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Flutter Analysis of Tapered Composite 
Fins: Analysis and Experiment 
 
In the present work, the aeroelastic stability of tapered composite plates 
is investigated. Existing flutter models, based on the typical section 
approach, are reviewed for quasi-steady and unsteady low Mach number 
axial flows and modified for the thin composite tapered plates. The 
numerical approach, based on panel vortex methods for flutter analysis, 
is presented, and results are compared to typical section flutter methods 
for the tapered composite fins. Experimental work is performed in the 
subsonic wind tunnel at flow speeds of 20 – 30 m/s range. Good 
agreement between experimental, analytical, and numerical results is 
obtained, and it was concluded that the presented methodology could be 
used for estimating the flutter boundary velocities for the composite thin 
flat plates.  
 
Keywords: aeroelastic stability, flutter, composites, Mach number, thin 
composite plates, missile fin. 

 
 

1. INTRODUCTION 
 

Mostly because of their intrinsic possibility to be 
tailored to a specific engineering application, composite 
materials, in recent years, have gained the interest of 
many researchers, designers, and industries. Composites 
are now used as materials of primary choice in many 
industries, like aerospace, automotive, and construction 
industries, to name just a few. In the aerospace industry, 
known for its stringent standards, composite systems are 
used as the main building block, even in primary 
aerostructures. By the proper mix of composite system 
phases, almost any material characteristic (Conduc–
tivity, Corrosion Resistance, Density, Ductility, Elasti–
city/Stiffness, Fracture Toughness, Hardness, Plasticity, 
Fatigue Strength, Shear Strength, Tensile Strength, 
Yield Strength, Toughness, etc.) can be designed to 
meet specific requirements [1-2].  

 The present paper analyses the bending-torsion 
flutter of a tapered composite fin. All flying vehicles are 
built to be light and therefore deform under aero–
dynamic loading during flight. In turn, these defor–
mations change the loading distribution, which again 
changes deformations. This interaction may lead to po–
tentially fatal failure of the structure. Flutter is a 
phenomenon that must be completely prevented from 
occurring within the flight envelope. Based on this, it is 
of paramount importance to have reliable methods for 
flutter predictions of composite structures that can be 
used in the early stages of the design. In this paper, 
several flutter prediction methods developed for the 
isotropic materials are analyzed and modified toward 
flutter analysis of orthotropic composite laminates, 
results are compared to known numerical models, and 

finally to the results obtained by wind tunnel testing in 
the subsonic regime [3]. 

 
2. BENDING-TORSION FIN FLUTTER ANALYSIS 

 
Flutter analysis ensures the aircraft is free from flutter 
within the prior defined flight envelope. Flutter tests 
have to be performed to demonstrate the accuracy of the 
analyses and prove the flight-worthy structures are safe 
to operate. Flight flutter tests are required, however, 
they are dangerous and expensive; on the other hand, 
many flut–ter testing nowadays is done in wind tunnels. 
Flutter testing in wind tunnels requires expensive testing 
appa–ratus and relatively long preparation times and 
mostly because of the high prices of wind tunnel 
operations' vast economic resources. Bearing these facts 
in mind, in recent years, methods for flutter velocity 
estimates have been under constant development and in 
the focus of many researchers. [4-7] 

Methods of flutter analysis can be broadly classified 
into two categories: analytical (classical) and numerical 
(certain combined methods also exist). The classical 
method is usually only used as a first flutter boundary 
estimate and in the process of initial structural sizing. 
Due to the limitation of compressibility correction, 
assumption of lift curve slope, and exclusion of non-
linear structure stiffening effects, flutter velocities obta–
ined by these methods can vary up to 40%. Numerical 
methods of flutter analysis are time marching analysis 
methods and are more accurate, however, they require 
high CPU resources, long modeling times, and very 
often expensive commercial software modules [8-11]. 

