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Spatial Transportation of The Beam on 
a Bifilar Fastening 
 
The complex problem of the spatial motion of the "trolley-beam" 
mechanical system is investigated. Three stages are considered: 1) 
movement of the beam on a bifilar suspension to the movable trolley; 2) 
movement of the beam after the breakage of one branch of the suspension; 
3) movement of the beam after the breakage of the second branch of the 
suspension. The study was carried out by creating mathematical models 
for each stage of the system movement and then conducting a numerical 
experiment using computer algebra. The tension of the ropes is calculated 
at the first and second stages of the system movement. Their extreme 
values are determined. The obtained results will be used in the further 
study of the system to reduce the tension of the rope and oscillation 
amplitude and to prevent accidents. 
 
Keywords: cargo transportation, bifilar fastening, DOF model, Lagrange 
equation, numerical simulation, rope tension, breakage. 

 
 
1. INTRODUCTION 
 
Lifting and transport machines and mechanisms are 
widely used in industry, construction, and transport for 
lifting, moving, and unloading heavy loads with 
distributed mass. The main types of these machines 
include gantry, overhead, and tower cranes. 

Due to the influence of internal and external force 
factors, the load's uncontrolled pendulum spatial oscil–
lations (swings) usually occur. They significantly redu–
ce the productivity and accuracy of the work performed. 

The problem of ensuring the safe and high-per–
formance operation of cranes is urgent. Due to reducing 
the time of damping the load oscillations, its solution 
will significantly increase the accuracy of working out 
the specified trajectories of the load movement in space 
and the productivity of lifting and transport, const–
ruction, and installation work. 

It’s impossible to develop and improve cranes in the 
future without studying loads and their impact on 
stability under various operating conditions. 

Based on the requirements for crane design and 
control, researchers are trying to understand the crane 
system dynamics' physical nature and engineering 
implications, including payloads [1-6]. In connection 
with those mentioned above, studying the behavior of 
complex pendulum systems for moving heavy loads 
with distributed mass by crane is an urgent task. 

 
2. LITERATURE REVIEW AND PROBLEM STATE–

MENT 
 
A very simplified model for moving a point load by a 

trolley of an overhead crane is the elliptical pendulum 
model used in works [7-16]. 

A more advanced one is the flat model of a double 
pendulum suspended from a horizontally moving 
trolley, such as a gantry or an overhead crane [17-20]. 
However, to get closer to real practical problems, flat 
models should be replaced with spatial ones (2D models 
should be replaced with 3D models). 

In a number of works, a model of a spherical pen–
dulum with a movable suspension point is considered a 
3D model for cargo movement by a crane, taking into 
account the elastic properties of the rope and the action 
of an external wind load [21-33]. 

The 3D models of the double spherical 3D pen–
dulum studied in the works [34-37] are more advanced. 
However, loads of point mass, not of distributed mass, 
are considered in these works. 

The study of the movement of loads with distributed 
mass, for example, in the form of a beam, is of much 
greater interest. Such problems in flat design are 
considered in works [38-41]. 

Spatial 3D models of the movement of loads in the 
form of a beam were studied in works [42-44]. In 
addition, almost nowhere the rope tension during 
movement or at the time of a possible break was 
determined. At the same time, it is possible to use other 
options for fastening the load (beams), choose other 
coordinate systems, and use other theorems and 
principles for simulating and studying the dynamics of a 
mechanical system. 

There is a study of a flat (not spatial) model of the 
beam behavior after the breakage of one of the rope 
branches of the overhead crane [45]. 

The research examines the dynamics of the 
mechanical system "distributed mass load with a bifilar 
fastening to the trolley." the analysis of references 
shows the dynamics of loads transportation by an 
overhead crane with a bifilar beam fastening are not 
fully considered in the available works. In the proposed 
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formulation, the task was not previously considered. 
Calculating the rope tension during the movement of the 
load is of particular interest for considering emergencies 
associated with the break of the rope (fastening) and 
simulating the subsequent behavior of the load. This 
confirms the relevance and industrial significance of 
this study. 

 
3. THE PURPOSE AND OBJECTIVES OF THE 

STUDY 
 

The purpose of this research is a dynamic description of 
the complex problem of spatial movement of a 
mechanical system in three stages. In the first stage, the 
movement of the system "a trolley with the beam AB 
bifilar fastening" is considered (Fig. 1). A 4-DOF 
mechanical system is studied, where АВ=DE and 
АЕ=ВD. In the second stage, movement of this system 
in the event of the breakage of one of the ropes is 
considered. In the third stage, the beam's spatial 
movement after the second rope's breakage is 
investigated. The purpose is also to determine the 
tension of the ropes, simulate possible emergencies 
associated with the breakage of the ropes, and study the 
further movement of the load. 

