 
alternating stress under fully reversal load conditions 
that would produce an amount of damage equivalent to 
that caused by the combination of both an alternating 
and non-zero mean stress. In essence, the known or 
calculated alternating stress is factored prior to using it 
with the S-N curve produced using zero mean stress. 

Several methods have been developed to determine 
damage-equivalent stress, most notably the modified 
Goodman or Goodman-Haig diagram and other methods 
proposed by Gerber, Soderberg, and Smith-Watson-
Topper. However, each of these methods has limitations 
in their application to fatigue analyses.The modified 
goodman diagram is conservative for ductile materials 
and optimistic for mean compressive stresses [1]. 
Gerber is better than Goodman for high mean stress 
levels but is not applicable to mean compressive stresses 
[1]. Soderbeg is more conservative than the modified 
Goodman method [1]. Smith-Watson-Topper is better 
than Goodman for low mean stress levels [1]. 

The work presented here aims to define a method of 
determining the "damage-equivalent stress" for fatigue 
suitable for use in the fatigue analysis of preloaded 
bolted assemblies. Preloaded bolts have high mean 
stress, typically 60% to 80% of proof stress, and a 
relatively small alternating stress range. 

The log-linear nature of S-N curves means that the 
calculated fatigue life is very sensitive to stress. Hence, 
it is important to determine applied stresses with high 
accuracy. Some of the detail analysis techniques 
described in references [2 to 5] are particularly suited to 
this purpose. Similarly, the method of calculating the 
fatigue damage-equivalent stress also needs to introduce 
the minimum of error. The high mean stresses asso–
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ciated with preloaded bolts result in 'corrections' for 
mean stress having to be made over a large increment. 
The method of determining the damage-equivalent 
stress has to be able to deal with these large increments. 
This requirement virtually rules out the use of both the 
Goodman and Soderberg methods.   

 
2. MATERIALS 

 
The S-N curves referenced by this analysis were obta–
ined from ‘Metallic Materials Properties Development 
and Standardization (MMPDS),' reference [6]. The 
materials and the elastic stress concentration for the 
curves used in the analysis are presented in Table 1. 
Table 1. Materials considered in the analyses 

Material Condition: 
Tensile 
Strength 

Stress 
Concentration 

Product form 

AISI 
4130 

Normalised 
(Ftu 117ksi) 
(807MPa) 

Unnotched 
Kt = 1.5 
Kt = 2.0 
Kt = 4.0 
Kt = 5.0 

Sheet  
0.075 inch 
(1.905mm) 
thick 

Ftu 180ksi 
(1241MPa) 

Unnotched 
Kt = 2.0 
Kt = 4.0 

Sheet  
0.075 inch 
(1.905mm) 
thick 

AISI 
4340 

Ftu 200ksi 
(1379MPa) 

Unnotched 
Kt = 3.3 

Rolled bar 
1.125 inches 
(28.575mm) 
diameter 

300M Ftu 280ksi 
(1931MPa) 

Unnotched 
Kt = 2.0 
Kt = 3.0 
Kt = 5.0 

Die forged 

Note: 300M can be regarded as a modified AISI 4340 
 
The tensile strength and yield/proof stress of nor–

malised AISI 4130 are assumed to be the tensile 
strength TUS and the yield/proof stress TYS quoted in 
MMPDS-03 Figure 2.3.1.2.8(a) for unnotched speci–
mens. It should be noted that the tensile test used to 
produce these values would have been carried out at the 
strain rate used for the fatigue tests. Hence they could 
be slightly higher than those produced under a quasi-
static tensile test, as would usually be performed to 
determine material properties. 

Additional data used to test the final damage-
equivalent stress equation is presented in Table 2. This 
data was not used in the analysis because there was an 
insufficient number of S-N curves for each material 
condition to provide 'points' for equation fitting. 
Table 2. Materials used as validation cases 

Material Condition: 
Tensile 
Strength 

Stress 
Concentration 

Product form 

AISI 
4340 

Ftu 125ksi 
(862MPa) 

Unnotched 
Kt = 3.3 

Rolled bar 
1.125 inches 
(28.575mm) 
diameter 

Ftu 150ksi 
(1034MPa) 

Unnotched 
Kt = 3.3 

Rolled bar 
1.12 inch 
(28.448mm) 
diameter 

3. METHODOLOGY 
 

It was assumed that an equation for the damage-equi–
valent stress for fatigue would take the form: 

1equ alt nfσ σ= ⋅    (1) 

where fn1 is a function of the material properties, 
particularly the tensile strength Ftu and/or the yield or 
proof stress Fty, the stress ratio R, mean stress σmean, 
and the stress concentration Kt.  

Equation (1) would be used to calculate the damage-
equivalent stress for fatigue applicable to a curve with a 
specific elastic stress concentration factor. It would not 
be appropriate to use equation (1) to calculate the 
damage equivalent stress for a curve with a different 
elastic stress concentration factor. Hence, the part of the 
function involving Kt would be a scaling factor, constant 
for the curve being used. 

The part of the function involving the tensile 
strength, or proof strength, of the bolt material, Ftu and 
Fty, respectively, would ideally need to be a dimen–
sionless stress function. The modified Goodman or Haig 
equation and the Gerber equation use a dimensionless 
ratio: 

mean

Ftu
σ

 

The stress ratio R is the ratio of minimum and 
maximum cyclic stresses:  

min

max
R

σ
σ

=  

Hence, the part of the function involving the stress 
ratio R is also a function of stresses due to loading. 

The part of the function involving the mean stress 
σmean has to result in sequ = salt when σmean = 0; hence 
fn1 = 1 when σmean =  0. Therefore, two possible shapes 
for the function fn1 were considered: 

1 21n nf f= +    (2a) 

and 

1
2

1
1n

n
f

f
=

−
  (2b) 

The function fn2 in equation (2a) is not necessarily of 
the same farm as the function fn2 in equation (2b) and 
would not have the same numerical value. 

Equation (2b) takes a similar form to those for the 
modified Goodman/Haig or the Gerber equations for 
damage-equivalent stress for fatigue. 