In the present paper, the goal is to present a 
methodology for the estimation of the composite 
structure (thin, airfoiled plates) flutter velocity for 
different flow conditions and relatively small Re 
numbers. First, the binary (2 DOF) flutter model is 
analyzed, and one of the objectives was to derive 
equations of motion of the lifting surface typical 
section. [12-13]. 
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The typical section (or sometimes called the 
characteristic section) is located at 0.70 – 0.75 % semi-
span. It is assumed that all required (aerodynamic and 
structural) characteristics of the lifting surface analyzed 
can be presented with the same values as for the typical 
section. The ‘typical section’ lifting surface idealization 
with binary models (pitch–plunge degrees of freedom) 
is very effective in flutter analysis and it is possible to 
perform the unsteady and quasi-steady analysis using 
different aerodynamic models [14-15]. The typical 
section method has been analyzed by many authors in 
recent years, and the methodology is well established; 
however mostly related to isotropic materials (primarily 
aluminum) whereas the flutter analysis of composite 
structures requires further investigation. 

The typical section of an airfoiled (thin) fin is 
presented in Figure 1. 

 
Figure 1. A typical section is located at 0.75 % of the lifting 
surface span. 

In many engineering dynamics analyses [16], the 
objective is to derive equation(s) of motion of the 
system analyzed using different methods currently avai–
lable. For the composite structure analyzed in this work, 
relations for potential and kinetic energy are written in 
terms of the selected system’s degrees of freedom (h – 
plunge and α – twist for the lift surface section, 
presented in figure 1). It is assumed that the system 
twists about the shear center (Es), whereas the 
aerodynamic loading (Rz- Lift force and Mac – aero–
dynamic moment) acts in the aerodynamic center (ac).  

It is assumed in the present analysis that the 
aerodynamic center is located at the quarter chord 
(section) span measured from the leading edge. In 
general, when analyzing thin-walled structures, deter–
mination of the section shear center of twist requires 
separate analysis (analytic or numerical) based on the 
methods well established in the Elasticity theory of thin 
structures. The shear center (ES) is a structural feature 
of the lifting surface; it is a location along the chord 
such that the acting force causes bending without 
twisting of the surface. The shear center position 
depends on the cross-section geometry (for the isotropic 

structures, whereas for composites, composite lay-up 
has a certain degree of influence on shear center 
location). In the present analysis, the ES location is 
taken into account through the term a(l/2) where the 
value of an in the vicinity of 0.2-0.245, which was taken 
as a reference by performing numerical analyses for the 
shear center position for NACA 0006 – 0012 airfoil 
series of an airfoil. A typical section model, the two-
degree-of-freedom airfoil system, can give a lot of 
insights and useful information about the physical 
aeroelastic phenomena [16-17]. 

 
Figure 2. NACA 0006, shear center position 

For the two-degree system presented in Figure 1, 
potential and kinetic energy in terms of plunge (h) and 
twist (α) are expressed as: 
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Further, by the introduction of the artificial damping 
term in the form: 
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and using Lagrange’s equations of the second kind, the 
typical fin section, equations of motion (2 DOF) are 
expressed in the following form: 
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In the previous equation (eq. 4), Rz(t) and MT(t) are 
aerodynamic forces and moments, with artificial 
damping terms (both structural and fluid) denoted as gh 
and gα, respectively. The natural frequencies of the 
system oscillation are ωh and ωα. Inertial characteristics 
of the fin section (moments of inertia) are Ik and Sk. 

System of equations (eq. 4) represents the equations 
of motion, for the 2 degrees of freedom fin model in 
subsonic flows. 

Analyzing equations derived, it is obvious that the 
system’s modal characteristics are required coupled 
with the adequate aerodynamic theory for the problem 
analyzed (quasi-steady or unsteady). The applicable 
aerodynamic theories will be discussed in the 
subsequent sections. 

  
2.1 Thin plate modal analysis 

 
Required modes of oscillations for the composite 
systems can be determined in several ways: Analy–
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tically, numerically, or using an experimental approach. 
Analytical methods based on the Rayleigh-Ritz app–
roach are very effective; however, they are generally 
used for simple systems (isotropic rectangular plates, as 
an example) [18-20]. 