The subject of this research is to study oscillations of 
the beam AB and the trolley DE at the first and second 
stages, to determine the change in the rope tension over 
time, calculate the extreme tension values, and study the 
beam movement at the third stage. 

The main novelty of this study lies in the deve–
lopment of a new mathematical 4-DOF model of the 
mechanical system "trolley – beam on a bifilar fas–
tening" with further dynamic analysis of the system 
oscillations and numerical estimation of the rope tension 
at the first stage, study of the 5-DOF model of the mec–
hanical system "trolley - rope - beam" and deter–
mination of the rope tension at the second stage as well 
as simulation of the beam AB spatial motion with the 
usage of the 5-DOF model at the third stage. All three 
models are related. The final conditions of the previous 
stage are the initial conditions of the next stage. 

 
4. MATERIALS AND METHODS 
 
4.1 Kinematics of a mechanical system. Geometric 

constraints. Coordinates and speeds 
 

The mechanical 4-DOF model is shown in Figure 1. 

 
Figure 1. Сomputational scheme for the transportation of 
the beam AB by traverse DE with the usage of bifilar 
fastening 

The dynamic equations for the motion of the 
mechanical system will be obtained by using Lagrange 
equations of the second kind. 

Figure 1 shows the following parameters of the 
mechanical system: g = 9.81 (m/s2) – acceleration of 
gravity; m1 – the mass of the crane with the traverse ED, 
moving forward, m2 – the mass of the beam AB; l – the 
length of the ropes AE and BD; 2a  – the length of the 
beam AB. 

We introduce a fixed system of coordinate axes x1, 
y1, z1. The system of coordinate axes x, y, z that are 
connected to the traverse DE will be movable. The 
origin of this system of coordinate axes will coincide 
with the position of the center of mass of the beam AB 
in equilibrium. Then the motion of the beam AB in the 
vertical planes xz yz will be translational and parallel to 
the axis x . Its movement around the axis KC of a bifilar 
fastening will be rotational and determined by the angle 
of rotation θ. Four coordinates x1, x, y, θ are taken as 
generalized. 

The axis KC of the bifilar fastening will perform a 
spherical motion around point K of the center of mass of 
the traverse. Together with the axes of the moving 
coordinate system, it will form auxiliary angles α, β, and 
γ, which are associated with generalized coordinates. 
When the beam AB rotates around the vertical axis Cz to 
an angle θ, the beam AB moves by an amount u along 
the axis KC. In this case, ux, uy, uz it is its motion along 
the axes x, y, z of the moving coordinate system. 

We define the kinetic and potential energies of the 
mechanical system as a function of the selected gene–
ralized coordinates. To do this, we must calculate the 
coordinates of the center of mass Cθ of the beam AB at 
the current time. 

Cartesian coordinates xc and yc the center C of the 
beam AB, which currently coincides with the point Cθ, 
are as follows: 

 c 1 1 sinx xx x x u x l uα= + + = + + , (1) 
 c siny yy y u l uβ= + = + . (2) 

The vertical coordinate zc can be found depending 
on the generalized coordinates x1, x, y, θ: 

c x yz z z zθ= + + , 

where 

 
2 2 2 2 2

x

2 2 2 2 2
y

cos ,

cos .

z l l l l l x

z l l l l l y

α

β

= − − = − −

= − − = − −
 (3) 

The coordinate zθ is determined by considering the 
bifilar fastening (fig. 2). 

We denote the movement of the beam AB along the 
KC axis as u CCθ= . 

( )
; ;

2 sin 2
AE EA l AC SC CL a

AL a
θ

θ

= = = = =

=
 

From the triangle ESAθ , when turning to an angle θ 
of the bifilar fastening, its movement u along the axis 
KC of rotation of the bifilar fastening takes the form: 
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 ( )2 2 24 sin 2θ= − −u l l a . (4) 

 
Figure 2. Computational scheme of bifilar fastening 

Then the velocity of the center C of the beam AB 
along the axis KC of the bifilar fastening rotation at any 
time after simplification will be: 

 
( )

2

2 2 2

sin

4 sin 2
θ

θ θ
θ

⋅
=

−
�aV

l a
. (5) 

Moving u along the axis KC of the bifilar fastening 
rotation with the vertical gets the angle γ. Write down 
the cosine value of this angle using the ratio: 

 
2 2 2

2cos 1 sin
l x y

l
γ γ

− −
= − = . (6) 

We find the vertical coordinate zc depending on the 
generalized coordinates x, y, θ (zc it doesn't depend on 
the coordinate x1): 

 
( ) ( )

2 2 2 2

2 2 2 2 2

z z z z 2

1 1 4 sin 2 .

c x y l l x l y

a l l x y

θ

θ

= + + = − − − − +

⎛ ⎞+ − − ⋅ − −⎜ ⎟
⎝ ⎠

 (7) 

The expression for zc  is clearly non-linear. 
Let us simplify expression (7) using the small para–

meter method, 

 
2 2 2 2

z
2 2 2c
x y a θ

= + + . (8) 

A more extended-expression (7) for the coordinate zc 
will be used for an in-depth system analysis. 