Both equation (2a) and equation (2b) were con–
sidered during the analysis. It was found that equation 
(2a) provided the more accurate prediction of damage-
equivalent stress for fatigue. Hence, only the work 
involving equation (2a) is presented in this paper. 

 
4. EFFECT OF STRESS RATIO ON THE DAMAGE-

EQUIVALENT STRESS FOR FATIGUE EQUA–
TION 

 
The first step in studying the effect of the stress ratio 
was to identify groups of S-N curves for each of the 
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material specifications being considered in the analysis. 
An equation relating stress ratio R to the damage-
equivalent stress for fatigue sequ was assumed, and each 
group of S-N curves was then used to find constants 
used in defining the assumed equation. 

 
4.1 S-N Curves for AISI 4340 Carbon Steel  

 
The first group of S-N curves was for AISI 4340 carbon 
steel, heat treated to give a tensile strength of 1379MPa 
(200ksi). Three different S-N curves were each defined 
as a set of data points. The criteria for selecting the S-N 
curves were that they were for the same material, had 
the same stress concentration of Kt = 3.3, and shared a 
common range of mean stresses σmean. The variables 
between each of the curves were the stress ratios R. The 
stress ratios of the chosen curves were R = 0.43, R = 
0.60 and R = 0.74, reference Figure 2.3.1.3.8(l) of 
MMPDS-03 [6]. Figure 1 shows plots of the alternating 
stress against life for each of the data sets and the data 
points used in the analysis. 

 
Figure 1. AISI 4340 Ftu = 1397MPa, Kt = 3.3 

The first step in the analysis was to determine 
numerical values for function fn2. Hence, from equations 
(1) and (2a) ; 

( )21equ alt nfσ σ= ⋅ +    (3) 

Rearranging 

2 1
equ

n
alt

f
σ

σ
= −    (4) 

Equation (4) was then used to calculate values of fn2 
for each of the three sets of data considered. Data sets 1, 
2 and 3 related to stress ratios of R = 0.43, R = 0.60 and 
R = 0.74 respectively. The values of function fn2 for data 
set 1 were calculated to be within the range of 0.551 to 
0.555, representing a variation of 0.4% from the mean 
value. Similarly, the values function fn2 for data set 2 
were calculated to be within the range of 0.757 to 0.765, 
representing a variation of 0.5% from the mean value. 
Finally, the values function fn2 for data set 3 were 
calculated to be within the range of 1.067 to 1.105, 
representing a variation of 1.2% from the mean value. 

It was concluded that the mean stress σmean had a 
negligible effect on the value of the function fn2. Hence, 
since data sets 1, 2, and 3 were for the same material 
and stress concentration Kt, it was also concluded that 
the numerical values for fn2 were a function of the 
material tensile strength or yield/proof stress the stress 
ratios R and the stress concentration Kt. 

Assuming the form of an equation to describe the 
function fn2 in terms of the stress ratio R that also meets 
the criteria fn1 = 1 when σmean =  0; 

 ( ) 12 3 1
a

n nf f R= ⋅ +    (5) 

The terms for fn3 and a1 will be functions of the 
material properties and stress concentration Kt. Rear–
ranging equation (5); 

( )
2

3 11
n

n a
f

f
R

=
+

   (6) 

Since data sets 1, 2, and 3 were all for the same 
material, having the same tensile strength, and for the 
same stress concentration Kt and shared a common 
range of mean stresses, it was possible to assume that 
the numerical value of function fn3 would be the same 
for each of the data sets being considered. That is; 

fn3 for data set 1 = fn3 for data set 2 = fn3 for data set 3 

Using this assumption, it was possible to adopt an 
iterative approach to calculate an optimum value for the 
constant a1 that gave the minimum amount of variation 
in the values of the function fn3 for any of the data points 
of data sets 1, 2, and 3. 

This iterative solution showed that a value of 
a1 = 3.349 gave the optimum condition. The values of 
function fn3 were calculated to be within the range of 
0.157 to 0.167; hence, the overall variation for the 
values of function fn3 was 3.3%. Individually, the values 
of function fn3 were within the range of 0.166 to 0.167 
for data set 1, 0.157 to 0.158 for data set 2, and 0.163 to 
0.167 for data set 3. The individual variations in the 
values of the functions fn3 were the same as those for the 
values of fn2, namely 0.2%, 0.3%, and 2.8% for data sets 
1, 2, and 3, respectively. 

The overall variation in the values of fn2 across data 
sets 1, 2, and 3 was 33.5%, which is significantly larger 
than the variation in the values of fn3. Hence, the 
variation in fn3 could be taken to imply the methodology 
had an accuracy of around 3.3%  

 
4.2 S-N Curves for 300M Carbon Steel 

 
Two different S-N curves were defined as sets of data 
points. The same criteria for selecting the first group of 
S-N curves were used, although in this instance, the S-N 
curves were for unnotched (Kt = 1.0) 300M. The second 
group of S-N curves was for 300M carbon steel, heat 
treated to give a tensile strength of 1931MPa (280ksi). 
Again, each set of data shared a common range of mean 
stresses σmean. The variables between each of the curves 
were the stress ratios R. In this case, the stress ratios of 
the chosen curves were R = 0.1 and R = 0.2, reference 
Figure 2.3.1.4.8(a) of MMPDS-03 [6]. Figure 2 shows 
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plots of the alternating stress against life for each data 
set and the data points used in the analysis. 

 
Figure 2. 300M Ftu = 1931MPa, unnotched (Kt = 1.0) 

Equation (4) was again used to calculate values of fn2 
for each of the data set. Data sets 4 and 5 related to 
stress ratios of R = 0.1 and R = 0.2 respectively. The 
values of function fn2 for data set 4 were calculated to be 
within the range 0.587 to 0.588 for each of the data 
points considered, representing a variation of 0.1% from 
the mean value. Similarly, the values of function fn2 for 
data set 5 were calculated to be within the range of 
0.720 to 0.725, representing a variation of 0.3% from 
the mean value. 

This supported the previously made conclusion that 
the mean stress σmean had a negligible effect on the value 
of the function fn2. Again, since data sets 4 and 5 were 
for a common material, and stress concentration Kt the 
previous conclusion that function fn2 was a function of 
the stress ratios R and material properties was 
supported. 