The natural frequencies based on the Rayleigh-Ritz 
method of the thin cantilever plate are: 

2
n

n
D

tb
λω

ρ
=

⋅
 (5) 

In the previous equation, ρ represents material 
density, and D is plate flexural rigidity computed from 
the following relation: 
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Coefficients λn for isotropic materials as a function 
of taper ratio (tip chord/root chord) are given in Table 1. 
Table 1. Coefficients λn for isotropic materials 

Ctip / Croot Bending Torsion 
2 3.51 5.37 
1 3.49 8.55 

0.5 3.47 14.90 
 
For the composite systems, and based on the FEA 

approach correction coefficients, the first two modes of 
oscillations are calculated and presented in figure 3 for 
the plate aspect ratios 0.5 - 2. 

 
Figure 3. orthotropic correction coefficients 

Values of required frequencies (bending and torsion) 
can also be obtained using the Finite element approach 
by performing modal analysis. The algorithm for modal 
extraction used in this example was the complex 
Lancosz algorithm since it was found that this algorithm 
for problems of similar size does not miss any modes; it 
is fairly fast and does not require fine mesh, which can 
be of importance when several case scenarios have to be 
analyzed. This was concluded based on the sensitivity 
analysis performed and results obtained from the 
experimental modal analysis. Mode shapes for the 
composite tapered fin analyzed are given in figure 4. 

Plate natural frequencies, in bending and twisting 
(ωh, ωα), can be measured experimentally by performing 
impact testing on the same specimens that are used for 

wind tunnel testing at the later experimentation phase. 
In general, in experimental modal analysis, structures 
are excited by means of electrodynamic and servo-
hydraulic shakers controlled by a signal generator 
connected to a power amplifier.  

 
Figure 4. Tapered plate mode shapes 

For thin-walled structures more convenient method 
for structure, excitation is by means of an impact 
hammer equipped with a piezoelectric force transducer. 
The modal hammer excites the structure analyzed with a 
constant force over a frequency range of interest. 
Initially, this frequency range is not known in order to 
determine the frequency range for the tapered PLA 
plates for the first two modes. The system schematics 
are given in Figure 5, and the Modal results are in 
Figure 6 and Table 2. 
Table 2. Modal results: Mode Indicator - Modal Peaks 
Function 
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Figure 5. Modal testing system 

 
Figure 6. Modal results 

 
2.2 Unsteady aerodynamics model 

 
The solution to the equations of motion requires the 
choice of aerodynamic theory for the particular problem 
on hand.  

One of the applicable unsteady aerodynamics 
theories for the flutter analysis is the unsteady 
Theodorsen theory, which is used throughout this work. 

Complex transfer Theodorsen function is the Fourier 
transform of the unsteady unit air load due to sudden 
and impulsive plunging motion of the aerofoil, located 
at the control point in the domain reduced-frequency. 
The reduced frequency is defined as: 
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whereas the location of the control point is presented in 
Figure 7. 

 
Figure 7. control point location on the airfoil section 

Because of the counteracting vorticity that is created 
in the wake, it presents a lag in the air load from 
infinitesimal variations of the bound circulation. This 
approach is very often used in unsteady flutter analysis. 
Unsteady Aerodynamic force (Rz) and unsteady 
aerodynamic moment are given in the following form: 
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A solution to the previous set of equations for the 
quasi-steady flutter case is obtained by assuming 
harmonic motion in the following form: 

 sin( ),
sin( )

h h t
t

ω
α α ω
= ⋅

⋅
 

=
 (9) 

For the assumed harmonic plate motion, the F and G 
functions in equation 13 (eq 13) represent the in-phase 
and out-of-phase components of the Theodorsen 
Circulation Function C(k). As a function of reduced 
frequency (k), and are given in the following form: 

 ( ) ( ) ( )C k F k iG k= +  (10) 

Functions F and G are given in the following form: 

 
Figure 8. Circulation function real part F(k) as a function of 
a reduced frequency 

 
Figure 9. Circulation function real part G(k) as a function of 
a reduced frequency 