Find the projections of the velocity of the center of 
mass of the beam AB on the axis x1, y1, z1: 

 

1
1

1

2 2 2

1

,

,

.

θ

θ

θ

= + +

= +

− −
= + +

� �

dx dx xVcx V
dt dt l

dy yVcy V
dt l

l x yxx yyVcz V
l l l

 (9) 

4.2 The potential and kinetic energy of the mecha–
nical system. Generalized forces and Lagrange 
equations of the second kind 

 
The potential energy of the mechanical system (fig. 1) 
can be calculated as 

 ( )
2

2 2 2 2

2 2 2 2 2C
x y aП m g z m g

l l l
θ⎛ ⎞

= ⋅ = + +⎜ ⎟⎜ ⎟
⎝ ⎠

. (10) 

The potential energy (10) allows us to find the 
generalized forces Qx1, Qx, and Qy which can be 
calculated as partial derivatives of the potential energy 
Π relative to the generalized coordinates x1, x, y, θs: 

 
1 2

1
2

2 2

0, ,

, .

x x

y

П П xQ Q m g
x x l

П y П aQ m g Q m g
y l lθ

θ
θ

∂ ∂
= − ≈ = − ≈ −

∂ ∂

∂ ∂
= − ≈ − = − ≈ −

∂ ∂

 (11) 

The vector of the generalized forces has the form: 

 { }

1

2
1

x
x

Q m g
yl
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟≈ − ⋅ ⋅
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (12) 

In this case, the kinetic energy of the mechanical 
system will be: 

2
1

1

2 2
1

22 2 2 2

2
2

2

1
2

1
2

1 .
6

θ θ

θ

θ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ + + + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠
⎢ ⎥+ +
⎛ ⎞⎢ ⎥− −⎜ ⎟⎢ ⎥+ + +
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

� �

dx
T m

dt

dx dx x dy yV V
dt dt l dt l

m
l x yxx yy V

l l l

dm a
dt

 (13) 

Simplification (13) results in the following 
approximate expression: 

 

2 2 2
1 1

1 2

2
2

2

1 1
2 2

1 .
6

dx dx dx dyT m m
dt dt dt dt

dm a
dt
θ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

(14) 

Lagrange equations of the second kind are as 
follows: 

 , 1, 2,3, 4
⎛ ⎞∂ ∂

− = =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠�
a
j

j j

d T T Q j
dt q q

, (15) 

where q1 = x1, q2 = x, q3 = y, q4 = θ. 
After transformations and abbreviations, we get: 

 
2 2

1 2
2 2

1 2
0

d x m d x
m mdt dt

⎛ ⎞ ⎛ ⎞
+ ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ + ⎝ ⎠⎝ ⎠

, (16) 
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2 2

1
2 2

d x d x xg
ldt dt

⎛ ⎞
+ = −⎜ ⎟⎜ ⎟

⎝ ⎠
, (17) 

 
2

2
d y yg

ldt

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
, (18) 

 
2

2 3d g
ldt

θ θ⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. (19) 

Four Lagrange equations of the second kind (16)-
(19) were obtained. Two of them are interconnected, 
and the last two are independent of each other. 

Equations (16) - (19) have a solution: 

 2
1 1 2

1 2

m
x x C t C

m m
= − ⋅ + +

+
, (20) 

 ( )1 1 1sin α= +x A k t  (21) 

 ( )2 2 2siny A k t α= + , (22) 

 ( )3 3 3sinA k tθ α= + . (23) 

where the integration constants depend on the initial 
conditions of the problem. 

We can see that the laws of small relative motions of 
the beam in the horizontal plane have an oscillatory 
character with unequal frequencies: 

 ( )1 2
1 2 3

2

3, ,
m m g g gk k k

m l l l
+

= = = . (24) 

 
4.3 Rope tension 

Using analytical geometry methods, we can find the 
position of the straight line BD in the rectangular 
Cartesian coordinate system x1, y1, and z1. We determine 
the directional coefficients of the straight line BD: 

 ( )cos ,
sin , .