Using equation (6) in an iterative solution, similar to 
that used previously, it was shown that a value of 
a1 = 2.365 gave the optimum condition for minimum 
variation in the values function fn3. The values of 
function fn3 for data sets 4 and 5 were calculated to be 
within the range of 0.468 to 0.470; hence, the variations 
in the values of function fn3 were found to be 0.2% for 
both data sets. 

 
4.3 S-N Curves for Normalised AISI 4130 Carbon 

Steel 
 

As previously, the selected S-N curves were for a com–
mon material, in this instance, normalised AISI 4130 
carbon steel, which was assumed to have a tensile 
strength of 807MPa (117ksi). In total, four different S-N 
curves were each defined as a series of data points. 
However, due to the available data, different criteria for 
selecting the S-N curves had to be used. These four sets 
of data were sub-divided into groups of two sets of data. 
The S-N curves that formed the first of these two groups 
were for a stress concentration of Kt = 4.0. The S-N 
curves that formed the second of the two groups were 
for a stress concentration of Kt = 5.0. The two S-N 
curves within each group were each for different mean 

stress. One curve was for a mean stress of σmean = 
138MPa (20ksi) and the other for a mean stress of σmean 
= 207MPa (30ksi), reference Figures 2.3.1.2.8(d) and 
2.3.1.2.8(e) of MMPDS-03 [6]. Hence, each data set 
represented a range of stress ratios R.  

The focus of the presented analysis was to develop a 
damage-equivalent stress equation that could be applied 
to high positive stress ratios, such as those typical of 
preloaded bolted joints. The positive stress ratios 
occurred at the low alternating stress / low maximum 
stress / high life cycles end of the S-N curves. Hence, 
the data points used for the analysis were restricted to 
only positive stress ratios.   

Figures 3 and 4 show plots of the alternating stress 
against life for each of the data sets and the data points 
used in the analysis. 

 
Figure 3. Normalised AISI 4130 (Ftu = 807MPa ), Kt = 4.0 

 
Figure 4. Normalised AISI 4130 (Ftu = 807MPa), Kt = 5.0 

Equation (4) was again used to calculate values of fn2 
for each of the four data sets. Data sets 6 and 7 were 
related to a stress concentration Kt = 4.0 and mean 
stresses of σmean = 138MPa (20ksi) and σmean = 207MPa 
(30ksi) respectively. Similarly, data sets 8 and 9 were 
related to a stress concentration Kt = 5.0 and mean 
stresses of σmean = 138MPa and σmean = 207MPa, res–
pectively. Since all four data sets were for constant 
mean stresses, and therefore over a range of stress ratios 
R, the resulting values for fn2 also covered a cor–
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responding range. Hence, accuracy for the calculated 
values of fn2 could not be inferred from the results.   

An iterative solution for equation (6), similar to that 
used previously, was applied to data sets 6 and 7. This 
iterative solution showed that for a stress concentration 
of Kt = 4.0, a value of a1 = 1.988 gave the optimum 
condition for minimum variation in the values function 
fn3. Similarly, applying the iterative solution of equation 
(6) to data sets 8 and 9 showed that for a stress 
concentration of Kt = 5.0, a value of a1 = 2.179 gave 
the optimum condition. 

The values of function fn3 for data sets 6 and 7 were 
calculated to be within the range of 0.282 to 0.292. 
Similarly, the values function fn3 for data sets 8 and 9 
were calculated to be within the range of 0.332 to 0.356. 
The variations in the calculated values of the functions 
fn3 were 1.8% for data sets 6 and 7, and 3.5% for data 
sets 8 and 9. 

 
4.4 S-N Curves for AISI 4130 Carbon Steel 

 
Two individual S-N curves for AISI 4130 carbon steel, 
heat treated to give a tensile strength of 1241MPa 
(180ksi), were considered. The same criteria used for 
selecting the previous four sets of data, data sets 6, 7, 8, 
and 9, were used. Each of the S-N curves was defined as 
a series of data points. The first of these two S-N curves 
were for a stress concentration of Kt = 2.0. The second 
S-N curve was for a stress concentration of Kt = 4.0. 
Both S-N curves were for a mean stress of σmean = 
345MPa (50ksi), reference Figures 2.3.1.2.8(g) and 
2.3.1.2.8(h) of MMPDS-03 [6]. Hence, each data set 
represented a range of stress ratios R. Again, the data 
points used for the analysis were restricted to only 
positive stress ratios. Figures 5 show plots of the 
alternating stress against life for each of the data sets 
and the data points used in the analysis. 

 
Figure 5. AISI 4130 Ftu = 1241MPa, σmean = 345MPa  

Equation (4) was used to calculate values of fn2 for 
both data sets. Data sets 10 and 11 were related to stress 
concentrations Kt = 2.0 and Kt = 4.0 respectively. Both 
data sets were for a mean stress of σmean = 345MPa 
(50ksi). Since both sets were for constant mean stresses, 
and therefore over a range of stress ratios R, the 
resulting values for fn2 also covered a corresponding 

range. Hence, the results could not infer an accuracy for 
the calculated values of fn2.   

Again, the iterative solution for equation (6) was 
applied to data sets 10 and 11. Applying the iterative 
solution to data set 10 showed that for a stress 
concentration of  Kt = 2.0, a value of a1 = 2.178 gave 
the optimum condition for minimum variation in the 
values function fn3. Similarly, applying the iterative 
solution to data set 11 showed that for a stress 
concentration of  Kt = 4.0, a value of a1 = 2.417 gave 
the optimum condition. 

This supported the conclusion that the material 
constant a1 was a function of the material properties and 
stress concentration Kt. 

The values of function fn3 for data set 10 were 
calculated to be within the range of 0.431 to 0.449. 
Similarly, the values function fn3 for data set 11 was 
calculated to be within the range of 0.276 to 0.316. The 
variations in the calculated values of the functions fn3 
were 2.1% for data set 10 and 6.9% for data set 11. 