The good approximation of the circulation function 
C(k) (with an error less than 4%) ca n be expressed as: 

 (1 10.6 ) (1 1.774 )(k) (1 13.51 ) (1 2.745 )
i k i kC i k i k

+ ⋅ +=
+ ⋅ +  (11) 

The unsteady flutter solution requires iterative 
calculations where, usually, structural damping vs. 
linear velocity for both bending and torsion modes are 
represented in graphical form. The starting point, using 
this approach, is to estimate the starting value of the 
flutter reduced frequency [16-17]. The starting value for 
the flutter reduced frequency is usually obtained by 
assuming a quasi-steady flutter case since it is less 
computationally involved. Based on this value, the 
Theodorsen aerodynamic functions required in equation 
12 (eq. 12) are calculated. Several iterations through the 
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equations are performed in order to find damping and 
velocity pairs for particular values of different reduced 
frequencies (k). When a satisfactory number of data 
pairs are calculated, graphs for each modal pair of 
artificial structural damping versus velocity are created. 
It is required that an adequate number of points exist to 
construct graphs in order to determine the intersection 
with the horizontal axis (velocity). That intersection 
point represents zero damping. At that particular 
velocity, the loss of stability occurs, and it is considered 
to be the velocity that corresponds to flutter (VF)  

 
2.3 Quasi-steady aerodynamics model 

 
In the calculation of varying aerodynamic forces and 
moments, using the quasi-steady approach, the 
assumption is that at any instant, airfoil behaves with 
the characteristics of the same airfoil having the same 
values of speed and same displacement. Hence, Quasi-
steady aerodynamics assumes that forces and moments 
depend solely on the instantaneous motion of the 
surface, and the prior history of motion is neglected. 
The quasi-steady aerodynamic force is expressed as: 
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In the previous equation, Cl is the lift coefficient 
assumed to be the function of the airfoil shape and the 
angle of attack α.  

 Using Prandtl-Glauert correction for the lift 
coefficient, in the form where A is the fin aspect ratio, 
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The quasi-steady flutter speed can be expressed as: 
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In relations (6), ωh and ωα are the bending and 
twisting natural frequencies of the plate, rα is the radius 
of gyration about the mid-chord, and μ is the 
dimensionless plate airstream mass ratio. 

 
2.4 Numerical flutter model 

 
The complete fin flutter model consists of a structural 
model and the aerodynamic model. The structural model 
consists of 172 laminate finite type finite elements 
(Classic Lamination Theory) that discretize the 
complete missile fin domain. The aerodynamic model 
computes the aerodynamic forces based on the vortex 
panel method. To ensure the transfer of aerodynamic 
loading onto fin structure, both models are mutually 
interconnected with beam-type splines. This kind of 
flutter model enables analysts to obtain the flutter 
velocities, hence the fin dynamic stability loss. The 
algorithm used for this coupled flutter numerical model 
was a very well-known P-k algorithm [21]. 

Using Commercial software MSC Nastran/Flight 
Loads, flutter speed, for the e-glass composite fin, of QI 
stack up [00/450/-450/900]s, thickness 0.65 [mm] is 
calculated. Geometric dimensions of the fin analyzed 
are as follows: Root chord, Cr=180 [mm], tip chord 
Ct=90 and span b/2 = 262 [mm]. The numerical model 
is presented in Figure 1.  

 
Figure 10. Tapered plate mode shapes 

 
2.5 NACA flutter boundary equation 

 
The national advisory committee for aeronautics, in 
technical note No 4197, has defined the flutter boundary 
velocity for the preliminary design of thin plates in the 
following form: 
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In the previous equation (Eq. 1), Vf represents flutter 
boundary speed, a is the speed of sound, Ge is the shear 
modulus of elasticity, t is the lifting surface average 
thickness, p/p0 is the ratio of the fluid pressure to 
standard pressure, and A and λ are aspect and taper ratio 
respectively.  