B D

C

m x x x a l
n y a p l z

θ
θ

= − = − −

= − = −
 (25) 

To determine the tension N of the rope, which, due 
to symmetry, will be the same for each of the branches 
of the considered mechanical system, we can write 
D'Alembert’s principle in the projection on the vertical 
axis and find: 

 2

2 2 2
2 cos

+
= ⋅

+ +

��Cg zm
N

p

m n p

. (26) 

5. RESEARCH RESULTS. NUMERICAL MODELING 
OF THE MECHANICAL SYSTEM MOTION 

 
Using formulas (1), (2), (5), (7), (9), (11), and (13), exp–
ressions for the kinetic and potential energy take the form: 

[ ]

[ ]

[ ] [ ]

[ ]

[ ]

22
1

2 2
22 2

2
22 2 2 2

1 1 2

2
2 2 2 2

2
22 2

sin
1
3 4 sin / 2

1 sin 4 sin / 2
2

sin

4 sin / 2

θ θ
θ

θ

θ θ θ

θ θ

θ

⎛ ⎛ ⎞⎛ ⎞+ +⎜ ⎜ ⎟⎜ ⎟⎜ ⎜ ⎟+ +⎜ ⎟⎛ ⎞⎜ ⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎜ ⎟⎝ ⎠⎝ ⎠
⎜ ⎜ ⎟
⎜ ⎜ ⎟⎛ ⎞⎛ ⎞= + + + − +⎜ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟

⎜ ⎟⎛ ⎞⎜ ⎟+ + − −⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎜ ⎟
⎝ ⎠⎝

�
�

�

�

x x

x y

x y

V V a x
a

l l a

T mV m V a y l l a

xV yV a l x y
l

l a

.

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

       (27) 

 [ ]

2 2 2 2
2

22 2 2 2 2

(2

4 sin / 2θ

= − − − − +

⎛ ⎞− − − −⎜ ⎟
⎝ ⎠

П gm l l x l y

l x y l l a

l

       (28) 

Based on Lagrange equations of the second kind 
(15), we obtain a system of four second-order non-linear 
differential equations. 

This system has proved to be quite cumbersome and 
cannot be solved analytically. Therefore, we resorted to 
a numerical experiment (numerical modeling) using the 
capabilities of computer algebra. 

The following initial data and initial conditions are 
used for modeling: m1=500 kg, m2=4000 kg, l=6 m, 
g=9.81 m/s2, a=2.2 m, x10=0.001 m, x0=0.5 m, у0=0.4 m, 
θ0=0.05 rad, Vx10=0.001 m/s, Vx0=0.1 m/s, Vу0=0.1 m/s, 

0θ =0.01 rad/s. 
The simulation results are shown in figures 3-11. 

 
Figure 3. Graph of linear coordinates versus time: x1[t] – 
blue, x[t] – green, y[t] – red. 
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a 

    
 b c 
Figure 4. Phase trajectories: a – x1-Vx1, b – x-Vx, c – у-Vу 

 
Figure 5. Dependency graph θ[t] 

 
Figure 6. Phase trajectory θ- �θ  

 
Figure 7. Graph of linear velocities versus time: Vx1[t] – 
blue, Vx[t] – green, Vy[t] – red 

 
Figure 8. Graph of kinetic and potential energy versus time: 
T[t] – purple, P[t] – blue 

 
Figure 9. Graph of the total mechanical energy E[t] (purple) 
and Lagrangian L[t] (blue) versus time 

 
Figure 10. The spatial trajectory of the beam center of mass 
(point C) 

 
Figure 11. Graph of rope tension changes 

Fig. 9 demonstrates that the graph of the total mec–
hanical energy E[t] is a straight horizontal line. That is, 
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the total mechanical energy of the system rem–ains 
unchanged (assuming that there are no resistance forces). 

It should be noted that the presented modeling 
results almost coincide with the results of calculations 
based on simplified formulas (16)-(19). 

The graph of changes in the rope tension calculated 
based on the (26) formula is shown in Fig. 11. 

The maximum value of the rope tension was 
determined in the time range from 0 to 10 sec. In the 
indicated time range, the maximum tension is 38783.7 
N, and it is reached in 3.75 sec. 

 
6. ROPE BREAK 

 
Let's consider the case when one of the rope branches 
broke when the maximum value of the rope tension was 
reached. For certainty, we assume that the break 
occurred at point B. We will find the tension of the 
second branch of the rope (branch AE). Let's compile 
the differential equations of motion of the beam AB for 
a very short period of time following the moment of 
break, neglecting the change in the direction of the 
beam and the distance of the center of mass of the beam 
from the other branch of the rope. 

At the time of the rope breakage, the beam was in a 
horizontal position. 

The break occurred at a certain point in time t1, in 
which the beam and the trolley positions are known as 
xAb, xEb, yAb, yEb, zCb, x1b, xb, yb, θb. We determine the 
directional coefficients of the line AE according to 
figure 12: 

( ) ( )
( )

1 1cos

1 cos ,
b Ab Eb b b b b

b b

m x x x x a x a

x a

θ

θ

= − = + − − − =

= + −
 

sinb Ab Eb b bn y y y a θ= − = − , 

b Cbp l z= − . 

 
Figure 12. Calculation diagram for the rope tension NA. 