 
5. EFFECT OF STRESS CONCENTRATION AND 

MATERIAL PROPERTIES ON MATERIAL 
CONSTANT a1 

 
Values of the constant a1 have been calculated for each 
material being considered. It has been observed that the 
value a1 is not only dependent on the material properties 
but is also influenced by the stress concentration Kt of 
the specimens.  

It was assumed that a1 could be best described by a 
straight-line equation of the form: 

1 1 2 wa b b ε= + ⋅    (7) 

where b1 and b2 are constants and εw is a function of the 
material properties and the stress concentration Kt. 

After trialling several plots of a1 against various 
functions of the stress concentration Kt, tensile strength 
Ftu and the proof strength Fty it was considered the best 
fit for the available data would be given by:  

2b

w t
Fty

K
E

ε ⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

   (8) 

The constants b1, b2, and b3 were calculated using an 
iterative procedure. A range of initial values for b3 was 
assumed, values for εw were calcWulated using equation 
(8), and then a linear regression was performed to 
determine values for b1 and b2 that gave the best/ 
minimum RMS error fit for the line for each assumed 
value of b3. This iterative procedure was used to 
optimise for the value of b3 that gave the minimum 
amount of error in the fit of calculated values for a1. 

The optimum values for the constants were found to 
be: 

b1 = 1.854   
b2 = 4.224 x 106 
b3 = 3.260   
The maximum and minimum errors in the calculated 

value for a1 were 17.1% and -17.1%, respectively, with 
an RMS error of 10.8%. 

The proof strain for the material is given by the term 
Fty/E; hence the function for ew defined by equation (8) 
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can be regarded as being related to the effect of strain, 
or work, hardening at the root of the notch or thread 
root. Work by McMillan and Jones (2020) shows that 
plastic deformation at the notch remains highly 
localised, reference [7]. Hence, it is possible to conclude 
that the strain at the notch or the thread root of a bolt is 
controlled by the nett section of the notched component 
or the core of the thread.   
 
6. EFFECT OF STRESS CONCENTRATION ON THE 

DAMAGE-EQUIVALENT STRESS EQUATION 
 

The approach to studying the stress concentration effect 
was again to identify groups of S-N curves for each of 
the materials being considered. In these cases, however, 
the groups of S-N curves were selected to have stress 
concentration as the variable.  

 
6.1 Additional S-N Curves for 300M Carbon Steel 

 
A group of S-N curves for 300M carbon steel, heat 
treated to give a tensile strength of 1931MPa (280ksi), 
was selected. Three different S-N curves were defined 
as a set of data points. The criteria for selecting the S-N 
curves were that they were for the same material, had 
the same stress ratio of R = 0.33, and shared a common 
range of mean stresses σmean. The variables between 
each of the curves were the stress concentration Kt. The 
stress concentrations of the chosen curves were Kt = 
2.0, Kt = 3.0 and Kt = 5.0, reference Figures 
2.3.1.4.8(b), 2.3.1.4.8(c) and 2.3.1.4.8(d) of MMPDS-03 
[6]. Figure 6 shows plots of the alternating stress against 
life for each of the data sets. 

 
Figure 6. 300M Ftu = 1931MPa, R = 0.33 

Equation (4) was again used to calculate values of fn2 
for each of the data sets. Data sets 12, 13 and 14 related 
to stress concentrations of Kt = 2.0, Kt = 3.0 and Kt = 
5.0 respectively. The values of function fn2 for data set 
12 were calculated to be within the range 1.013 to 1.014 
for each of the data points considered, representing a 
variation of 0.05% from the mean value. Similarly, the 
values function fn2 for data set 13 were calculated to be 
within the range of 0.710 to 0.722, representing a 
variation of 0.8% from the mean value. Finally, the 
values function fn2 for data set 14 were calculated to be 

within the range of 0.690 to 0.692, representing a 
variation of 0.1% from the mean value. This was in line 
with the earlier conclusion that the mean stress σmean 
had a negligible effect on the value of the function fn2. 

Appling equations (7) and (8) using Kt = 2.0, 
assuming Fty = 0.83 x Ftu (hence Fty = 1602MPa) and 
E = 200MPa x 103  the material constant was calculated 
as a1 = 3.094. However, this value of the material 
constant a1 is based on an estimated value for the proof 
stress Fty based on the mean ratio of TYS/TUS given in 
MMPDS-03 [6] and a typical value for Young’s 
modulus of elasticity E.  

An alternative and possibly more accurate way of 
estimating the material constant a1 would be to use a 
value for the strain hardening factor ew based on the 
value of the more accurately known value of the 
material constant for unnotched 300M obtained using 
data sets 4 and 5. Hence, rearranging equation (7) to 
calculate the strain hardening factor for unnotched 
specimens, stress concentration Kt = 1.0: 

1 1

2
w
a b
b

ε
−

=    (9) 

By reference to equation (8), an estimate of the 
strain hardening factor can be made by the ratio of stress 
concentration factors: 

,

t
w w

t datum

K
K

ε ε′ = ⋅    (10) 

where, in this instance, Kt.datum = 1.0 is the datum stress 
concentration applicable to data sets 4 and 5. 

Using equations (9) and (10) with the material 
constant of a1 = 2.365 found from data sets 4 and 5 and 
the stress concentration of Kt = 2.0 for data set 12, the 
effective strain hardening factor was calculated as 
ε’w = 2.420 x 10-7. Using this value for the effective 
strain hardening constant in equation (7) gave a value 
for the material constant of a1 = 2.867 for data set 12. 

Similarly, using equations (9) and (10) with a stress 
concentration of Kt = 3.0, the effective strain hardening 
factor was calculated as ε’w = 3.630 x 10-7. Again, using 
this value for the effective strain hardening constant in 
equation (7) gave a value for the material constant of 
a1 =3.387 for data set 13. 

Finally, using equations (9) and (10) with a stress 
concentration of Kt = 5.0, the effective strain hardening 
factor was calculated as ε’w = 6.049 x 10-7. And using 
this value for the effective strain hardening constant in 
equation (7) gave a value for the material constant of 
a1 = 4.409 for data set 14. 