Flutter equation (eq.1) for QI laminates reads: 
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In equation 5, the fin chord (denoted with c in 
equation 5) is taken as the mean aerodynamic chord for 
tapered plates and is calculated using the known relation 
given here for completeness. 
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In the previous equation (eq.6), S is fin planform 
area, b is fin’s total span, and c(y) chord length at y span 
coordinate. 

 
2.6 Material models  

 
Composite materials have gained great attention from 
designers in recent years due to their intrinsic 
characteristics tailored to a specific engineering 
application. Furthermore, many mechanical, electrical, 
physical, and other characteristics are found to be 
superior to orthotropic, conventional materials used in 
the aerospace industry.  

At the level of materials analysis, it can be conc–
luded that composite material analysis is more complex 
and requires more sophisticated theories. However, 
nowadays, many theories exist and are well established. 
Composite structures, especially in the aerospace 
industry, are manufactured in the form of thin sheets 
(laminates), following all the concepts of thin-walled 
structures. Laminate analysis by means of Classical 
laminate Theory (often denoted as CLT) is often used in 
the composite analysis, especially in the early stages of 
the design, and it combines Kirchoff's hypothesis for 
thin plate bending with individual laminate layer 
integration (Figure 11).  

 
Figure 11. The scheme of the laminate notation 

This approach leads to the formation of the known 
ABD matrix, which relates forces and moments (per 
unit with) to the laminate midplane curvatures and 
strains. ABD matrix is a function of lamina thicknesses, 
lamina phases (fibers and matrix) characteristics, and 
mutual phases volume fraction ratios. In the 
mathematical for the previous relation between forces 
and moments related to midplane curvatures and 
laminate strains are expressed as: 
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For the formation of the ABD matrix thicknesses 
and principal lamina, properties are required. Principal 
lamina properties for the thin lamina are lamina shear 
modulus G12, principal young’s module E1 and E2, and 
the major Poisson ratio ν12. These properties are 
usually obtained by means of experimentation, OEM 
data, or by means of Composite material micromec–
hanics theories. Micromechanics composite theories are 
well established, like the Rule of mixtures and Chamis 
theory, to name a few, and are well explained in the 
literature. 

Forces and moments per unit width are denoted as N 
and M, respectively, where ε0 and κ are laminate mid-
plane curvatures and strains. Furthermore, as a function 
of laminate stresses, the forces and moments are given 
in the following form: 
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Analyzing the previous relations, it can be 
concluded that, unlike isotropic materials, fiber-rein–
forced composites made up of unidirectional laminates, 
as was mentioned in the earlier text, enable optimized 
structural design, theoretically for any engineering 
application.  

Achieving the optimal composite material design is 
a complex task and, generally, in practice, involves 
several calculation steps. Advantageous composite 
properties, when compared to isotropic materials are 
usually obtained in one direction, which in practice, for 
the reasons of varying loads in both, direction and 
magnitude are not satisfactory. The tasks in composite 
material design that are of paramount importance are, 
first, phase selection (fiber phase and composite matrix 
phase coupled with proper volume fraction determi–
nation). Second, lamina fiber orientation is usually done 
by performing “classical” thin-walled structure stress-
strain analysis in order to determine the directions of 
principal stresses within the complete flight envelope in 
cases where fly-worthy structures are designed. Finally, 
to sustain induced stresses with acceptable deformations 
and for minimal weight number of required laminas has 
to be determined. 