Accordingly, the angles between the line AE and the 
coordinate axes are determined by directional cosines: 

( ) ( ) 2 2 2cos cos ,bx b b b bAE x m m n pα = = + + , 

( ) ( ) 2 2 2cos cos ,by b b b bAE y n m n pα = = + + , 

( ) ( ) 2 2 2cos cos ,bz b b b bAE z p m n pα = = + + . 

For further analysis of the problem, we introduce a 
new coordinate system Aζ1η1ξ1, connected to the beam 
AB as shown in fig. 12. The forces acting on the beam 

are shown in the figure. At the same time, the 
directional cosines for the vector NA of the rope AE 
tension will be: 

( ) ( )1cos , cos bx bAE ζ α θ= + , 

( ) ( )1cos , cos by bAE η α θ= + , 

( ) ( )
1

cos , cos
bz

AE ξ α= . 

It can be seen that the angle between the line AE and 
the vertical has not changed 

Let's set up the  differential equations of motion of 
the beam: 

 ( )2 1 2 1cos ,ξ ξ⋅ = − ⋅��
C Am G N AE , (29) 

 ( )1cos ,ϑ ξ⋅ = ⋅ ⋅��
C AJ N a AE , (30) 

where  
( )2 2

2 22
12 3C

m a m a
J

⋅ ⋅
= =  – the moment of 

inertia of the beam, ϑ  – the angle of rotation of the 
beam in the vertical plane, 2 2G m g=  – the weight of 
the beam. 

Linear and angular acceleration are related by the 

dependence: 1ξϑ =
��

�� C
a

. 

Then equation (30) takes the form: 

( )
2

12
1cos , ,

3
ξ

ξ
⋅

⋅ = ⋅ ⋅
��

C
A

m a
N a AE

a
  

here from 

( )2 1 13 cos ,ξ ξ⋅ = ⋅��
C Am N AE .  

Taking into account the obtained expression, 
equation (29) takes the form: 

( ) ( )1 2 13 cos , cos ,A AN AE G N AEξ ξ⋅ = − ⋅ . 
Hence, we can find the tension of the rope AE at the 

moment of breaking: 

( )

2 2 2
22

14 cos , 4
b b b

A
b

m g m n pm g
N

AE pξ
+ +

= =
⋅ ⋅

. 

For the accepted numerical values of the initial data 
and initial conditions, the tension of the rope AE at the 
moment of breaking equals 9811.56 N. 

 
7. MOVEMENT OF THE BEAM AFTER BREAKING 

ONE OF THE ROPE BRANCHES 
 

From the moment of breaking of one of the rope 
branches, the considered mechanical system becomes a 
double spherical pendulum with suspension point E 
moving along a straight path y (Fig. 13). 

Let's introduce a fixed (absolute or reference) 
coordinate system, Oxyz. We connect the trolley with 
the coordinate system Ex1y1z1, and the beam with the 
coordinate systems Ax2y2z2 and Cx3y3z3 , where p. C is 
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the center of mass of the beam AB. The system has 5 
degrees of freedom. We accept q1 = y1, q2 = φx, q3 = φy, 
q4 = ψx, q5 = ψy

 
as generalized coordinates. 

 
Figure 13. Calculation diagram of the beam movement after 
breaking one of the rope branches 

 
The initial conditions correspond to the position of 

the beam AB at the moment of the rope breakage in p. 
B: y10 = -0.285m, φx0 = 0.0156, φy = 0.36, ψx = π/2,  

10 1.7 m=�y s , 0 0ϕ =�x , 0ϕ =� y , 0ψ =� x , 0ψ =� y . 
The coordinate values of points A and C in the 

reference system Oxyz are as follows: 

( )sinA xx l ϕ= , 

( ) ( )1 cos sinA x yy y l ϕ ϕ= + , 

( ) ( )cos cosA x yz l ϕ ϕ= , 

( ) ( )sin sinC x xx l aϕ ψ= + , 

( ) ( ) ( ) ( )1 cos sin cos cosC x y x yy y l aϕ ϕ ϕ ϕ= + + , 

( ) ( ) ( ) ( )cos cos cos cosC x y x yz l aϕ ϕ ψ ψ= + . 

The potential energy of the system: 

( ) ( )( )
( ) ( )( )2

1 cos cos

1 cos cos

x y

x y

l
P m g

a

ϕ ϕ

ψ ψ

⎛ ⎞⋅ − +
⎜ ⎟= ⎜ ⎟
⎜ ⎟+ −
⎝ ⎠

  

The kinetic energy of the system: 

 ( )22
21 1

2 2
= + +

� rC
C

m Vm y
T T , (31) 

where 2 2 2 2= + +� � �C C C CV x y z , ( )r
CT  is the kinetic energy of 

the relative motion of the beam AB in relation to its 
center of mass. 