Using equation (6) with the values for the material 
constant and the appropriate range of values for fn2 
presented earlier in this section, the value of function fn3 
was calculated. The value of function fn3 for data set 12 
was calculated to be within the range of 0.446 to 0.447. 
Similarly, the values function fn3 for data set 13 were 
calculated to be within the range of 0.270 to 0.275. 
Finally, the value function fn3 for data set 14 was 
calculated to be within the range of 0.196 to 0.197. The 
variations in the calculated values of the functions fn3 
were the same as those for the calculated values of fn2. 
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6.2 Additional S-N Curve for AISI 4340 Carbon Steel 

 
A total of three S-N curves for AISI 4340 carbon steel, 
heat treated to give a tensile strength of 1379MPa 
(200ksi) were considered. Again, each S-N curve was 
defined as a set of data points. 

The first of the S-N curves were for unnotched 
material, i.e., a stress concentration of Kt = 1.0,  with a 
constant stress ratio of R = 0.43 and hence had a 
variable range of mean stresses σmean, reference Figure 
2.3.1.3.8(k) of MMPDS-03 [6]. The other two S-N 
curves had a common stress ratio of R = 0.0 and also 
had a common range of mean stresses. One was for 
unnotched material, stress concentration Kt = 1.0, and 
the other was for a stress concentration of Kt = 3.3, 
reference Figures 2.3.1.3.8(k) and 2.3.1.3.8(l) of 
MMPDS-03 [6]. Figures 7 and 8 show plots of the 
alternating stress against life for each of the data sets. 

 
Figure 7. AISI 4340 Ftu = 1379MPa, R = 0.43 

 
Figure 8. AISI 4340 Ftu = 1379MPa, R = 0.0 

Equation (4) was used to calculate values of fn2 for 
each of the three sets of data considered. Data set 15 
related to a stress ratio of R = 0.43 for a concentration 
Kt = 1.0. Data sets 16 and 17 related to stress ratios of 
R = 0.0 for stress concentrations of Kt = 1.0 and Kt = 
3.3 respectively. The values of function fn2 for data set 
15 were calculated to be within the range of 0.673 to 
0.682, representing a variation of 0.6% from the mean 
value. Similarly, the values function fn2 for data set 16 

were calculated to be within the range of 0.317 to 0.330, 
representing a variation of 2.2% from the mean value. 
Finally, the values function fn2 for data set 17 were 
calculated to be within the range of 0.274 to 0.275, 
representing a variation of 0.2% from the mean value. 

Considering data set 15, equations (9) and (10) were 
used with a material constant of a1 = 3.349, and a stress 
concentration of Kt.datum = 3.3 as the datum conditions, 
found from data sets 1, 2, and 3. Using the stress 
concentration of Kt = 1.0 for data set 15, the effective 
strain hardening factor was calculated as ε’w = 6.613 
 x 10-8. Equation (7) was then used to calculate a value 
of a1 = 2.134 for the effective material constant. 

Using equation (6) with the values for the material 
constant and the appropriate range of values for fn2, the 
values of function fn3 were calculated. The variations in 
the calculated values of the functions fn3 were the same 
as those for the calculated values of fn2. The values 
function fn3 for data set 15 were found to be within the 
range of 0.295 to 0.299. 

When considering data sets 16 and 17, using 
equation (6) with a stress ratio of R = 0.0, the results 
showed that fn3 = fn2 for both of these data sets. Note that 
any attempt to calculate a value for a1 would result in a 
trivial solution. 

 
7. ADDITIONAL S-N CURVES TO STUDY THE 

EFFECT OF STRESS CONCENTRATION 
 

The objective of the work being presented was to derive 
a fatigue damage-equivalent stress function that could 
be applied to high, positive stress ratios typical of those 
found in preloaded threaded fasteners. Hence, up until 
this point in the analysis, only data for positive stress 
ratios had been considered. It was possible to continue 
to define a damage equivalent function with the data 
obtained for positive stress ratios only. However, this 
meant that some curve fitting had to be made through a 
very limited number of data points. This work was 
carried out, and it was found that when the derived 
equation was applied to loading conditions involving 
negative stress ratios, the results had a good correlation 
with actual S-N curves. This good correlation gave the 
confidence to use fatigue data collected for negative 
stress ratios in the derivation of the damage-equivalent 
stress for fatigue function without compromising its 
application to high, positive stress ratios.    

 
7.1 Additional S-N Curves for Normalised AISI 4130 

Carbon Steel 
 

Two S-N curves for normalised AISI 4130 carbon steel, 
which was assumed to have a tensile strength of 
807MPa (117ksi), were considered. Each curve was for 
a mean stress of σmean = 207MPa (30ksi). Again, each S-
N curve was defined as a set of data points. One was for 
a stress concentration of Kt = 1.5, and the other was for 
a stress concentration of Kt = 2.0, reference Figures 
2.3.1.2.8(b) and 2.3.1.2.8(c) of MMPDS-03 [6]. Figure 
9 shows plots of the alternating stress against life for the 
two data sets. 

Equation (4) was used to calculate values of fn2 for 
both of the data sets. Data sets 18 and 19 related to stress 
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concentrations of Kt = 1.5 and Kt = 2.0 respecti–vely. 
Since both data sets were for constant mean stresses, and 
therefore over a range of stress ratios R, the resulting 
values for fn2 also covered a corresponding range. 

 
Figure 9. Normalised AISI 4130 (Ftu = 807 MPa, σmean = 207 
MPa  

Using equation (6) in an iterative solution, similar to 
that used previously, it was shown that a value of 
a1 = 1.381 gave the optimum condition for minimum 
variation in the values function fn3. The values of 
function fn3 for data sets 18 and 19 were calculated to be 
within the range of 0.083 to 0.087; hence, the variations 
in the values of function fn3was found to be 2.6%. 
Similarly, applying an iterative solution of equation (6) 
to data set 19 showed that for a stress concentration of  
Kt = 2.0, a value of a1 = 1.420 gave the optimum con–
dition. The values of function fn3 were calculated to be 
within the range of 0.102 to 0.104; hence, the variations 
in the values of function fn3was found to be 1.0%. 