In most cases, analysts cannot find a straightforward 
solution to a problem on hand unless there is a single 
load case. To overcome this problem, as a starting 
design, symmetric quasi-isotropic lay-ups are used in 
practice, especially in the initial or preliminary stages of 
the design. Symmetric laminates have both geometric 
and material symmetries (with respect to the mid-
surface). In these lamina layups, there is no coupling 
between bending and twisting which can be 
advantageous in many engineering designs; hence for 
the symmetric lay-ups ABD matrix assumes the 
following form (submatrix B in the ABD matrix is 
zero): 
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Quasi-isotropic (QI) is of particular interest, 
especially in the initial phases of the design, and is often 
used with composite materials during design phases that 
include the initial sizing of the laminates. A stack-up 
that satisfies the following relation (eq. 2) is considered 
to be quasi-isotropic [22]: 
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In equation 2, m represents the number of different 
orientations in the laminate (m ≥ 3) and is the number of 
repetition sequences. This lamination type excludes 
unfavorable coupling effects and composite (in-plane) 
stiffness is independent of composite orientation, which 
may be the main reason why this type of stack-up is 
often used as the starting point in the early stages of the 
design. This is of great advantage since the QI stack-up 
elastic coefficients (principal lamina properties) can be 
expressed as "equivalent" for the complete laminate, 
rendering simplification to complex real problem 
equations (as an example, flutter equation(s) used in this 
work).  

The relations for the laminate elastic coefficients for 
the QI stack-up are given in the following form: 

 
( )1 1 2 12 2

12 2
1 12 2

21 1
2 8 2

υ

υ

⋅ + −
= ⋅ +

−
xy

E E E E
G G

E E
 (22) 

 2(1 ) Gν= = + ⋅x y xy xyE E  (23) 

The required parameters for the previous set of 
equations can be obtained from the composite 
micromechanics as mentioned earlier and are given here 
for completeness: 
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,  (24) 

Composite phase properties in previous equations 
(Ef, Em, and Gm) are usually obtained from material 
OEM, data found in the literature, or by experiment. 
Phases volume fractions (VF and Vm) are determined 
by the composite design and are usually within the 55 – 
65 [%] range for Vf, for fly-worthy aerospace structural 
components. 

The previously presented approach is applicable to 
unidirectional laminas (UD), as presented in Figure 12 
(A). However, in recent years, the fiber phase can be 
obtained in the woven form (different weave forms, 
such as a plain weave), which have certain advantages 
over UD laminates and are suitable for wet layup 
processes [23-25] 

 
Figure 12. UD vs. plain weave 

In order to determine the laminate equivalent 
properties of the e-glass epoxy system used in this work, 
the numerical approach is used based on the lenticular 
algorithm. The representative volume element (RVE) of 

the tapered composite fin manufactured from e-glass/ 
epoxy is presented: 

 
Figure 13. RVE e-glass material model 

The commercial software Ansys material designer 
module is used to determine the equivalent properties of 
the e-glass/ epoxy system, and the obtained numerical 
results are compared to the OEM components supplier. 
A good agreement between this material numerical 
model and phase supplier data is found.  

When designing composite structures for flutter, 
material design and analysis are of great importance, 
since it does not only affect the overall structure mass 
but influence the dynamic characteristics of the struc–
ture (modal characteristics) which further can affect the 
overall flutter velocities [26-28]. 

 
3. ANALYSIS AND EXPERIMENT 

 
To ensure and verify the validity of the proposed 
methodology, for the aeroelastic stability of the QI 
tapered e-glass plates, tests are carried out in the 
subsonic wind tunnel of the Faculty of Mechanical 
Engineering, the University of Belgrade, at relatively 
low Mach number flows (up to 30 m/s), and based on 
experience and recommendations that were published in 
paper [29].  

A specially designed support structure is used to 
support the test samples (e-glass tapered fins) and is 
placed in the test section of the tunnel. Test samples are 
presented in Figure 14, and the complete test setup 
(wind tunnel working section) is in Figure 15. 

 
Figure 14. E-glass tapered plate for wind tunnel flutter test 
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Figure 15. Wind tunnel flutter test setup, 1) Accelerometer (sensor), 2) PCE PFM2 micro manometer with Pitot tube, 3) High-
Speed camera(s), 4) Fin testing fixture clamp 

The support structure with a clamped sample at the 
root chord, positioned in the test section of the wind 
tunnel, is presented in Figure 15. In order to monitor the 
magnitude of the amplitudes during an oscillation cycle, 
accelerometers connected to the DAQ system were 
mounted on the test plate at the location of the root 
chord. The PCE PFM2 micro manometer with pitot tube 
is used to determine air-flow velocity. The system can 
increase or decrease air-flow velocities in the wind 
tunnel by 0.5 m/s increments, with acceptable air-flow 
stabilization times. 
Table 3. Samples Geometric and material data 