We draw the main central axes Cx4y4z4 through the 
center of mass of point C of the beam AB so that the 

axis Cz4 would pass along the axis of the beam AB, and 
the other two axes – perpendicularly to it. The inertia 
matrix of the beam relative to the main central axes has 
the following form: 

 

2
2

1 2
2

2

3

0 0
3

0 0
0 0 0 0

3
0 0 0 0 0

C

m a

J
m a

J J
J

= = . (32) 

The transition from the coordinate system Cx3y3z3

 
to 

Cx4y4z4

 
is carried out by two consecutive rotations. The 

first rotation is performed around the axis Cx3 at the 
angle ψy (Fig. 14), for which the table of the directional 
cosines has the form: 

 
( ) ( )

( ) ( )
1

cos 0 sin

0 1 0

sin 0 cos

y y

y y

B

ψ ψ

ψ ψ

=

−

. (33) 

 
Figure 14. Scheme of the first rotation around the axis Cx3 
at the angle ψy 

The second turn is performed around the axis Cy3 at 
the angle ψx (Fig. 15), for which the table of the 
directional cosines has the form: 

 
( ) ( )
( ) ( )2

cos sin 0
sin cos 0

0 0 1

x x

x xB
ψ ψ
ψ ψ

−
= . (34) 

 
Figure 15. Scheme of the second rotation around the axis 

3Cy  at the angle xψ  
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The matrix of directional cosines determines direc–
tions of the main central axes: 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

11 12 13

1 2 21 22 23

31 32 33

cos cos cos sin sin

sin cos 0 .

cos sin sin sin cos

x y y x y

x x

x y x y y

B B B
α α α
α α α
α α α

ψ ψ ψ ψ ψ

ψ ψ

ψ ψ ψ ψ ψ

= ⋅ = =

⋅ − ⋅

=

− ⋅ − ⋅

.(35) 

Moments of the inertia of the axes 3 3 3Cx y z : 

 
( ) ( )( )

( ) ( )( )

( )( )

3

2 2 2
11 1 12 2 13 3

2 22

2 22

2 22

cos cos
3

cos sin
3

cos ;
3

Cx

x y

y x

y

J J J J

m a

m a

m a

α α α

ψ ψ

ψ ψ

ψ

= + + =

= +

+ =

=

 (36) 

 ( )( ) ( )( )

3

2 2 2
21 1 22 2 23 3

2 22 22 2

2
2

sin cos
3 3

;
3

Cy

x x

J J J J

m a m a

m a

α α α

ψ ψ

= + + =

= + =

=

 (37) 

 
( ) ( )( )

( ) ( )( ) ( )( )
3

2 22 2 2 2
31 1 32 2 33 3

2 22 22 2

cos cos
3

sin sin sin ;
3 3

α α α ψ ψ

ψ ψ ψ

= + + = +

+ =

Cz x y

x y y

m a
J J J J

m a m a
(38) 

The kinetic energy of the relative motion of the 
beam AB: 

 
( )

( )( )( )
3 3

2 2

2 22 22

1 1
2 2

cos .
6

ψ ψ

ψ ψ ψ

= ⋅ + ⋅ =

= +

� �

� �

r
Cx y Cy xC

x y x

T J J

m a
 (39) 

Lagrangian of the considered system: 

( )( )( )
( ) ( )( )
( ) ( )( )

22 2 22 221 1 2

2

cos
2 2 6

1 cos cos
.

1 cos cos

ψ ψ ψ

ϕ ϕ

ψ ψ

= − = + + + −

⎛ ⎞⋅ − +
⎜ ⎟− ⎜ ⎟
⎜ ⎟+ −⎝ ⎠

�
� �C
x y x

x y

x y

m Vm y m a
L T P

l
m g

a

 (40) 

The movement of the system is described by 5 
Lagrange equations of the 2nd kind: 

0, 1, 2, , 5
⎛ ⎞∂ ∂

− = =⎜ ⎟∂ ∂⎝ ⎠
…

�i i

d L L i
dt q q

. 

We do not present these equations in expanded form 
due to their cumbersomeness. 

The results of the system dynamics modeling are 
presented below in Figures 16-19. 

 
Figure 16. Dynamics of the crane trolley movement in y1-t 
coordinates 

 
Figure 17. Graph of changes in generalized angular 
coordinates: ϕx – brown, ϕy – green, ψx – red, ψy – blue 

 

 
 a b c d e 

Figure 18. Phase trajectories: а – 1 1y y− � ; b –  x xϕ ϕ− � ; c –  y yϕ ϕ− � ; d – x xψ ψ− � ; e – y yψ ψ− �  
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Figure 19. 3D trajectory of the center of mass of the beam 
(p. C) 

Determine the rope tension in the process of moving 
the beam AB. 

The differential equation of the beam motion in the 
projection onto the vertical axis of the fixed coordinate 
system: 

2 2 cosϕ= −��C xm z m g N , 
where 

2 cosϕ
−

=
��C

x

g z
N m   (41) 

The schedule of changes in the rope tension over time 
is shown in Fig. 20. The first local extremum of the rope 
tension is observed at t=1.13 and is equal to 119320 N.  