 
7.2 Additional S-N Curve for AISI 4130 Carbon Steel 

 
A single S-N curve for AISI 4130 carbon steel, heat 
treated to give a tensile strength of 1241MPa (180ksi), 
was considered. This S-N curve was defined as a series 
of data points. The curve was for unnotched material, 
stress concentration of Kt = 1.0, and a mean stress of 
σmean = 345MPa (50ksi), reference Figure 2.3.1.2.8(f) of 
MMPDS-03 [6]. Figure 10 shows plots of the alter–
nating stress against life. 

 
Figure 10. AISI 4130 Ftu = 1241MPa), σmean = 345MPa 

8. EFFECT OF STRESS CONCENTRATION AND 
MATERIAL PROPERTIES ON FUNCTIONfn3 

 
From the previous workings, it has been shown that  fn3 
is a function of the stress concentration Kt and the 
material properties, either the tensile strength Ftu or the 
yield/proof stress Fty. Numerical values of the function 
fn3 have been calculated for each data case considered.  

It was now assumed that the equation could describe 
the function n3f for a straight line passing through the 
origin: 

3 2 ,n n Ktf a f= ⋅    (11) 

where a2 is the slope of the line and fn.Kt is the variable 
given by a function of the stress concentration Kt. 

After trialling several plots of fn3 for each material 
against various functions of the stress concentration Kt it 
was considered that there were two potentially good fits 
for the available data. These were:  
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The constants a2 and a3 used in equations (11), (12a), 
and/or (12b) are both functions of the material properties. 

Each of these equations for fn.Kt was considered, and 
it was found that equation (12a) provided the more 
accurate prediction of damage-equivalent stress for 
fatigue. Hence, only the work involving equation (12a) 
is presented in this paper. 

 
7.3 Effect of Stress Concentration for 300M Carbon 

Steel 
 

The calculated values for the function fn3 and the asso–
ciated stress concentrations Kt for data sets 8, 9, 12, 13, 
and 14 were used to calculate the constants a2 and a3  for 
300M Carbon steel with a tensile strength of 1931 MPa 
(280ksi). This group of data sets covered a range of stress 
concentrations, Kt equal to 1.0, 2.0, 3.0, and 5.0. 

An iterative solution for the constants a2 and a3 was 
carried out, applying equations (11) and (12a) and using 
this data for 300M carbon steel. The constants a2 and a3 
were calculated by first assuming a value for a3 and then 
calculating values for fn.Ktusing equation (12) before 
performing a linear regression to determine a value for 
a2 that gave the best/minimum RMS error fit. By 
following this procedure, it was possible to use an 
iterative approach to calculate an optimum value for the 
constant a3 that gave the minimum amount of error in 
the resulting values of fn3. This iterative solution showed 
that a value of a3 = 0.675 gave the optimum condition. 
This led to a value of a2 = 0.770 and the worst error of -
17.8% in the prediction of fn3. 

 
7.4 Effect of Stress Concentration for AISI 4340 

Carbon Steel 
 

The calculated values for the function fn3 and the 
associated stress concentrations Kt for data sets 1, 2, 3, 
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15, 16, and 17 were used to calculate the constants a2 
and a3 for AISI 4340 Carbon steel with a tensile 
strength of 1379MPa (200ksi). This group of data sets 
covered a range of stress concentrations, Kt equal to 1.0 
and 3.3. 

The previously described iterative procedure was 
applied using this data for AISI 4340 carbon steel. This 
showed that a value of a3= 0.525 gave the optimum 
condition. This led to a value of a2= 0.430 and the worst 
error of -27.2% in the prediction of fn3. 

 
7.5 Effect of Stress Concentration for AISI 4130 

Carbon Steel 
 

The calculated values for the function fn3 and the asso–
ciated stress concentrations Kt for data sets 10, 11, and 
20 were used to calculate the constants a2 and a3  for 
AISI 4130 Carbon steel with a tensile strength of 1241 
MPa (180ksi). This group of data sets covered a range 
of stress concentrations, Kt equal to 1.0, 2.0, and 4.0. 

The previously described iterative procedure was 
applied using this data for AISI 4130 carbon steel. This 
showed that a value of a3= 0.315 gave the optimum 
condition. This led to a value of a2= 0.544 and the worst 
error of -12.5% in the prediction of fn3. 

 
7.6 Effect of Stress Concentration for Normalised 

AISI 4130 Carbon Steel 
 

The calculated values for the function fn3 and the 
associated stress concentrations Kt for data sets 4, 5, 6, 
and 7 were used to calculate the constants a2 and a3  for 
Normalised AISI 4130 Carbon steel with a tensile 
strength of 807MPa (117ksi). This group of data sets 
covered a range of stress concentrations, Kt equal to 1.5, 
2.0, 4.0, and 5.0. 

The previously described iterative procedure was 
applied using this data for AISI 4340 carbon steel. This 
showed that a value of a3= -1.705 gave the optimum 
condition. This led to a value of a2= 0.017 and the worst 
error of -8.5% in the prediction of fn3. 

 
9. EFFECT OF MATERIAL PROPERTIES ON 

MATERIAL CONSTANTS a2 AND a3 
 

Values for the constants a2 and a3 had been calculated 
for the individual materials being considered; hence it 
was assumed they could be described as functions of the 
material properties, tensile strength Ftu or yield/proof 
stress Fty.  

It was assumed that a2 could be best described by a 
straight-line equation of the form: 

2 4 5 ,n Ftya b b f= + ⋅    (13) 

where 
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The constants b4, b5, and b6 were calculated by assu–
ming a value for b6, calculating values for fn.Fty using 
equation (14) and then performing a linear regression to 
determine values for b4 and b5 that gave the best/mini–

mum RMS error fit for the line. This procedure was used 
iteratively to optimise for the value of b6 that give the 
minimum amount of error in the resulting values for a2. 