Charact.  
Root chord 180 [mm] 
Tip chord 90 [mm] 

Span 262 [mm] 
thickness 0.65 [mm] 

QI [00/ 450/ -450/ 900]s 
E1 41 000 [MPa] 
E2 10 400 [MPa] 
G12 4300 [MPa] 
GE 7962.59 [MPa] / equation 4 

 
The experimental results for flutter velocities versus 

calculated values based on equation 5 and the numerical 
model (section 3) for the fin geometry (Table 1) are 
presented in Table 3. Experimental velocity data is 
obtained based on 5 fin samples, with 10 runs in the 
wind tunnel. The flow velocity was gradually increased 
until the flutter was observed. The flow speed was then 
reduced to 10 m/s and ramped close to the flow speed 
where the flutter occurred in the previous run. The loss 
of stability of the test sample is presented in Figure 16. 

Table 4. Flutter velocity comparative results 

Model Flutter velocity [m/s] 
Experiment 19.6 – 21.5 / (5 test samples / 10 runs) 

Quasi-steady 13.11 
Unsteady 16.78 

NACA 15.3 
Numerical P-K 18.2 

 
Figure 16. Wind tunnel flutter test 
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4. CONCLUSION  
 
In the present work, and based on existing theories, the 
dynamic stability of tapered e-glass composite plates is 
investigated. Current quasi-steady and unsteady 
aerodynamics models were modified in order to predict 
flutter velocities for low Mach number axial flows. 
Elastic coefficients for composite materials stiffness 
matrix are calculated based on Tsai-Ackerman theory 
and used in flutter and modal analysis. Based on the 
analysis performed, the following can be concluded: 
 

1. Material characteristics modeling is of great 
importance when analyzing and designing 
composite structures for flutter. In cases where 
weaved phases are used, a numerical approach 
based on the lenticular algorithm can be 
deployed with great accuracy. 

2. Flutter velocities prediction based on the quasi-
steady aerodynamics tend to underestimate 
flutter speeds (up to 40 % in some cases), 
however due to their simplicity in engineering 
application can be used in the preliminary 
design phase since the underestimation of 
flutter speed leads to a conservative and safe 
design. 

3. Unsteady aerodynamics requires a lot of 
modeling effort and computing time; however, 
it leads to a better solution when results are 
compared to the experimental results. 

4. The closest results obtained to the experimental 
are based on the numerical model (structure, 
aero–dynamic, and spline), where the 
aerodynamic forces are calculated using the 
panel method approach, using the P-K 
algorithm. 

5. Based on the results obtained, the panel aspect 
ratio may highly influence the flutter velocities, 
and this effect requires further investigation. 
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AНАЛИЗА ФЛАТЕРА КОМПОЗИТНИХ 
ТРАПЕЗНИХ РЕПНИХ ПОВРШИНА: 

АНАЛИЗА И ЕКСПЕРИМЕНТ 
 

М. Динуловић, Б. Рашуо, А. Славковић, Г. Зајић 
 
У овом раду се истражује аероеластична стабилност 
трапезних композитних плоча. Постојећи модели 
флaтера, засновани на типичном приступу пресека, 
прегледани су за квази-стабилне и несталне 
аксијалне токове при малим Маховим бројевима и 
модификовани су за танке композитне трапезне 
плоче. Приказан је нумерички приступ који је 
заснован на панел вортекс методама за анализу 
флатера, а резултати су упоређени са типичним 
методама флатера пресека за репне површине 
трапезног облика. Експериментални део рада се 
изводи у подзвучном аеротунелу при брзинама 
протока од 20 – 30 м/с. Добија се добра сагласност 
између добијених експерименталних, аналитичких и 
нумеричких резултата и закључено је да се 
приказана методологија може користити за процену 
граничних брзина лепршања за композитне танке 
равне плоче. 

 