 
Figure 20. Graph of changing the rope tension over time 

The position of the beam AB for the moment is 
determined by the coordinates: xC = 2.138 m, yC = 5.364 
m, zC = 7.527 m, ψx = 0.0468 radian, ψy = -0.065 radian. 
And the corresponding speeds are equal to: 

CxV   = -

1.157 m/s, 
CyV  = 2.808 m/s, 

CzV   = 1.196 m/s, ψΩ x
  = -

2.958 radian/s, ψΩ y
= 2.453 radian/s. 

 
8. MOVEMENT OF THE BEAM AFTER THE BREA–

KAGE OF THE SECOND BRANCH OF THE ROPE 
 

Suppose that at the moment of reaching the local 
extremum of the rope tension, it breaks, and the beam 
AB continues its free movement (Fig. 21) only under the 
action of gravity under the above initial conditions. 

The differential equations of the beam motion will 
be written in the form: 

 

2

2

2 2

0,
0,

,
0,

0.

ψ

ψ

=

=

=

=

=

��
��
��
��

��

C

C

C

Cx y

Cy x

m x
m y

m z m g
J

J

 (41) 

 
Figure 21. Scheme of free movement of the beam AB after 
the breakage of the second branch of the rope 

According to formulas (36) and (37): 

( )( )
2 22 cos

3Cx y
m a

J = ψ ; 

2
2
3Cy

m a
J = . 

The simulation results are presented in figs. 22-24. 

 
Figure 22. Movement of the center of mass of the beam: хС 
– blue, yС – green, zС – red 

 
Figure 23. The 3D trajectory of the point С 



FME Transactions VOL. 50, No 3, 2022 ▪ 557
 

 
Figure 24. Changes of generalized angular coordinates: ψх 
– purple, ψy – brown 

9. DISCUSSION OF THE RESEARCH RESULTS 
 
The results of simulating the movement of the beam 
(Fig. 3) with the specified numerical values of the 
system parameters show that the trolley moves along the 
guides, moving away from the initial position and 
making oscillations with an amplitude of approximately 
0.5 m in a period of 5 sec during the considered time 
interval of 10 sec. At the same time, the trolley moves at 
a distance of 0.9 m. The range of oscillations of the 
center of mass of the beam along the x and y coordinate 
axes is 0.9 and 0.8 m, respectively. At the same time, 
the period of oscillations along the axis x is equal to 
approximately 1.7 sec. It is less than the period of 
oscillations along the axis y by approximately 3 times. 

Since the problem was solved without taking into 
account the resistance forces, the phase trajectories in 
Fig. 4 came out in the form of ellipses. 

The graph of changes in time and the phase 
trajectory of the angle θ demonstrate the harmonic 
nature of oscillations with an amplitude of 0.046 rad/s 
and a period of approximately 0.95 s. 

Figure 8 demonstrates the implementation of the law 
of mechanical energy conservation. It can be seen that 
the kinetic and potential energies of the system are in 
antiphase, and the total mechanical energy of the system 
does not change (see Fig. 9). 

The trajectory of the center of mass of the beam is 
shown in three-dimensional Cartesian space (Fig. 10), 
which indicates the complex nature of this movement. 

The calculation performed in paragraph 7 shows that 
the tension of the intact branch of the rope at the time of 
the breakage of the second branch is significantly less 
than the amount of tension of the rope before the break. 

After one branch of the rope breaks, the trolley 
moves away from the position it occupied at the time of 
the breakage. At the same time, the trolley demonstrates 
an uneven oscillating motion. 

Figs. 16 and 18а demonstrate the law of the 
conservation of momentum of the mechanical system. 

As can be seen from Figures 17 and 18b,c,d,e, the 
generalized coordinates φx, φy perform oscillatory 
movements near zero. And the generalized coordinates 
ψx, ψy start to move from the value π/2 and tend to zero 
during the movement. 

3D-trajectory of the point C of the center of mass of 
the beam within the considered time interval (Fig. 19) 

shows that the beam tends to move from a horizontal to 
a vertical position. 

Calculation of the rope tension over time (Fig. 20) 
shows significant dynamic loads. The tension can be 
approximately three times greater than the weight of the 
beam itself. This can lead to the break of the second 
branch of the rope. 

And after the break of the second branch of the rope, 
the beam moves under gravity only as a free solid body 
with a distributed mass. According to the laws of 
classical mechanics, the horizontal coordinates of the 
center of mass of the beam and the angular coordinates 
change linearly, but the vertical coordinate changes 
along a parabola. 