The optimum values for the constants were found to 
be: 

b4 = -1.015   
b5 = 38.120   
b6 = 0.635   
The worst error in the calculated value for a2 was 

18.2%. 
A similar procedure was applied to determine the 

function that describes the material constant a3. It was 
assumed that a3 could be best described by: 

9

3 7 8

bFty
a b b

E
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   (15) 

The optimum values for the constants were found to 
be: 

b7 = 1.038   
b8 = -2.032 x 10-6 
b9 = -2.485   
The worst error in the calculated value for a2 was 

-17.3%. 
 

10. FATIGUE DAMAGE-EQUIVALENT STRESS 
FUNCTION 

 
Equations (3), (5), (11), and (12) were combined to pro–
duce the final fatigue damage-equivalent stress function: 
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  (16) 

where: a1 is given by equations (7) and (8), a2 is given 
by equations (13) and (14), and a3 is given by equation 
(15). 

The twenty S-N curves used in the derivation of 
equation (16) plus eighteen additional S-N curves were 
used to validate this function. 

Two of the eighteen additional S-N curves were for 
AISI 4340 carbon steel, heat treated to give a tensile 
strength of 862MPa (125ksi), and were for stress con–
centrations of Kt = 1.0 and Kt = 3.3 with a stress ratio of 
R = 0.0, reference Figures 2.3.1.3.8(a) and 2.3.1.3.8(b) 
of MMPDS-03 [6]. Two further S-N curves were for the 
same grade of steel but heat treated to give a tensile 
strength of 1034 MPa (150ksi). These second two addi–
tional S-N curves were also for stress concentrations of 
Kt = 1.0 and Kt = 3.3 with a stress ratio of R = 0.0, 
reference Figures 2.3.1.3.8(c) and 2.3.1.3.8(d) of 
MMPDS-03 [6]. The remaining fourteen additional S-N 
curves were for the material grades used in the analysis, 
although these specific curves had not been used in the 
analysis. Nine were for normalised AISI 4130, and five 
were for 300m with a tensile strength of 1931MPa. 

As part of the validation process, the damage-
equivalent stress for fatigue calculated using equation 
(16) was compared with existing methods of calculating 
damage-equivalent stresses, reference ESDU 06009 [1]. 
The other methods used for comparison were: 

Goodman-Haig:  
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Soderberg:  
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Smith-Watson-Topper:  
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It was found that the fatigue damage-equivalent 
stress function derived in this paper, equation (16), gave 
the most consistent results over the range of thirty-six 
S-N curves used for the validation process. Equation 
(16) provided the most accurate prediction of damage-
equivalent stress for twenty-seven out of the thirty-six 
cases considered. In seventeen of the cases, equation 
(16) gave a very close correlation. The worst-case 
deviations of the fatigue damage-equivalent stress 
calculated by equation (16) from the datum S-N curve 
for the stress ratio R = -1.0 were +15.7% and -13.1%. 
Plots of results for the worst-case deviations are 
presented in Figures 11 and 12. 

 
Figure 11. AISI 4340, Ftu = 1034MPa, Kt = 1.0, R = 0.0 

Figure 11 shows the results of the validation case for 
unnotched AISI 4340 heat treated with a tensile strength 
of 1034MPa (150ksi) and a stress ratio of R = 0.0. The 
equation (16) results had a worst-case deviation of 
+15.7%. The results using Gerber's method, equation 
(18), gave the best fit. 

Figure 12 shows the plots of results of data set 10, 
notched AISI 4130 heat treated to have a tensile stren–
gth of 1241MPa (180ksi) with a stress concentration of 
Kt = 2.0 and a mean stress of σmean = 345MPa (50ksi). 
The results from equation (16) had a deviation of -
13.1%. The results using the Smith-Watson-Topper 
method, equation (20), gave the best fit.  

 
Figure 12. AISI 4130, Ftu = 1241MPa, Kt = 2.0, σmean = 345 
MPa   

The stated objective was to determine a method of 
calculating a damage-equivalent stress for fatigue that 
could be applied to preloaded bolted assemblies. The 
most representative validation cases, in terms of tensile 
strength, stress concentration, and stress ratio or mean 
stress, are presented in Figures 13 to 16. 

 
Figure 13. Normalised AISI 4130, Kt = 4.0, σmean = 207MPa 

 
Figure 14. Normalised AISI 4130, Kt = 5.0, σmean = 207MPa 
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Figures 13 and 14 show the plots of results of data 
sets 7 and 9, respectively. Both of these figures are for 
normalised AISI 4130 that had an estimated tensile 
strength of 807MPa. This material specification could 
be regarded as typical of a Grade 8.8 bolt. Figure 13 
presents plots for a stress concentration of Kt = 4.0 with 
a mean stress of σmean = 207MPa (30ksi). Similarly, 
Figure 14 presents plots for a stress concentration of Kt 
= 5.0 with the same mean stress of σmean = 207MPa.   

The errors in the calculated values for the damage-
equivalent stress for data set 7 were all within +3.2%, 
with a RMS error of 2.0%. Similarly, the calculated 
values for the damage-equivalent stress for data set 9 
were within the range +1.8% to +8.4%, with an RMS 
error of 5.4%.  

A theoretical study of bolt thread elastic stress 
concentration factors has been conducted by Lehnoff et 
al. (2000) [8]. This work showed that M8 and M12 
bolts, with the maximum metal condition, had stress 
concentration factors of 4.33 and 4.32, respectively. 
Hence, Figure 13 could be considered an approximate 
representation of these bolt sizes. Similarly, Figure 14 
could be considered as representative of M16, M20, and 
M24, which Lehnoff (200) [8] shows had stress con–
centration factors of 4.67, 4.77, and 4,82, respectively 
for maximum metal conditions and stress concentra–
tion factors of 5.12, 5.17 and 5,22 respectively for 
minimum metal conditions.  

The mean stress of σmean = 207MPa could be consi–
dered as representing a bolt preload of 32% of proof 
stress. It is usual for high tensile bolts (Grade 8.8 and 
above) to be preloaded 60% to 80% of proof load, and in 
some circumstances, even higher; hence, the figure of 
32% is a little low. However, the thread rolling of bolts 
during manufacture induces compressive residual 
stresses. This means that whilst a bolt may be preloaded 
to, say, 80% of proof load, only the core of the thread is 
subjected to that level of pre-stress, and the thread root 
would experience lower stress. Furukawa and Hagiwara's 
(2015) [9] work estimated that a thread's compressive 
residual stress, rolled after heat treatment, was 830MPa. 
Importantly, this was for a thread rolled after heat 
treatment; however, bolt manufactures prefer to heat treat 
after thread rolling. This minimises the power required to 
roll the thread, extends die life, and hence minimises 
production costs. It has been shown by Marcelo et al. 
(2011) [10] that threads rolled after heat treatment 
exhibited higher tensile strength than those rolled before 
being heat treated and tempered at the same temperature. 
Hence, it may be assumed that the mean stress of 
σmean = 207MPa is representative of the mean stress at the 
thread root, where a crack would initiate, but is lower 
than would normally be expected in the core of the 
thread, which is the region the crack would grow into 
once initiated. Work by Leitner et al. (2000) [11] has 
shown that compressive residual stresses, in this case, 
induced by high-frequency peening, improve fatigue 
strength, particularly at stress concentrations. 

Figure 15 shows the plots of results of data set 11 for 
notched AISI 4130 heat treated to give a tensile strength 
of 1241 MPa. This material specification could be re–
garded as typical of a Grade 12.9 bolt.  

 
Figure 15. AISI 4130, Ftu = 1241MPa, Kt = 4.0σmean = 345MPa 

The errors in the calculated values for the damage-
equivalent stress for data set 11 were within the range 
-5.4% to +4.4%, with an RMS error of 3.3%.  

Again, the work by Lehnoff et al. (2000) [8] can be 
taken to show that the stress concentration of Kt = 4.0 
could be considered as an approximate representation of 
M8 and M12 bolts. 

In this case, the mean stress of σmean = 207MPa 
could be considered as representing a bolt preload of 
19% of proof stress. However, assuming that residual 
stresses combined with a preload of 60% of proof load 
could still represent the mean stress at the thread root, 
where a crack would initiate, is not unreasonable. Work 
by Leitner et al. (2000) [11] has shown that compressive 
residual stresses, in this case, induced by high-frequ–
ency peening, improve fatigue strength, particularly at 
stress concentrations. 

 
Figure 16. AISI 4340, Ftu = 1379MPa, Kt = 3.3, R = 0.74 

Figure 16 shows the plots of results of data set 3 and 
relates to notched AISI 4130 heat treated to give a 
tensile strength of 1379MPa. This tensile strength is 
higher than the minimum requirement for Grade 12.9 
bolts. However, statistically, approximately 50% of 
Grade 12.9 bolts could achieve this strength. Hence, the 
material can still be regarded as applicable to a Grade 
12.9 bolt. 
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The errors in the calculated values for the damage-
equivalent stress for data set 3 were within the range 
+9.1% to +13.5%, with an RMS error of 10.2%.  

The work by Lehnoff et al. (2000) [8] shows that 
Figure 16 could be considered a representation of M16, 
M20, and M24 bolts. 

When considering the results in Figure 16 as repre–
senting preloaded bolts, the tensile strength of 1379MPa 
is not relevant since bolt preloads based on the mini–
mum material properties for the bolt grade. Hence, the 
arguments made regarding data set 11 for Figure 15 
hold true. 

 
11. CONCLUSIONS 

 
A viable method of determining a damage-equivalent 
stress function for fatigue is presented. This empirical 
method was produced by developing an equation that 
fitted existing S-N curves. 

The damage-equivalent stress function applies to 
carbon steels with heat treatments ranging from the 
normalised state to hardened and tempered for tensile 
strength of 1900MPa. 

This new damage-equivalent stress function is con–
sistently more accurate than existing methods of ‘cor–
recting’ for mean stress. 

Validation of this damage-equivalent stress function 
indicates that it has a maximum/minimum accuracy of 
+16% to -13%, with a root-mean-square error of 8%, for 
fatigue stress. 

The damage-equivalent stress function presented is 
particularly suited to high positive stress ratios, 
particularly preloaded bolts. However, it also has a good 
correlation with results for negative stress ratios. 

The work presented is based on available S-N 
available for carbon steel. The resulting damage-
equivalent stress function is expected to be appropriate 
for other materials with similar hardness, such as 
stainless steel. Future work will be to test if this 
assumption is correct. 
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NOMENCLATURE 

a1 to a3 Constants, calculated from geometryand  
 material properties 
b1 to b9 Numerical constants 
fn1 to fn3 Function of stress and stress concentration 
fn.Fty Function of the yield/proof stress 
fn.Kt Function of the stress concentration 
Ftu Tensile strength of a material 
Fty Yield or proof stress of a material 
Kt Stress concentration factor 
Kt.datum A datum stress concentration factor 

R Stress ratio (smin / smax) 
TUS  Tensile strength of a material, at the 

fatigue test strain rate 
TYS Yield or proof stress of a material, at the  
 fatigue test strain rate 

Greek symbols 

εw Function, related to work hardening 
ε’w Function, related to work hardening 
σalt Alternating stress 
σequ Damage-equivalent stress for fatigue 
σmax Maximum stress 
σmean Mean stress 
σmin Minimum stress 
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Овај рад развија емпиријску функцију напона екви–
валентну заморном оштећењу. Класичне методе 
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анализе се користе за 'уклапање' једначине на бројне 
С-Н криве за различите врсте угљеничног челика. 
Резултирајућа функција напрезања еквивалентног 
оштећења применљива је на челике који су подв–
ргнути широком спектру термичких обрада, од нор–
мализованих до каљених и отпуштених до 1900 
МПа. Такође је применљив на широк опсег кон–
центрација напона, неурезан до Кт = 5,0 и типичан 
за навоје завртња. Разматра се и низ односа напона и 

средњих напона. Функција превазилази нека од 
ограничења постојећих метода 'исправљања' за 
средњи стрес. Постојеће методе су ограничене у 
томе, иако могу дати добре резултате у низу услова, 
постоје неке околности у којима су резултати веома 
нетачни. Функција напрезања еквивалентна оште–
ћењу је погодна за употребу у аутоматизованим 
прорачунским процедурама као што су табеле, 
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