In addition, the study of the characteristic move–
ments of the load and the nature of the oscillations 
provide the basis for choosing the optimal method 
(controlled movements of the crane, use of dampers, 
etc.) and equipment to eliminate the negative conse–
quences or reduce their impact. This should signi–
ficantly increase the productivity of the use of crane 
equipment and its reliability (to increase the speed of 
carrying out cargo operations, eliminate oscillations in 
the system to increase the durability of the equipment, 
and reduce the probability of emergencies). 

 
10. CONCLUSION 
 
1. The complex problem of moving a body with a 
distributed mass (a beam), which includes three stages, 
is considered. In the first stage, the movement of the 
beam suspended to a mobile trolley by a bifilar fas–
tening is investigated. The second stage begins at the 
moment of the breakage of one of the two ropes, and 
then the movement of the mechanical system "trolley-
rope-beam" is simulated. It is assumed that the rope 
breaks at the time of reaching a maximum value of its 
tension, and, in the third stage, movement of the beam 
only is considered. All stages are connected by the fact 
that the final values of the motion parameters at the 
previous stage (coordinates and velocities) are the initial 
parameters for studying the motion of the mechanical 
system at the next stage.  
 
2. 4 DOF mechanical system "movable trolley with 
the beam" is studied. Using Lagrange equations, a sys–
tem of four non-linear differential equations of the 
second order is obtained, which describes the motion of 
the considered mechanical system. Depending on the 
four generalized coordinates, expressions for the kinetic 
and potential energies are defined for compiling the 
equations of motion. The resulting system of equations 
is solved numerically using computer algebra. 
 
3. The proposed system of Lagrange equations of the 
second order for a 4 DOF mechanical system with the 
assumption of small oscillations is also solved analy–
tically. The results of the analytical and the numerical 
solutions almost coincide. 
 
4. The system movement's peculiarities and charac–
teristics - two interdependent horizontal rectilinear mo–
vements and independent lateral movement - are deter–
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mined. The problem of a bifilar fastening of the beam is 
solved by studying the vertical movement. Three inde–
pendent oscillations and their frequencies are found. The 
conservatism of the mechanical system is empha–sized. 
 
5. With the help of the D'alambert principle, the mag–
nitude of the rope tension and its extreme values are 
determined. 
 
6. For the case when one of the branches of the ropes 
cannot withstand the load and the beam continues to 
move on the second one, the magnitude of tension of the 
remaining rope branch is found at the moment of the 
breakage of the first branch. The mechanical system is a 
double spherical pendulum with a suspension point 
moving along a rectilinear horizontal trajectory. 5 DOF 
differential equations of the beam motion were set up 
and the results of numerical simulation of a new 
mechanical system were obtained. The values of the 
coordinates and their derivatives at the time of the break 
of the rope branch are used as the initial conditions of 
the simulation. The change in the rope tension over time 
is calculated, and its extreme values are determined. 
 
7. A mathematical model is developed, and the beam 
motion after the breakage of the second branch of the 
rope at the moment of reaching the maximum tension is 
investigated. The beam motion is performed according 
to the laws of free fall in space and is described by the 5 
DOF system of differential equations for which 
numerical simulation is also performed. 
 
8. Simulation of emergencies related to rope breakage 
can become a basis for preventing their occurrence and 
minimizing negative consequences. 
 
9. The study of characteristic movements of the load 
and the nature of the oscillations provides the basis for 
choosing the best way to eliminate them or reduce their 
impact (crane-controlled movements, dampers, etc.). 
This should make it possible to significantly increase 
the productivity of the used crane equipment (it allows 
to an increase in the speed of carrying out cargo 
operations) and its reliability (the elimination of 
oscillations in the system increases the durability of the 
equipment and reduces the probability of emergencies). 
 
10. The obtained results will be used for further study 
of the system to reduce the rope tension and the 
amplitude of the beam oscillations by using the method 
of controlled crane movement. 
 
11.  Consideration of damping and elastic properties of 
the system will be the subject of further research. 
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ПРОСТОРНИ ТРАНСПОРТ ГРЕДЕ ПРИ 
БИФИЛАРНОМ ПРИЧВРШЋИВАЊУ 

 
А. Стадник, С. Подлесни, С. Капорович, 

А. Кабатски 
 

Истражује се сложен проблем просторног кретања 
механичког система „колица-греда”. Разматрају се 
три стадијума: 1) кретање греде на бифиларној 
суспензији до покретних колица; 2) кретање греде 
након лома једне гране суспензије; 3) кретање греде 
након лома друге гране суспензије. Студија је 
спроведена креирањем математичких модела за 
сваку фазу кретања система, а затим извођењем 
нумеричког експеримента коришћењем компју–
терске алгебре. Напетост ужади се израчунава у 
првој и другој фази кретања система. Њихове 
екстремне вредности су одређене. Добијени 
резултати ће се користити у даљем проучавању 
система за смањење затезања ужета и амплитуде 
осциловања и за спречавање незгода. 

 
 

  

 


